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Abstract: The problem of optimal phase-balancing in three-phase asymmetric distribution networks
is addressed in this research from the point of view of combinatorial optimization using a master–
slave optimization approach. The master stage employs an improved sine cosine algorithm (ISCA),
which is entrusted with determining the load reconfiguration at each node. The slave stage evaluates
the energy losses for each set of load connections provided by the master stage by implementing the
triangular-based power flow method. The mathematical model that was solved using the ISCA is
designed to minimize the annual operating costs of the three-phase network. These costs include the
annual costs of the energy losses, considering daily active and reactive power curves, as well as the
costs of the working groups tasked with the implementation of the phase-balancing plan at each node.
The peak load scenario was evaluated for a 15-bus test system to demonstrate the effectiveness of the
proposed ISCA in reducing the power loss (18.66%) compared with optimization methods such as
genetic algorithm (18.64%), the classical sine cosine algorithm (18.42%), black-hole optimizer (18.38%),
and vortex search algorithm (18.59%). The IEEE 37-bus system was employed to determine the
annual total costs of the network before and after implementing the phase-balancing plan provided
by the proposed ISCA. The annual operative costs were reduced by about 13% with respect to the
benchmark case, with investments between USD 2100 and USD 2200 in phase-balancing activities
developed by the working groups. In addition, the positive effects of implementing the phase-
balancing plan were evidenced in the voltage performance of the IEEE 37-bus system by improving
the voltage regulation with a maximum of 4% in the whole network from an initial regulation of
6.30%. All numerical validations were performed in the MATLAB programming environment.

Keywords: three-phase distribution networks; optimal phase balancing; improved sine cosine
algorithm; annual operating costs; working groups; combinatorial optimization

1. Introduction

Three-phase distribution networks are responsible for interfacing transmission and
sub-transmission networks at high-to-medium-voltage substations with end users at
medium- and low-voltage levels [1,2]. These grids are typically built with a radial config-
uration to minimize the cost of investment in conductors and to simplify the process of
protective device coordination [3]. The main challenge in three-phase distribution networks
is to minimize the energy losses in the grid at minimal investment costs [4]. The energy
losses in three-phase networks are mainly caused by the asymmetric nature of the matrix
of impedances in all distribution lines, as well as the presence of multiple single-, two-, and
three-phase loads [5]. Energy losses in electrical distribution networks can vary from 6 to
18% in the Colombian context [6]. These variations in the distribution networks depend
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on multiple factors, such as whether the connections are urban or rural, the length of the
feeders, and the execution of maintenance plans. The Colombian regulatory environment
for the electricity and gas sectors provides benefits via billing to distribution companies that
demonstrate efficiency regarding energy loss indicators, thereby allowing them to transfer
the costs of energy losses to all end users up to 8% [5]. This implies that if a distribution
company has energy losses lower than this value, its distribution activities would generate
an additional profit, whereas distribution companies with energy losses higher than 8%
would not enjoy the advantage of this billing benefit. They would also incur additional
operating costs that would reduce their net profit in the provision of the electricity service.

The extent of energy losses in three-phase networks can be lowered by employing
different methodologies, such as shunt active and reactive power compensation [7,8], grid
reconfiguration [9,10], and phase balancing [11,12]. The first two of these methodologies
imply higher investment costs, as they require the acquisition of new equipment (i.e.,
capacitors, static compensators, and distributed generators), including the associated
installation and maintenance costs [13]. On the other hand, the phase-balancing approach
can be considered the most inexpensive method to reduce power losses because this
method obviates the necessity for new devices [4], and the unique cost related to the
phase-balancing plan is associated with working groups entrusted with traveling around
to implement the required changes in the phases of the nodes of the grid [14]. In this study
we solve the phase-balancing problem in an attempt to reduce the annual operating cost of
three-phase distribution networks with asymmetric loads.

According to the latest literature, the problem of optimal phase balancing is typically
studied with combinatorial optimization methods based on master–slave optimization
strategies [15]. A few of these methodologies are described below. Cortés-Caicedo et al. [5]
proposed the application of the vortex search algorithm (VSA) at the master stage com-
bined with the classical backward/forward power flow in the slave stage. Their numerical
results in test feeders composed of 8, 25, and 37 nodes demonstrated the efficiency of
the VSA method when compared with classical genetic algorithms. In addition, all the
results provided by the VSA were tested using DIgSILENT software, which confirmed
the applicability of their methodology to real three-phase networks. Granada-Echeverri
et al. [11] applied the classical Chu and Beasley genetic algorithm (CBGA) to solve the
phase-balancing problem in two test feeders composed of 19 and 37 nodes. Their numer-
ical results demonstrated the effectiveness of this optimization method in terms of the
percentage of power loss reduction; however, they did not compare their approach with
other metaheuristic approaches, which does not permit verification of the performance of
the genetic algorithm in terms of processing times and solution repeatability. A simulated
annealing method was proposed [4] for transformer swapping in three-phase asymmetric
networks, and the approach was validated using a small test feeder composed of five
nodes. The authors also compared their results with greedy and quenching algorithms to
demonstrate the efficiency of the simulated annealing approach in reducing grid power
losses. Authors of [16] proposed an improved version of the classical CBGA to solve the
phase-balancing problem with an integer codification. The improvement consisted of the
introduction on the selection, recombination, and mutation stages of a new operator based
on the VSA to generate multiple offspring around a selected individual. This improvement
helped the classical CBGA in the exploration and exploitation of the solution space in some
promissory regions. Numerical results demonstrate the efficiency of the methodology when
compared with the VSA, the classical CBGA, and the sine cosine algorithm, among others.

Additional methodologies applied to the phase-balancing problem include immune
algorithms [12], artificial neural networks [17], fuzzy logic [18], a differential evolution
algorithm [19], particle swarm optimization [20], and a bacterial foraging algorithm [21]. A
different method to solve the phase-balancing problem was recently proposed in [22]. This
involved the use of a mixed-integer quadratic approximation for redistributing the load
connections among nodes in residential low-voltage microgrids. Although this approach
ensures that the quadratic programming model finds the global optimum, the authors
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used a linear version of the three-phase power flow problem, which introduces estimation
errors in the final solution. Authors of [23] presented a mixed-integer convex model to
solve the load redistribution problem in three-phase asymmetric networks. The convex
reformulation makes it possible find the global optimum of the approximated proposed
model without considering the effect of the power balance equations in the optimization
model; however, when the solution is evaluated in the exact phase-balancing formulation,
the solutions provided by [23] correspond to locally optimal solutions. The authors of [24]
proposed a linear programming formulation for the problem of phase balancing in three-
phase networks. They did not consider the effect of the voltage magnitudes, since they
were close to the substation voltage (i.e., 1.0 p.u.). Numerical results validated the proposed
linear integer programming model in a small grid with six nodes; however, the authors did
not provide comparisons with metaheuristics to confirm the effectiveness of their proposal.

Table 1 summarizes the main approaches reported in the literature to solve the problem
of phase balancing in three-phase asymmetric distribution networks, which are based on
metaheuristics and approximated convex models.

Table 1. Main optimization methodologies applied to the phase-balancing problem in three-phase networks.

Optimization Method Objective Function Year Reference

Simulated annealing algorithm Power losses minimization 1999 [4]
Mixed-integer linear programming Optimal current balancing 2006 [24]
Fuzzy logic approach Power losses minimization 2007 [18]
Immune optimization algorithm Power losses minimization 2008 [12]
Differential evolution algorithm Power losses minimization 2012 [19]
Particle swarm optimization Power losses minimization 2012 [20]
Bacterial foraging algorithm Power losses minimization 2012 [21]
Chu and Beasley genetic algorithms Power losses minimization 2012, 2020, 2021 [5,11,16]
Artificial neural networks Power losses minimization 2014 [17]
Discrete vortex search algorithm Power losses minimization 2020 [5]
Mixed-integer conic reformulation Expected energy losses 2021 [22]
Mixed-integer convex approximation Average unbalance level 2021 [23]

The main characteristic of the previous metaheuristic optimization methods listed
in Table 1 is that they follow the leader–follower strategy. Here, the leader stage is en-
trusted by defining the load connections, and the follower stage solves the three-phase
power flow problem to evaluate the objective function value, thereby helping guide the
solution methodology through the solution space [25,26]. In addition, most of these studies
only evaluated the phase-balancing methodology in the peak load condition and did not
consider daily active and reactive power curves or the costs of the working groups that
implement the final phase balancing along the test feeder.

The present research study makes the following contributions to the field:

• The use of an improved sine cosine algorithm (ISCA) to solve the phase-balancing
problem; the algorithm was modified by changing the number of points in the codifi-
cation that can change in each iterative cycle. This was achieved by using an adaptive
rule as a function of the maximum number of nodes of the network.

• Hybridization of the ISCA (master stage) with the triangular-based three-phase power
flow method (slave stage), which can solve power flow problems in asymmetric
networks with loads with Y- and ∆-connections.

• Evaluation of the phase-balancing plan by modifying the objective function to account
for the annual costs of the energy losses (including daily active and reactive power
curves) and the costs of the working groups that travel along the feeder to implement
the optimization plan.

Importantly, the use of the ISCA to solve the phase-swapping problem in three-phase
networks using master–slave optimization methodology has not previously been reported
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in the specialized literature. This is a gap in the current research that this work aims to fill.
In addition, the results reported in this paper take into account the annual operating costs
of the network by additionally considering the costs of deploying the working groups. This
could be considered a reference point for the proposal of future optimization methodologies
designed to address the problem of phase balancing in asymmetric three-phase networks.

The remainder of this document is structured as follows: Section 2 presents the
general mixed-integer nonlinear programming model to represent the optimal phase-
balancing problem in three-phase networks with a multi-period formulation; Section 3
describes the proposed optimization methodology based on the improved version of the
sine cosine algorithm in the master stage and the triangular-based three-phase power
flow method in the slave stage; Section 4 presents the main characteristics of the three-
phase networks under study, which are composed of 15 and 37 nodes, respectively. Then,
Section 5 presents the main numerical results obtained by the proposed ISCA in the 15-
and IEEE 37-bus systems, considering the peak load scenario and daily active and reactive
power curves. Furthermore, comparisons with four metaheuristic optimizers are provided
to validate the effectiveness and robustness of our master–slave optimization proposal.
Finally, Section 6 presents the concluding remarks derived from our research and outlines
possible future work.

2. General Optimization Model

Electrical distribution networks are typically constructed with a three-phase structure
such that they are as balanced as possible in terms of the impedances; however, the nature
of the loads makes it impossible to ensure that the network is completely symmetrical,
owing to the presence of single-, two-, and three-phase loads. This implies that the currents
through all the lines are generally asymmetric [27,28], which significantly increases the
energy losses of the network with respect to the ideal balanced case. Ultimately, this
has a negative impact on the net profit of the distribution company in the electricity
commercialization activity [29]. In order to address the problem of load balancing in
three-phase networks, we propose an optimization model from the family of mixed-
integer nonlinear programming (MINLP) methods, which are suitable for the analysis
of multiperiod operating environments. The proposed optimization model attempts to
minimize the annual operating cost of the network. These costs include the total costs
of the energy losses summed with the costs of the phase-balancing task associated with
the costs of displacing the crew working along the feeder. Note that the nonlinearities
in the phase-balancing problem are related to the products of the trigonometric function
and voltage magnitudes in the power balance constraints [30]. The integer part of the
optimization model is related to the six possible load connections that are allowed at each
node of the network [22]. The complete MINLP model is given in the following.

2.1. Objective Function

The structure of the objective function considered in this study corresponds to the
summation of the costs incurred as a result of the annual energy loss and the cost of the
phase balancing, which is associated with the displacement of the working group along
the distribution feeder to implement the phase-balancing plan. Equation (1) defines the
objective function used in this study.

Acost = f1 + f2, (1)

f1 = CkWhT ∑t∈T ∑k∈N ∑m∈N ∑ f∈F ∑g∈F Yk f mgVk f tVmgt cos
(

δk f t − δmgt − θk f mg

)
∆t,

f2 = ∑k∈N Ck,bal max f∈F

maxg∈F

xk f g −

1 0 0
0 1 0
0 0 1


,

where Acost represents the total annual cost of the network operation, f1 is the annual
operating costs related with the total energy losses in all the branches of the network, and
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f2 is the cost of the phase-balancing activity. CkWh represents the average cost of the energy
losses, T represents the number of hours in an ordinary year (i.e., 8760 h), Yk f mg represents
the magnitude of the admittance that relates node k at phase f with node m at phase g, Vk f t
(Vm f t) corresponds to the voltage magnitude at node k (m) in phase f (g) at time period
t, δk f t (δmgt) is the angle of the voltage at node k (m) in phase f (g) at time period t, θk f mg
represents the angle of the admittance that relates node k at phase f with node m at phase
g, ∆t is the time period during which the power demands remain constant, and Ck,bal is the
cost of interchanging load phases at node k. Observe that F , N , and T are the sets that
contain all the phases, nodes, and time periods, respectively.

2.2. Set of Constraints
The general set of constraints related to the phase-balancing problem in three-phase

asymmetric networks includes active and reactive power balance equations, voltage regu-
lation bounds, and conditions over the decision variables to maintain the feasibility of the
solution space [5,22]. The set of constraints is as follows:

Ps
k f t − ∑

g∈F
xk f gPd

kgt = Vk f t ∑
m∈N

∑
g∈F

Yk f mgVmgt cos
(

δk f t − δmgt − θk f mg

)
,


∀ f ∈ F
∀k ∈ N
∀t ∈ T

, (2)

Qs
k f t − ∑

g∈F
xk f gQd

kgt = Vk f t ∑
m∈N

∑
g∈F

Yk f mgVmgt sin
(

δk f t − δmgt − θk f mg

)
,


∀ f ∈ F
∀k ∈ N
∀t ∈ T

, (3)

∑g∈F xk f g = 1, {∀ f ∈ F , ∀k ∈ N , ∀t ∈ T }, (4)

∑ f∈F xk f g = 1, {∀g ∈ F , ∀k ∈ N , ∀t ∈ T }, (5)

Vmin ≤ Vk f t ≤ Vmax, {∀g ∈ F , ∀k ∈ N , ∀t ∈ T }, (6)

where Ps
k f t and Qs

k f t represent the active and reactive power generated by source s con-

nected at node k in phase f in time period t, Pd
kgt and Qd

kgt correspond to the active and
reactive power demands connected at bus k in phase g at time period t, xk f g is a binary
variable that determines the connection of the constant power consumption at bus k at f
in phase g, and Vmin and Vmax are the minimum and maximum voltage regulation limits
permitted for all buses of the electrical grid in each time period, respectively.

Remark 1. The equality constraints (2) and (3), regarding the active and reactive power balance
equations at each node, phase, and period of time, respectively, show the complexity of the three-phase
unbalanced power flow problem in distribution grids, even when the connection of the loads at these
nodes is perfectly known. Note that the main complication in these equations arises because of the
need to calculate the products of the voltages and trigonometric functions, which necessitates the
use of numerical methods to reach the solution within the desired convergence error [28].

2.3. General Model Interpretation

To understand the general formulation of the phase-balancing problem in asymmetric
distribution networks, the following interpretations of Equations (1) and (6) are provided.
Equation (1) is the objective function of the optimization problem. This function is intended
to minimize the annual operating costs of the network, combining the costs of the energy
losses with the cost of the phase-balancing implementation using working groups that
travel along the feeder to implement the optimization plan. Equations (2) and (3) corre-
spond to the active and reactive power balance equations for each node, phase, and time
period in the three-phase distribution network, respectively. Note that in metaheuristic
optimization methods with master–slave strategies these equations are solved numerically
using methods such as the backward/forward power flow method [31], triangular-based
power flow method [28], Newton–Raphson method, and graph-based approaches [32].
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Equations (4) and (5) ensure that the loads are connected to the phases in a unique form by
employing a matrix connection at each bus (i.e., node k), formed by the variables xk f g, with
the values in each column and each row of the matrix required to be equal to 1. Finally,
the box-type Constraint (6) determines the upper and lower voltage regulation limits
applicable to the electric distribution grid, which are typically ±10% for medium-voltage
levels [5].

3. Solution Methodology

In this research, the problem of optimal phase balancing in three-phase networks
is addressed from the point of view of master–slave optimization [15]. For the master
stage, an improved sine cosine algorithm (ISCA) is proposed, whereas the slave stage
is governed by solving the power flow problem for three-phase networks by using the
recently developed triangular-based power flow method [28]. Note that the master stage is
entrusted with determining the load configuration at each node of the network, whereas
the slave stage is entrusted with the calculation of the costs incurred because of the energy
loss during the period of analysis. In the following subsections, the master and slave stages
are described in detail.

3.1. Master Stage: Improved Sine Cosine Algorithm

To determine the nodal connections of the three-phase loads, we propose an improved
version of the sine cosine algorithm that explores and exploits the solution space by
evolving through the solution space with trigonometric sine and cosine functions [33,34].
The main idea of the ISCA is to sweep the solution space using the information of the
best current solution at iteration t (i.e., xbest) and each individual xt

i in the population with
weighted sine/cosine factors and a reduced number of modifications in the structure of the
individual xt

i , based on the adaptive rule.
The codification adopted to solve the phase-balancing problem is presented in Table 2.

Note that the binary variable xk f g can be easily represented with integer numbers between
1 and 6 [11].

Table 2. Possible load connections in a three-phase node [5].

Connection Type Phases Sequence Binary Variable xk f g

1 ABC

1 0 0
0 1 0
0 0 1


2 CAB No change

0 0 1
1 0 0
0 1 0


3 BCA

0 1 0
0 0 1
1 0 0


4 ACB

1 0 0
0 0 1
0 1 0


5 BAC Change

0 1 0
1 0 0
0 0 1


6 CBA

0 0 1
0 1 0
1 0 0
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The proposed classification for each individual xt
i in the ISCA is presented in Equation (7):

xt
i = [1 6 2 · · · 4 · · · 5], (7)

which produces an initial population with the form It
p =

[
xt

1 xt
2 · · · xt

i · · · xt
ni

]T
with t = 0,

where ni is the number of individuals in the population.

Remark 2. Importantly, the codification presented in Equation (7) is feasible because each compo-
nent of the individual xt

i , i.e., xt
ij, is generated with the following rule thereof:

xt
ij = round(xmin + (xmin − xmax)rand), {∀i = 1, 2, ..., ni, ∀j = 1, 2, ..., n}, (8)

where xmin = 1, xmax = 6, round(y) is a function that obtains the integer part of a real number,
and rand is a random number between 0 and 1 generated with a normal distribution.

To generate the descending individuals, we propose a variation of the sine cosine
algorithm that does not modify all the information of an individual in the same iteration.
The general evolution of the ISCA is presented in Algorithm 1.

Algorithm 1: Generation of the descending individual.

Data: Take the information of the individual xt
i

for i ≤ ni do
Set yt

i = xt
i ;

Generate the probability ρ = rand;
Select the positions of the individual yt

i that will be modified, that is, pm;
if ρ ≤ 1

2 then
Set yt

i,pm
= round

(
xt

i,pm
+ r1 sin(r2)

∣∣∣r3xbest,pm − xt
i,pm

∣∣∣) ;

else
Set yt

i,pm
= round

(
xt

i,pm
+ r1 cos(r2)

∣∣∣r3xbest,pm − xt
i,pm

∣∣∣) ;

In Algorithm 1, the parameter ρ is determined for each individual if the evolution is
made to occur using the sine or cosine function, r2 is a random number between 0 and 2π
generated with a normal distribution, and r3 is a random number between 0 and 1 that
determines the level of importance of the best current solution in the generation of the new
individual. Note that r1 is a variable factor that controls the balance between the exploration
and exploitation of the solution space. This parameter is calculated as r1 = 1− t

tmax
, where

tmax is the maximum number of iterations specified for the ISCA.
Note that an important step prior to the evaluation of the descending individual yt

i is
the verification of its upper and lower bounds, that is, xmin ≤ yt

ij ≤ xmax. If either the upper
or lower limit is violated, then the individual yt

ij is corrected by applying Equation (8).

To determine whether the descending individual yt
i will occupy the position xt+1

i , the
objective function value associated with the annual operating costs must be evaluated in
the slave stage, which implies that if Acost

(
yt

i
)
≤ Acost

(
xt

i
)
, then xt+1

i = yt
i .

The evolution process of the ISCA ends if one of the following criteria is met:

• If the maximum number of iterations tmax is reached, then xtmax
best is reported as the

optimal solution.
• If the objective function of the best solution does not improve during kmax iterations,

xtt
best is reported as the optimal solution.

Remark 3. The main advantage of using part of an individual to implement changes (i.e., the pm
positions of the vector) is that the algorithm does not undertake large jumps through the solution
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space. This is necessary to control the exploration and exploitation properties of the algorithm,
especially because of the discrete nature of the solution variables. The number of positions pm that
will change varies between 1 and 10% of the number of variables of the problem, that is, n nodes.

3.2. Slave Stage: Triangular-Based Power Flow Method

To evaluate each configuration provided by the master stage, we used the triangular-
based three-phase power method that was recently proposed in [28]. The main advantages
of this approach are its shorter processing times and its guarantee of convergence via the
Banach fixed-point theorem [31]. The general formula for the triangular-based three-phase
power flow method is presented below (taken from [28]):

V3ϕ = 13ϕV13ϕ − TT
3ϕZ3ϕT3ϕI3ϕ, (9)

where V3ϕ ∈ C3(n−1)×1 corresponds to a vector that contains all the phase voltages or-
dered per node, 13ϕ ∈ R3(n−1)×3 corresponds to a rectangular matrix filled by 3 × 3
identity matrices, V13ϕ ∈ C3×1 is a vector that contains the voltages of the substation
node (voltage-controlled node), T3ϕ ∈ R3b×3b represents the three-phase equivalent of the
upper-triangular matrix, Z3ϕ ∈ C3b×3b represents the primitive three-phase impedance
matrix, which has a three-diagonal form, and I3ϕ ∈ C3(n−1)×1 is a vector that contains all
the phase currents ordered per node.

Note that Equation (9) must be solved iteratively because the voltages in all the
demand nodes are indeed a function of the demanded currents (I3ϕ), which are functions
of these voltages, that is, I3ϕ = f

(
V3ϕ

)
. Equation (10) presents the recursive formula to

solve the three-phase power-flow problem considering symmetric and asymmetric loads.

Vm+1
3ϕ = 13ϕV13ϕ − TT

3ϕZ3ϕT3ϕIm
3ϕ, (10)

where m is the iterative counter. In addition, the convergence criterion adopted in this
research corresponds to the maximum error between the voltage variables in two consecu-
tive iterations, that is, max

{
||Vm+1

3ϕ | − |Vm
3ϕ||
}
≤ ε, where ε is the maximum tolerance and

it is assigned as 1× 10−10, as recommended in [35].
It is important to emphasize that the triangular-based power flow method defined by

the recursive Formula (10) has the ability to work with loads with ∆- and Y-connections,
which implies that the current Im

3ϕ must be calculated as a function of the type of load. If
we consider that at node k there exists a load with a Y-connection, then the method for
calculating the demand current is defined by Equation (11).

Ika =
S?ka
V?

ka
,

Ikb =
S?kb
V?

kb
, (11)

Ikc =
S?kc
V?

kc
,

where Ika, Ikb, and Ikc are the current demands in phases a, b, and c, respectively; Vka, Vkb,
and Vkc are the voltages per phase, considering that the neutral point of the load is solidly
grounded; and Ska, Skb, and Skc correspond to the loads connected between each phase
and the neutral point. Observe that X? presents the conjugate operator of the variable or
parameter X.
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In the case of loads with a ∆-connection at node k, the demanded current is calculated
as defined in Equation (13).

Ika =

(
Skab

Vka −Vkb

)?

−
(

Skca
Vkc −Vka

)?

,

Ikb =

(
Skbc

Vkb −Vkc

)?

−
(

Skab
Vka −Vkb

)?

, (12)

Ikc =

(
Skca

Vkc −Vka

)?

−
(

Skbc
Vkb −Vkc

)?

,

where Skab, Skbc, and Skca are the apparent power consumption between the connections
between phases a and b, b and c, and c and a, respectively.

To generalize the implementation of the triangular-based power flow method, Algorithm 2
presents the pseudo-code to solve the recursive Formula (10) for a general three-phase
network with symmetric and asymmetric loads.

Algorithm 2: General pseudo-code for triangular-based three-phase power flow
with loads with ∆- and Y-connections.

Data: Define the distribution networks under analysis.
Obtain the per-unit equivalent of the network;
Calculate the three-phase triangular matrix T3ϕ;
Determine the branch primitive impedance matrix Z3ϕ;
Compute the three-phase impedance-like matrix Zbus

3ϕ = TT
3ϕZ3ϕT3ϕ;

Select the maximum number of iterations mmax;
Select the convergence error ε;

Select the slack voltages: V13ϕ =
[
1∠0, 1∠− 2π

3 , 1∠ 2π
3
]T

;
Set m = 0;
Determine the initial voltage as Vm

3ϕ = 13ϕV13ϕ;
k = 1;
for m ≤ mmax do

for k ≥ n− 1 do
if Load in node k connected to Y then

Compute the demanded current Ik3ϕ using Equation (11) ;
else

Compute the demanded current Ik3ϕ using Equation (13);

Calculate the new voltages Vm+1
3 f using Equation (10);

if max
{∣∣∣∣∣∣Vm+1

3ϕ

∣∣∣− ∣∣∣Vm
3ϕ

∣∣∣∣∣∣} < ε then

Report the nodal voltages as V =
[
V13ϕ;Vm+1

3ϕ

]
;

Report the final three-phase current, i.e., I3ϕ;
break;

else
Set Vm

3ϕ = Vm+1
3ϕ ;

Once the power flow problem is solved using the triangular-based power flow method-
ology presented in Algorithm 1, the evaluation of the annual energy losses of the network
necessitates the calculation of the total power losses in each period of time. This is accom-
plished using the following expressions:

J3ϕ = T3ϕI3ϕ, (13)

E3ϕ = Z3ϕJ3ϕ, (14)
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where J3ϕ represents the vector that contains all the currents in the branches of the network,
and E3ϕ represents the voltage drops. Note that if we combine these vectors, then the grid
power losses are reached as defined in Equation (15).

Sloss = ET
3ϕJ3ϕ, (15)

where Sloss corresponds to the apparent power losses in the network.

3.3. General Algorithm for the Proposed Master–Slave Optimizer

Algorithm 3 presents the pseudo-code with the optimization methodology designed
to simplify the implementation of the proposed master–slave optimization approach. This
method optimizes phase balancing in three-phase asymmetric networks with the ultimate
aim of lowering the annual operating costs of the grid.

Algorithm 3: Master–slave optimization algorithm based on the ISCA and the
triangular-based power flow method for phase balancing.

Data: Select the test feeder under analysis
Set t = 0 and determine the maximum number of iterations;
Select the number of individuals ni in the population It

p;
Generate all the individuals in the population using Equation (10);
Evaluate the initial population using Algorithm 1 (i.e., slave stage);
for t ≤ tmax do

Select the best current individual xt
best;

for i ≤ ni do
Generate each of the descending individuals yt

i using algorithm 1;
Verify that each yt

i is in its upper and lower bounds using Equation (10);
Evaluate the objective function Acost

(
yt

i
)
;

if Acost
(
yt

i
)
≤ Acost

(
xt

i
)

then
Set xt+1

i = yt
i ;

else
Set xt+1

i = xt
i ;

if is one of the stopping criteria met? then
Result: Report the optimal solution contained in xt

best.

4. Test Feeders

The proposed master–slave optimization approach was validated using two test
feeders in medium-voltage distribution networks composed of 15 and 37 nodes with radial
topology, respectively. A description of each of these test feeders is presented below.

4.1. 15-Bus Test Feeder

This test feeder is composed of 15 nodes and 14 branches, with a voltage-controlled
source connected at node 1, which is operated with a voltage magnitude of 13.2 kV. A
single-phase diagram of this test feeder is presented in Figure 1. In addition, all the data for
the 15-bus system are presented in Tables 3 and 4. Note that this information was adapted
from [5].

4.2. IEEE 37-Bus Test Feeder

This electrical network corresponds to a part of a real underground distribution system
in California, USA. The network considered here is composed of 37 nodes and 36 lines
with a radial configuration, where the slack source is located at node 1 and operated with
a line-to-line voltage of 4.80 kV. The test system used in this study corresponds to the
adaptation presented elsewhere [5]. The single-line diagram for this test feeder is presented
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in Figure 2, and the branches and loads as well as impedance information are presented in
Tables 5 and 6, respectively.

AC
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Figure 1. Nodal connections among nodes in the 15-bus system.
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Figure 2. Connections among nodes in the IEEE 37-bus system.

Table 3. Data of the 15-bus system (all power values are in kW and kvar).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 603 0 0 725 300 1100 600
2 2 3 2 776 480 220 720 600 1040 558
3 3 4 3 825 2250 1610 0 0 0 0
4 4 5 3 1182 700 225 0 0 996 765
5 5 6 4 350 0 0 820 700 1220 1050
6 2 7 5 691 2500 1200 0 0 0 0
7 7 8 6 539 0 0 960 540 0 0
8 8 9 6 225 0 0 0 0 2035 1104
9 9 10 6 1050 1519 1250 1259 1200 0 0

10 3 11 3 837 0 0 259 126 1486 1235
11 11 12 4 414 0 0 0 0 1924 1857
12 12 13 5 925 1670 486 0 0 726 509
13 6 14 4 386 0 0 850 752 1450 1100
14 14 15 2 401 486 235 887 722 0 0
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Table 4. Impedance parameters for the conductors in the 15-bus system.

Conductor Impedance Matrix (Ω/mi)

0.3686 + j0.6852 0.0169 + j0.1515 0.0155 + j0.1098
1 0.0169 + j0.1515 0.3757 + j0.6715 0.0188 + j0.2072

0.0155 + j0.1098 0.0188 + j0.2072 0.3723 + j0.6782
0.9775 + j0.8717 0.0167 + j0.1697 0.0152 + j0.1264

2 0.0167 + j0.1697 0.9844 + j0.8654 0.0186 + j0.2275
0.0152 + j0.1264 0.0186 + j0.2275 0.9810 + j0.8648
1.9280 + j1.4194 0.0161 + j0.1183 0.0161 + j0.1183

3 0.0161 + j0.1183 1.9308 + j1.4215 0.0161 + j0.1183
0.0161 + j0.1183 0.0161 + j0.1183 1.9337 + j1.4236

Table 5. Data of the IEEE 37-bus system (all power values are in kW and kvar).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 1850 140 70 140 70 350 175
2 2 3 2 960 0 0 0 0 0 0
3 3 24 4 400 0 0 0 0 0 0
4 3 27 3 360 0 0 0 0 85 40
5 3 4 2 1320 0 0 0 0 0 0
6 4 5 4 240 0 0 0 0 42 21
7 4 9 3 600 0 0 0 0 85 40
8 5 6 3 280 42 21 0 0 0 0
9 6 7 4 200 42 21 42 21 42 21
10 6 8 4 280 42 21 0 0 0 0
11 9 10 3 200 0 0 0 0 0 0
12 10 23 3 600 0 0 85 40 0 0
13 10 11 3 320 0 0 0 0 0 0
14 11 13 3 320 85 40 0 0 0 0
15 11 12 4 320 0 0 0 0 42 21
16 13 14 3 560 0 0 0 0 42 21
17 14 18 3 640 140 70 0 0 0 0
18 14 15 4 520 0 0 0 0 0 0
19 15 16 4 200 0 0 0 0 85 40
20 15 17 4 1280 0 0 42 21 0 0
21 18 19 3 400 126 62 0 0 0 0
22 19 20 3 400 0 0 0 0 0 0
23 20 22 3 400 0 0 0 0 42 21
24 20 21 4 200 0 0 0 0 85 40
25 24 26 4 320 8 4 85 40 0 0
26 24 25 4 240 0 0 0 0 85 40
27 27 28 3 520 0 0 0 0 0 0
28 28 29 4 80 17 8 21 10 0 0
29 28 31 3 800 0 0 0 0 85 40
30 29 30 4 520 85 40 0 0 0 0
31 31 34 4 920 0 0 0 0 0 0
32 31 32 3 600 0 0 0 0 0 0
33 32 33 4 280 0 0 42 21 0 0
34 34 36 4 760 0 0 42 21 0 0
35 34 35 4 120 0 0 140 70 21 10
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Table 6. Impedance matrix for the type of conductors in the IEEE 37-bus test system.

Conductor Impedance Matrix (Ω/mi)

0.2926 + j0.1973 0.0673− j0.0368 0.0337− j0.0417
1 0.0673− j0.0368 0.2646 + j0.1900 0.0673− j0.0368

0.0337− j0.0417 0.0673− j0.0368 0.2926 + j0.1973
0.4751 + j0.2973 0.1629− j0.0326 0.1234− j0.0607

2 0.1629− j0.0326 0.4488 + j0.2678 0.1629− j0.0326
0.1234− j0.0607 0.1629− j0.0326 0.4751 + j0.2973
1.2936 + j0.6713 0.4871 + j0.2111 0.4585 + j0.1521

3 0.4871 + j0.2111 1.3022 + j0.6326 0.4871 + j0.2111
0.4585 + j0.1521 0.4871 + j0.2111 1.2936 + j0.6713
2.0952 + j0.7758 0.5204 + j0.2738 0.4926 + j0.2123

4 0.5204 + j0.2738 2.1068 + j0.7398 0.5204 + j0.2738
0.4926 + j0.2123 0.5204 + j0.2738 2.0952 + j0.7758

4.3. Behavior of the Demand in a Typical Working Day in Colombia

The effectiveness of the ISCA, in terms of performing the phase-balancing task for
three-phase distribution networks, is demonstrated by considering the demand curves
presented in Figure 3. The data used to plot these curves are also reported in Table 7 to
enable our results to be compared with those in future research (note that the scaling factor
of the data reported in Table 7 for active and reactive power demands is 2). Additional
details regarding the active and reactive power daily behaviors presented in Table 7 can be
consulted in [36].

Table 7. Daily demand pattern in Colombia.

Period Act. (pu) React. (pu) Period Act. (pu) React. (pu)

1 0.1700 0.1477 25 0.4700 0.3382
2 0.1400 0.1119 26 0.4700 0.3614
3 0.1100 0.0982 27 0.4500 0.3877
4 0.1100 0.0833 28 0.4200 0.3434
5 0.1100 0.0739 29 0.4300 0.3771
6 0.1000 0.0827 30 0.4500 0.4269
7 0.0900 0.0831 31 0.4500 0.4224
8 0.0900 0.0637 32 0.4500 0.3647
9 0.0900 0.0702 33 0.4500 0.4226
10 0.1000 0.0875 34 0.4500 0.3081
11 0.1100 0.0728 35 0.4500 0.2994
12 0.1300 0.1214 36 0.4500 0.3336
13 0.1400 0.1231 37 0.4300 0.3543
14 0.1700 0.1390 38 0.4200 0.3399
15 0.2000 0.1410 39 0.4600 0.4234
16 0.2500 0.1998 40 0.5000 0.4061
17 0.3100 0.2497 41 0.4900 0.3820
18 0.3400 0.3224 42 0.4700 0.3820
19 0.3600 0.3263 43 0.4500 0.3887
20 0.3900 0.3661 44 0.4200 0.2751
21 0.4200 0.3585 45 0.3800 0.3383
22 0.4300 0.3316 46 0.3400 0.2355
23 0.4500 0.4187 47 0.2900 0.2301
24 0.4600 0.3652 48 0.2500 0.1818
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Figure 3. Typical active and reactive power consumption curves in Colombia [13].

Note that in the objective function we assume that the average energy cost is US-
D/kWh 0.1390, which corresponds to the average cost of the energy in Bogotá, Colombia
in May 2019 [36]. The number of days is considered to be 365 for an ordinary year, and the
length of the power flow period, ∆t, is 0.5 h. In addition, the cost of the phase balancing of
the working group is specified as USD 100 per node that requires intervention.

5. Numerical Analysis

In this section, we present the numerical results of the proposed master–slave opti-
mization for solving the phase-balancing problem in three-phase asymmetric networks
to minimize the annual grid operational costs. The following simulation scenarios are
considered: (i) the evaluation of the numerical performance of the proposed ISCA on the
15-bus system considering the peak load condition, and (ii) the analysis of the annual
operating cost of the network for the IEEE 37-bus system by employing the proposed ISCA.

5.1. Parametrization of the Optimization Algorithms

To determine the optimal population size for the proposed ISCA and the comparative
optimization methodologies, we employed a grid generation with population sizes from
10 to 100 in steps of 5 in the 15-bus system for the peak load simulation case. The results
were compared with those obtained using the following comparative methods: the classical
Chu and Beasley genetic algorithm (CBGA) [11], classical sine cosine algorithm (SCA) [37],
black-hole optimizer (BHO) [38], and vortex search algorithm (VSA) [5]. Table 8 presents
the general behavior of each of the optimization algorithms considering as performance
indicators the minimum, maximum, mean and standard deviation.

Table 8. General behavior of the proposed and comparative metaheuristics with different population sizes.

Method Minimum (kW) Maximum (kW) Mean (kW) Standard Deviation (kW) Optimal Pop. Size

CBGA 109.2218 109.9080 109.5488 0.2075 75
BHO 109.5715 113.0922 110.7364 0.8377 95
SCA 109.5148 110.4816 109.9611 0.2492 85
VSA 109.2855 110.1828 109.6100 0.2485 80
ISCA 109.1980 109.6896 109.2952 0.1144 50

The numerical results in Table 8 allow us to observe that:

X All the optimization methods required at least 50 or more individuals in the popu-
lation to achieve an adequate objective function performance; the lowest minimum
population size was 50, for the proposed ISCA, and the largest minimum population
size was 95, for the BHO.
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X The minimum power losses were obtained by the proposed ISCA, with a value of
109.1980 kW, followed by the CBGA with a value of 109.2218 kW; however, the
reliability of the ISCA was better since it had the lowest standard deviation of all the
methods compared (0.1144 kW), followed by the CBGA as the second-best method
with a standard deviation of about 0.2075 kW.

X The ISCA presented a small variation between the extreme solutions, with a difference
between the minimum and maximum values of 0.4916 kW; the largest difference was
obtained with the BHO, with a value of 3.5207 kW. Note that the small difference
between the minimum and maximum values in conjunction with the low standard de-
viation confirms that the ISCA obtained all the solutions inside of a small hypersphere,
with the main advantage that most of the solutions obtained near to the optimal
are better than the best results of the comparative methods. As an example, see the
mean value of the ISCA in comparison with the minimum values of the BHO and the
classical SCA.

On the other hand, to demonstrate the effectiveness of the proposed ISCA to solve the
phase-balancing problem on the 15-bus system for the peak load scenario, Table 9 presents
all the numerical results for all the optimization algorithms after 100 consecutive iterations,
with the optimal number of individuals in the population reported in Table 8, for a total of
1000 iterations.

Table 9. Reduction of the power losses after phase balancing considering all the loads with
Y-connections in the 15-bus system.

Method Solution Losses (kW) Reduction (%)

Benchmark case {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 134.2472 0.00
CBGA {3, 3, 4, 3, 5, 3, 3, 4, 3, 4, 5, 4, 3, 2} 109.2218 18.64
BHO {4, 4, 4, 5, 5, 4, 4, 3, 3, 4, 5, 4, 3, 6} 109.5715 18.38
SCA {2, 1, 1, 5, 1, 2, 4, 2, 2, 2, 4, 6, 3, 4} 109.5148 18.42
VSA {4, 3, 3, 2, 4, 4, 4, 3, 3, 2, 4, 6, 2, 1} 109.2855 18.59
ISCA {3, 3, 4, 3, 5, 3, 3, 4, 3, 4, 5, 4, 3, 2} 109.1980 18.66

The results in Table 9 indicate the following: (i) all the comparative methods reduced
the power losses by more than 18%; (ii) the ISCA achieved the best solution with a reduction
of 18.66% regarding power losses, followed by the CBGA, with a difference of 0.02%;
(iii) the worst-performing method was the BHO with a reduction of 18.38%, which implies
a difference of 0.3735 kW with respect to the solution reached by the ISCA.

Figure 4 presents the 10 best objective function values determined by the ISCA after
100 consecutive evaluations. The results in this figure indicate that the difference between
the first and the tenth values is only 0.04 kW, which implies that these 10 solutions are
closer to one another. In addition, a comparison of the tenth solution (i.e., 109.2427 kW)
with the results in Table 9 reveals that this result is superior to those obtained by all the
comparative methods, except CBGA, which confirms the high efficiency of our proposed
ISCA regarding the reduction of power losses.

On the other hand, Figure 5 shows the general evolution of the objective function
value as a function of the number of iterations for each of the comparative methods and
the one proposed reported in Table 9.

The behavior of the objective function value with respect to the number of iterations
depicted in Figure 5 for the different metaheuristic optimizers indicates the following: (i)
all of them were stabilized by about 500 iterations, since after this number none of the
optimizers presented variations in the final objective function value; (ii) after the first
200 iterations, all the optimizers reached an objective function value lower than 112 kW
(i.e., a reduction of about 16.57%), which implies that these iterations were used to explore
the solution space while the remaining iterations were used to exploit the promissory
regions of the solutions space identified in the exploration stage; and (iii) the classical SCA
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showed a premature convergence to the local optimum when compared with the proposed
ISCA, since the classical SCA did not present objective function reduction after the first
150 iterations while the ISCA reached improvements during the first 450 iterations. These
demonstrate the positive effect of the hybridization with the vortex search algorithm to
balance the exploration and exploitation of the solution space.
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Figure 4. Ten best solutions reached by the proposed ISCA for the 15-bus system.
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Figure 5. Evolution of the objective function value for the 15-bus system with different metaheuristic optimizers.

5.2. Analysis of Annual Operating Costs

The results of the evaluation of the annual operating cost of the network (considering
the costs of the working groups) for the IEEE 37-bus system are reported in Table 10, where
the five best solutions for this system are presented.

Table 10. Five best solutions reported by the ISCA for the IEEE 37-bus system.

Sol. No. Solution Acost (USD) f2 (USD),

Ben. case {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 43226.9376 0
Sol. 1 {3, 4, 1, 1, 2, 1, 1, 2, 1, 2, 1, 4, 5, 1, 3, 3, 3, 2, 1, 2, 1, 1, 3, 5, 6, 6, 2, 1, 6, 5, 3, 6, 1, 3, 1} 37,452.5749 2200
Sol. 2 {6, 6, 4, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 2, 1, 3, 5, 4, 1, 5, 4, 1, 3, 1, 1, 3, 2, 1, 4, 2, 2, 1, 3, 2, 1} 37,482.4629 2100
Sol. 3 {4, 3, 4, 1, 5, 1, 1, 2, 1, 3, 5, 2, 1, 4, 6, 2, 4, 3, 4, 4, 3, 1, 1, 1, 3, 1, 3, 1, 5, 1, 5, 1, 5, 5, 1} 37,519.4476 2200
Sol. 4 {4, 1, 1, 3, 4, 1, 3, 2, 1, 4, 1, 1, 1, 2, 4, 2, 2, 4, 2, 1, 4, 2, 3, 1, 6, 4, 3, 3, 1, 2, 1, 1, 1, 2, 1} 37,533.5646 2100
Sol. 5 {1, 6, 1, 1, 2, 3, 1, 5, 6, 3, 4, 1, 1, 6, 3, 5, 1, 3, 1, 4, 1, 1, 1, 2, 1, 4, 3, 3, 3, 2, 1, 2, 3, 1, 3} 37,553.2596 2100

The results in Table 10 indicate the following: (i) the optimal solution obtained by the
ISCA (i.e., Solution 1) allows an annual operating cost reduction of USD 5774.3627 with
respect to the benchmark case; (ii) the difference in cost between the first and the final
solutions reached by the ISCA was only USD 100.6840, which is the same amount a phase
change by the working group would incur; (iii) the percentage reduction with respect to
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the benchmark case for all the solutions was contained between 13.36% and 13.13% when
Solutions 1 and 5 were respectively analyzed. These amounts imply that the ISCA generally
allows the annual costs of operating the network to be lowered by approximately 13%. This
would translate into a net profit for the utility company that could increase in subsequent
years because the working groups would not incur additional cost in future years; (iv)
the cost of the working groups oscillated between USD 2100 and USD 2200, implying
that between 21 and 22, changes in the phase configuration are needed to improve the
general grid performance; and (v) the average processing time to solve the phase-balancing
problem with the ISCA was approximately 220 s for all 100 consecutive evaluations of
the methodology. This could be considered the minimum processing time owing to the
complexity of the phase-balancing optimization problem, which for the IEEE 37-bus system
has a solution space with 6n−1 dimensions (with n = 37)—tfhat is, 1.031× 1028 solutions
are possible.

The positive impact of the phase-balancing strategy in three-phase asymmetric net-
works is illustrated in Figure 6, which depicts the percentage reduction in the cost of the
energy losses of the network, i.e., the reduction of component f1 of the objective function
defined in Equation (1).
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Figure 6. Level of reduction in the energy losses for the five best solutions reached by the ISCA for the IEEE 37-bus system.

The general conclusion based on the results in Figure 6 is that the average reduction
in the costs associated with the energy loss from the network was approximately 18%, with
a maximum of 18.45% for solution 1 and 17.98% for solution 5.

It is worth mentioning that the cost of the energy losses, i.e., the objective function f1,
had a participation about 94.1259% in the total annual operative costs for Solution 1 and
94.4079% in the case of Solution 5 (see Table 10). This implies that, with inversions lower
than 6% of the Acost, it is possible to reach important reductions in the amount of grid
power losses and their costs, as presented in Figure 6. This is indeed the most important
component of the objective function in the case of the IEEE 37-bus system.

The numerical values in Figure 7 indicate that phases a and c involved reductions
of 126.98 kWh/day and 408.17 kWh/day regarding the daily energy losses, respectively,
whereas phase c experienced an increase of 220.80 kWh/day. This behavior is expected
in the phases of the network because the objective of the phase-balancing problem is to
reduce the level of asymmetry of the network, which is then achieved by redistributing all
the loads of the network as uniformly as possible. Note that even if the daily energy losses
of phase b were to increase, the general effect of phase balancing is a global daily reduction
of 314.35 kWh/day or 18.45%, as presented in Figure 4 for Solution 1.

In addition, to observe the benefit derived from the reduction in the energy losses
in terms of the general electrical performance of the system, we present the total daily
energy losses per phase for the benchmark case and for the best solution produced by the
proposed ISCA in Figure 7.
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Figure 7. Daily energy losses per phase before and after using the proposed ISCA for optimal phase-balancing in the IEEE
37-bus system.

5.3. Complementary Analysis

Here, we present some additional results and comments for the IEEE 37-bus system
that allow us to confirm the positive effects that allow the implementation of the phase-
balancing plan through the working groups along the grid. One of the most significant
effects of the phase-balancing in three-phase asymmetric networks was the general im-
provement of the voltage profile in all nodes of the network. Figure 8 presents the general
performance of the voltage profile before and after implementing the phase-balancing plan
in Solution 1 (see Table 10).
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Figure 8. Performance of the voltage profiles in the IEEE 37-bus system: (a) benchmark simulation scenario, and (b) after
implementing the phase-balancing plan in Solution 1.

The behavior of the voltage profiles in Figure 8 indicates the following: (i) Some
magnitudes of the voltages in phases a and c had a regulation voltage higher than 5%,
namely, nodes 13 to 22 with voltages lower than 0.95 p.u. (Figure 8a). (ii) Phase b showed
a better voltage performance in the benchmark case (see Figure 8a) when compared to
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phases a and c, which is an expected behavior since this phase had lower active and
reactive power demand consumption when compared with the other phases. The active
and reactive power consumption in all the phases were 727 kW and 357 kvar for phase
a, 639 kW and 314 kvar for phase b, and 1091 kW and 530 kvar for phase c. (iii) After the
implementation of the phase-balancing plan (i.e., Solution 1 in Table 10), all the phases
had a maximum voltage regulation of 4%, which implies that all the voltage profiles were
above or equal to 0.96 p.u. In addition, all the phases presented a closer voltage behavior,
which is the product of the load redistribution in all the phases, which had the following
final consumptions: 763 kW and 371 kvar for phase a; 941 kW and 461 kvar for phase b;
and 753 kW and 369 kvar for phase c.

An additional important result after implementing the phase-balancing plan is the
improvement of the general grade of unbalance of the network. The grade of unbalance
was measured for each phase with respect to the ideal consumption of the phase (perfectly
balanced case), which was obtained through the average of the active and reactive power
consumption in all of the phases. The ideal active and reactive power consumptions for
the IEEE 37-bus system would be 819 kW and 400.33 kvar. With these values, the grades
of unbalance before and after the implementation of the phase-balancing plan are reported
in Table 11.

Table 11. Grade of unbalance in the IEEE 37-bus system before and after implementing the phase-balancing plan.

Benchmark Case Solution 1

Phase Unb. Active (%) Unb. Reactive (%) Phase Unb. Active (%) Unb. Reactive (%)

a 11.2332 10.8243 a 6.8376 7.3272
b 21.9780 21.5654 b 14.8962 15.1540
c 33.2112 32.3897 c 8.0586 7.8268

The results in Table 11 show the following: (i) Phase c had the highest level of unbal-
ance with respect to the ideal case in the benchmark scenario (greater than 30% for active
and reactive power demands); this was because this phase had the highest demand in this
scenario, with 1091 kW and 530 kvar (i.e., with an additional 272 kW and 129.67 kvar with
respect to the ideal case). (ii) After implementing the phase-balancing plan, the highest
level of unbalance corresponding to phase b was about 14.90% for the active power and
15.15% for the reactive power. (iii) Phases a and c reduced their active and reactive power
unbalances from two digits to one digit, beginning their variation in phase c with more
than 25% in both power demands.

Regarding the implementation of the phase-balancing plan by part of the working
groups, it is important to mention that only a few trained staff with the ability to disconnect
and reconnect transformers at the point of common coupling between the loads and the
distribution feeder are required. However, before making any physical interventions in
the network that will affect the electricity supply, the utility staff must follow the norms of
each country regarding the notification of the end-users.

6. Conclusions

The problem of optimal phase balancing in three-phase asymmetric distribution
networks was addressed in this research. The problem was solved from the point of
view of metaheuristic optimization using a newly proposed master–slave optimization
approach. The master stage employs an improved version of the sine cosine algorithm
to determine the load connections among phases by using integer codification. In the
slave stage, the triangular-based power flow method is used for three-phase networks
that operate with loads with Y- and ∆-connections. Two test feeders composed of 15 and
37 nodes were employed for the numerical validation of the proposed ISCA to solve the
phase-balancing problem.
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The numerical results for the 15-bus system demonstrated that the ISCA allowed a
total power loss reduction of 18.66% with respect to the benchmark case. These results
were superior to those of the genetic algorithm (18.64%), black hole optimizer (18.04%),
sine cosine algorithm (18.51%), and vortex search algorithm (18.57%). In addition, the
difference in power losses among the 10 best solutions reached by the proposed ISCA was
approximately 0.04 kW, demonstrating its efficiency with respect to solving the phase-
balancing problem in three-phase asymmetric networks.

The computational validations of the IEEE 37-bus system demonstrated that the
proposed ISCA allowed reductions of approximately 13% in the annual operating costs
of the network, with investments between USD 2100 and USD 2200 in working groups to
implement the optimal phase-balancing plan along the test feeder in nodes where changes
are required. In addition, the voltage regulation in the IEEE 37-bus system was improved
from 6.3% to 4% when compared to the benchmark case with the implementation of the
phase-balancing plan. In addition, the average processing time to solve the optimization
problem was approximately 220 s, which can be considered a relatively small computational
requirement, given that the dimension of the solution space for the IEEE 37-bus system is
higher than 1× 1028.

In the future, the following research aims should be addressed: (i) to use the proposed
ISCA to solve the problem of the optimal selection of conductors for three-phase asymmetric
networks, including the phase-balancing strategy in a unique codification; and (ii) to
propose a convex programming model that allows the global optimal solution of the phase-
balancing problem to be reached using conic programming, and to compare these results
with those of the proposed ISCA to determine the discrepancy between the global optimal
solution and the solutions reached using metaheuristics.
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