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Abstract: Using passive infrared sensors is a well-established technique of presence monitoring.
While it can significantly reduce energy consumption, more savings can be made when utilising
more modern sensor solutions coupled with machine learning algorithms. This paper proposes an
improved method of presence monitoring, which can accurately derive the number of people in the
area supervised with a low-cost and low-energy thermal imaging sensor. The method utilises U-Net-
like convolutional neural network architecture and has a low parameter count, and therefore can be
used in embedded scenarios. Instead of providing simple, binary information, it learns to estimate
the occupancy density function with the person count and approximate location, allowing the system
to become considerably more flexible. The tests show that the method compares favourably to the
state of the art solutions, achieving significantly better results.

Keywords: heating; air conditioning; deep learning; building management systems; thermal imaging

1. Introduction

Residential and industrial buildings are responsible for a substantial portion of overall
energy consumption across the world, with a significant share of the energy being used by
the heating, ventilation, and air conditioning (HVAC) [1–3]. The consequence of this fact
is the drive to minimise energy consumption, as this brings economic and environmental
benefits. This is especially important in light of the fact that building energy consumption
is one of the main driving factors behind carbon dioxide emissions [4]. Moreover, energy
production is associated with the emission of other pollutants. Therefore, limiting the
energy consumption directly translates into reduced emissions. The most common means
for the reduction in HVAC-related energy costs include careful building design or moderni-
sation (e.g., improving thermal insulation provided by walls and windows), enabling heat
exchange, ensuring proper ventilation, using modern, efficient HVAC equipment, and, last
but not least, intelligent control.

The introduction of thermostats and feedback control resulted both in energy savings
and increased comfort by enabling precise temperature setting. The thermostats oftentimes
enable the users to adjust other temperature levels for the time window outside of office
hours or at night-time, enabling further savings when energy expenditure is not justified.
However, such global settings lack the granularity that is required to control the HVAC
devices with an accuracy up to a single floor or even a single room. To deal with this issue,
modern intelligent buildings are fitted with multiple temperature sensors and occupancy
sensors to provide accurate, room level control and adjustment to the current user activity
levels. The advent and fast adoption of the Internet of Things (IoT) has transformed
multiple application areas [5,6]. Among others, it has facilitated the introduction of a new
generation of building management systems (BMSs) [7,8]. Fully integrated measurements
from vast sensor networks can be easily aggregated and used for intelligent control. Access
to a variety of sensor data aside from single point measurements and the addition of
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forecast data improves comfort and safety and facilitates energy savings. Aggregation and
interpretation of multiple streams of data is made possible thanks to the widespread use of
machine learning methods [9,10].

Potential savings from using occupancy sensors to control HVAC and lighting systems
are estimated to be around 25% [11]. The most common method for monitoring occupancy
in smart buildings is the passive infrared (PIR) sensors [12]. However, presence moni-
toring can be taken even further by providing information on the number of persons in
a room or other monitored space and adjusting the operation of the system accordingly.
Successful monitoring beyond simple presence check with PIR sensors was reported in the
literature [13,14]. The methods rely on careful spatial arrangement of multiple sensors and
further processing to extract spatial information, e.g., by triangulation based on individual
sensor measurement. Moreover, PIR sensors’ readings may be unreliable as the number
of persons in the monitored space increases [15]. An overview of techniques enabling
fine-grained occupancy measurement is presented in [16]. The main findings are that the
manual evaluation (questionnaires, interviews) is time-consuming and unreliable, with
monitoring using various electronic sensors being a more appealing alternative in terms
of accuracy and associated workload. Simple, inexpensive methods (e.g., infrared barrier
mounted at entry/exit points) tend to be less accurate. More advanced methods, such
as video-based surveillance, are also reviewed in the paper. The conclusion is that these
methods have potential to achieve a very good accuracy, as image-based analyses are
naturally suited for presence detection and activity monitoring. For example, Jazizadeh
and Jung [17] present a vision-based system for personalized thermal comfort assessment
based on subtle visual cues observed on the surface of the human skin. The system pre-
sented in [18] performs fine-grained occupancy measurement and assigns the actions of
the observed subjects to one of the predefined actions to enable even more effective HVAC
control. In [19], Tien, Wei and Calautit use a deep learning-based computer vision system
to not only monitor the activity of persons in the monitored space, but also account for the
active office equipment as a potential heat source. It is worth noting, however, that such a
level of sophistication comes at a significantly increased computational cost. Moreover, the
vision-based methods, as well as methods based on monitoring of wireless transmissions
(wireless local area network (WLAN) [20] or Bluetooth [21]) or wearables [22], are often
perceived as privacy-invasive.

In this paper, we present a low-cost occupancy sensor capable of counting the persons
in its field of view. The sensor is based on a low-power, low-resolution thermal camera.
The camera data are processed using a lightweight convolutional neural network, which
facilitates the deployment on low-cost, low-power embedded hardware. The solution is
easy to deploy and can be classified as privacy-preserving, since extracting the identity of
individuals in the field of view is virtually impossible due to the used thermal modality and
low resolution of the imager (32 × 24 pixels). Our system bears some similarities to other
state of the art approaches using the same sensor. For example, Abedi and Jazizadeh [23]
use the same type of thermal array sensor (MLX90640) to extract the occupancy information.
The method also leverages the deep learning approach, but the resulting information is
binary, i.e., it does not extract the person count. Another related solution is presented in [24].
The method is also based on deep learning, and the solution is capable of counting the
persons in the field of view of the sensor. However, the task the neural network performs is
formulated as classification, where each natural number is a unique class corresponding to
the person count. Moreover, the aforementioned solution imposes a maximum hard limit
on the count equal to five, which certainly is a factor that hinders its flexibility. The solution
presented here is based on a lightweight variant of the U-Net neural network, following the
similar encoder–decoder architecture [25]. This is because instead of using a simple binary
or one-hot output to predict the occupancy or person count, we estimate the occupancy
density function. The concept is borrowed from the crowd counting domain [26], in which
it is a solution preferred over explicit detection, as it avoids the dependence on the detector
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by learning the mapping of images to density maps [27]. The main contributions of the
paper are:

• We present a method for fine-grained occupancy assessment using an inexpensive
thermal camera. The method can be deployed on low-power, low-cost embedded
hardware. Moreover, it is more flexible and accurate than prior art when tested
using a more challenging dataset containing realistic monitoring scenarios involving
distractors, collected in multiple locations. In addition, unlike other state of the
art solutions built around the same sensor, the presented approach provides useful
additional information—the location of the persons in the field of view of the camera.

• We investigate the influence of encoder pretraining using low-resolution grayscale
images on the training speed and performance of the complete neural network and
demonstrate the gains achieved.

• We introduce a public dataset of sequences for neural network testing and training
for the fine-grained space occupancy estimation. The sequences are fully annotated,
collected in a few different spaces, and reflect the challenges encountered in realistic
conditions. Moreover, we also distribute the code enabling the replication of the
experiments shown in the paper. We hope that the availability of an open, public
dataset and the source code would encourage research in this domain and allow for
systematic evaluation of a variety of approaches using a common benchmark.

2. Materials and Methods
2.1. Dataset and Data Collection

In order to streamline the data collection, a portable setup was prepared. The device
consists of a thermal camera, an RGB camera, a computational platform with WLAN
connectivity and a portable power source. The block diagram of the setup is given in
Figure 1.

Figure 1. The block diagram of the data collection setup.

The heart of the system is the Raspberry Pi 4 single-board computer (SBC), which is
well suited for prototyping and was successfully used in a wide variety of applications [28].
The monitored space is observed by an RGB camera with a IMX219 CMOS sensor with
wide angle lens connected to the Raspberry Pi computer with the serial MIPI CSI interface.
The data from the RGB camera were used exclusively to make the setup process easier
and aid with the experiment control and training data annotation; the data from the
RGB camera were not used for neural network training or prediction. The fields of view
of the cameras were therefore not calibrated. The most important part of the system
is therefore the MLX90640 32 × 24 pixel resolution, low-cost thermal sensor [29]. The
measurement range for each pixel is −40 to 300 ◦C and typical target object temperature
accuracy of 1 ◦C precision across its full measurement scale. The measurement refresh rates
are programmable in the range from 0.5 to 64 Hz, although low operation frequency is is
recommended to minimise noise.

The viewing angles of the sensor are 110 and 75 degrees, respectively. The sensor
uses the I2C interface for both control commands and data transmission. No additional
calibration of the sensor was performed, e.g., to account for emmissivity, as our system
relies on the spatial temperature distribution rather than precise temperature measurements.
This makes it easy to integrate it with a variety of embedded systems, including ones based
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on low-cost, low-power microcontrollers. The system is powered with a USB cable, using a
power bank type battery as a portable power source. Sample images collected using the
system are shown in Figure 2. The images were acquired at 2 Hz frequency.

Figure 2. Sample images from the data collection system—RGB image (a) and the thermal image (b).
The locations of the persons in the thermal image as annotated in the dataset (c) and the corresponding
density map (d).

Figure 2 illustrates the method for data annotation. The ground truth starts as an
empty image and has the same size as the input image. The locations of the persons in the
thermal image are marked by a simple mouse click and applied on the ground truth by
setting a single corresponding pixel (in terms of coordinates) in the ground truth image to
full brightness. The density map was constructed by convolution of this image with a fixed
2D Gaussian mask, creating a Gaussian mixture distribution with the maximums of the
Gaussians corresponding to the locations of the persons. Since the height of the camera
does not change drastically between datasets, the Gaussian parameters are the same across
all datasets (σ = 3). Since the sum of the elements of a Gaussian is equal to 1, the person
count was computed by summing up all the values in the predicted output density map.
The dataset was collected in the office space, with varying conditions (different rooms,
locations, etc.). The dataset’s characteristics are given in Table 1.

Table 1. Dataset sample counts.

Number of Persons in a Frame vs. Number of Frames

0 1 2 3 4 5 Total

training dataset 99 105 2984 3217 1953 114 8427
validation dataset 0 139 631 1691 225 139 2825
test dataset 162 83 211 341 1235 314 2346

The registered data were divided into short sequences, and the sequences from differ-
ent locations were distributed into the training, validation and test sets so that the share
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of sequences recorded at each location was approximately equal within each set. As a
result, the dataset division was not stratified as to the person count. However, such an
approach ensures better independence of the training, validation and test sets, as a situation
in which two consecutive, highly correlated frames land in different datasets is hindered.
Nevertheless, the dataset exhibits much less class imbalance than the dataset used in [24],
in which the images in which no person is present correspond to over 80% of the overall
dataset. On the one hand, such a situation is probably the most common (for example,
in an office outside of the working hours), but for the purpose of training and testing a
solution whose main purpose is returning the person count, a more balanced dataset is
desirable. The persons moving in the field of view of the sensor were asked to perform a
range of standard activities (sitting at the desk, chatting, etc.) to increase the variety of the
collected images. The dataset along with the annotations is made public for everyone to
download and use (see the ‘Data Availability Statement’ appendix at the end of the article
for the address). We hope it will facilitate the research on this interesting topic and lead to
the development of new approaches.

2.2. Neural Network Architecture

As mentioned before, the presented solution enables the reconstruction of the position
of the persons in the observed scene, expanding significantly on the functionality enabled
by other approaches using the same sensor. To achieve this, an encoder–decoder structure
of neural network is used. The block diagram of the architecture is shown in Figure 3.

Figure 3. The block diagram of the neural network architecture.

The architecture is based on the U-Net neural network [25], but using small, single
channel images as inputs enables significant simplification without compromising the
results. Moreover, as the number of parameters of the network is relatively small, it is
capable of being used with embedded devices. The simplification is achieved through the
reduction in the number of layers in the encoder and decoder stages, and reduction in the
number of filters. The network operates with the N set to 32.

Convolutional layers are an essential part of the neural network. The formula for
the result of applying the convolutional kernel K to the input feature map I is given in
Equation (1), where (x, y) are the feature map coordinates, nH and nW are the kernel’s
height and width, and nC is the map’s and kernel’s number of channels.

conv(I, K)x,y =
nH

∑
i=1

nW

∑
j=1

nC

∑
k=1

Ki,j,k Ix+i−1,y+j−1,k (1)
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The equation demonstrates the result of applying a single convolutional kernel. Applying
multiple independent kernels to a single input feature map results in the creation of an
output feature map whose depth (number of channels) is equal to the number of the kernels.
The coefficients of each kernel and the additional layer-wide bias term are learned during
the training phase. Padding is used to keep the size of the output feature maps the same as
the size of the input feature maps in terms of width and height. All the layers of the neural
network use the rectified linear unit (ReLU) activation function. The function is given by
Equation (2).

ReLU(x) = max(0, x) (2)

Finally, batch normalisation was applied at the output of each layer [30], ensuring
zero mean, unit variance distribution of output activations.

The maximum pooling with a 2 × 2 input window and the stride of 2 wa used to
down-sample an input representation. The operator selects the maximum value in the
input window and copies the value to the output location. The output of this operation is a
feature map with half the width and height of the input feature map. Note that, although
the width and height of the feature maps gets smaller, their number increases as the encoder
part gets deeper.

The decoder uses the internal representation generated by the encoder to reconstruct
the information on the network’s output. The deconvolution (understood here as fractional
stride convolution) is used to gradually upsample the representation to the original size
using trained parameters, with each use doubling the width and height of the image.
Also note that the feature maps of corresponding size in the encoder and decoder are
concatenated—such information sharing has proven to be useful in terms of accuracy
improvement in the original U-Net.

The thermal images are min-max normalized to the range of 0 to 1 before being used
for training. Standard training and testing procedure was employed—the training dataset
data was used to train the neural network, the validation dataset was used for the control
of the training process (key metric value tracking, identification of overfitting), and the test
set was used as the holdout data for final testing of the developed solution.

Taking into account the size of the images, the dataset size should be sufficient for
training. Nevertheless, additional experiments were performed in which the encoder part
of the neural network was trained for classification using low-resolution grayscale images
to take advantage of transfer learning [31]. Analogous solution in the form of using an
encoder pretrained on ImageNet [32] classification task was successfully used in a similar
setting, for example for semantic segmentation [33]. Since ImageNet is comprised of higher
resolution, color images, pretraining was performed using the CIFAR-10 dataset converted
to grayscale [34] (60,000 32 × 32 pixel images with 10 classes) and the Fashion MNIST
dataset (70,000 28 × 28 pixel images with 10 classes) [35]. The training was performed
using Adam optimizer [36], with the learning rate set to 0.001. Mean average error was
selected as the loss function. All data and code used to generate the results along with the
trained models is available for download (see Data Availability Statement).

3. Results

The trained network is capable of successfully predicting the occupancy density
function as shown in Figure 4.

Note that the local maxima in the predicted output occupancy density image corre-
spond to the actual locations of the persons. The predicted density maxima correspond
to the locations of the person in the field of view of the sensor, even though the persons
in the thermal image exhibit very different characteristics and temperature distribution.
The density function components have a lower value for persons that are only partially
visible (see Figure 4, top row for an example). This is due to the neural network being
less confident of the partially occluded person’s presence, which in turn results in the sum
of the distribution components being a fractional number deviating from the true person
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count. Nevertheless, obtaining the true person count in the scene is still possible by adding
all components in the predicted image and rounding it to the closest natural number. Gen-
erally speaking, the presented method would be able to recover the approximate location
of the persons present in the room, which can be leveraged to drive a zone temperature
control system.

Figure 4. Sample inputs with predictions made by the neural network. Column (a)—RGB im-
ages, column (b)—thermal images (neural network input), column (c)—neural network predictions
(occupancy density function). Different frames in consecutive rows.

The time plot of predictions is shown in Figure 5. The test dataset sequences were
concatenated to form a single plot.
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Figure 5. Predictions of person count as a function of time. The black, dashed vertical lines denote
the point of concatenation of sequences coming from different scenes. Top row—raw prediction vs.
ground truth. Middle row—rounded prediction vs. ground truth. Bottom row—raw and rounded
prediction error.

The prediction values are the result of adding all the components of the distribution
function, so the raw values can be fractional and deviate from the natural numbers. Simple
rounding towards the nearest integer can be used to improve the quality of results in terms
of person count. As the result clearly shows, the rounded prediction error is mostly zero
and the estimated count is very rarely off by more than one.

To compare the results against the state of the art approach presented in [24], we
also performed an experiment using a neural network with the same fully connected
structure as the one that was reported to achieve the best accuracy in this work. Since
the dataset used to train the network is not publicly available, we trained it using the
data from the dataset introduced in our paper, with the same split as we used to train the
encoder–decoder network. Using the same data and the same splits enables fair side by
side comparison. Comparative results in terms of mean average error (MAE) and mean
square error (MSE), as well as the accuracy and the number of neural network parameters
are given in Table 2.
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Table 2. The comparison of key metrics on the test set—the mean average error and mean squared
error, along with the rounded version for direct comparison, the accuracy and the number of trainable
parameters of both neural networks.

Metric Name Our Result Metwaly et al. Result [24]

MAE 0.145 -
MAE rounded 0.060 0.304
MSE 0.057 -
MSE rounded 0.062 0.470
Accuracy 0.941 0.777
No. of parameters 130,193 396,806

Aside from the global metrics, the confusion matrices providing additional insight
into the performance of both approaches were also computer and are shown in Figure 6.
The matrices are plotted for the rounded variants of the predictions.

Figure 6. Confusion matrices for the presented solution (left) and the solution reproduced from [24].
The rows correspond to the predicted class, while the columns correspond to the ground truth class.
The diagonal cells correspond to observations that are correctly classified. The off-diagonal cells
correspond to incorrect classifications. Each cell contains the number of samples and its corresponding
percentage relative to the total test dataset sample count. The rightmost column of the plot shows the
total number of predicted samples, the precision, and false discovery rate for each class. The bottom
row shows the total number of ground truth samples, the recall, and false negative rate for each
class. The bottom (right) cell shows the overall accuracy in terms of the percentage of the correct and
incorrect classifications.

4. Discussion

The implemented neural network architecture and the occupancy measurement
method have achieved competitive result in comparison to the state of the art when
evaluated using the dataset presented in this paper, outperforming the competing solution
by a significant margin. As demonstrated by the resulting metrics, fine-grained occupancy
estimation is a viable option, even using relatively low-cost and low-power hardware. Due
to the small input and output image size, and the overall low computational complexity
of the neural network, training can be performed even on relatively low-end hardware.
Nevertheless, we have found that using a pretrained encoder speeds up the process roughly
twice (final loss function value is reached in about half the time), although offers no benefits
in terms of accuracy improvement. Doubling the number of filters in the neural network’s
layers also does not affect the final accuracy, yet halving the number of filters results in
performance degradation. The average single prediction time using the Raspberry Pi 4 SBC
is 27 ms.
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The areas where the method struggles most is the prediction of the presence and
position of persons near the border of the registered area (acquired thermal image), as
presented in the top row of Figure 4. With the persons only partially visible, the confidence
of the corresponding prediction becomes lower, which is reflected in the estimated density.
As a result, the summed up components yield a value below the real number of persons,
which can be alleviated quite simply, although only to some degree, by using nearest integer
rounding. The problem would, however, become more prominent with the increasing
number of persons present at the edges of the field of view.

The approach presented in this paper achieved significantly better results on the
presented dataset than the approach described in [24]. Although we have no access to the
dataset used in [24], we can draw a highly probable conclusion—that our dataset is more
diverse, e.g., due to the background (floor) temperature nonuniformity or the presence of
distractors (office equipment, hot beverage mugs, etc.). Moreover, we also collected the
data in multiple locations. Furthermore, the use of fully connected network and flattening
the input image to a set of independent input features in [24] makes it much harder for
the neural network to reason about the underlying spatial relations and structure of the
objects observed in the scene. The convolutional neural network introduced in this paper
has an inherent capability to deal with two-dimensional data, and convolutions have
been proven to be very effective feature extractors for image processing applications [37].
Interestingly, the solution based on the fully connected neural network struggles with
dealing with low person counts and seems to be gravitating towards prediction of majority
classes. This might be seen as another indication, that preserving spatial information is
an important functionality for this task. The classes for this person count are somewhat
underrepresented, yet the encoder–decoder network still yields much better results.

Overall, in contrast to [23] the presented system leverages the deep learning techniques
used with conjunction with the MLX90640 sensor to provide information beyond simple
binary occupancy data. While the capability to estimate the number of persons using
similar sensor and set of techniques was shown in [24], our proposal fares notably better in
direct comparison using more challenging data. Moreover, it provides the end user with
more flexibility and extra information—there is no hard limit on the number of persons as
opposed to classification-based approach. Using the presented approach, the approximate
location of the persons in the field of view of the camera is known, which facilitates
zone-based control [38], and paves the way to extensions such as inclusion of activity
profiles in the climate control feedback loop [39]. All this is achieved using a simpler neural
network architecture—the parameter count of the closest competing solution (in terms of
functionality) is roughly triple.

5. Conclusions

The article presents an approach for fine-grained occupancy monitoring, enabling
person counting with relatively high accuracy, which is a clear advantage over simple binary
occupancy sensors. The solution is based on a low-power, low-resolution inexpensive
thermal camera. As a result, a relatively simple convolutional neural network is capable
of performing this task, which facilitates the use of inexpensive, low-power embedded
systems as the target platform. Although a universal SBC was used in the experiments for
its flexibility, the solution would run on a microcontroller such as the one used in [24], since
it uses significantly less parameters than the implementation described therein. Additional
benefits include more flexibility (no hard upper limit for the person counter) and providing
the end user with additional useful information in terms of person location. This paves the
way for the use of more sophisticated control algorithms, further enhancing user comfort
and potential for energy savings. The solution preserves the privacy of the end users,
as identity recognition using the input images is impossible due to the utilised modality
and low resolution. The approach is tested on a new, dedicated dataset, which consists
of sequences collected in a few office environment locations. Both the dataset and the
code used to replicate the experiments are available for download. Opportunities for
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future work include the assessment of thermal parameters of detected persons, e.g., by the
measurement of the radiated temperature weighted by the occupancy density function,
or monitoring user activity, e.g., by movement-related information extraction for use in
lighting or appliance control.

Further development directions include, but are not limited to an exploration of
alternative methods for person detection by the density image analysis (e.g., by blob
counting) and employment of dedicated tracking approaches and tests with a range of
target embedded platforms to optimise the processing speed vs. power consumption
trade-off.
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