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Abstract: Lithium batteries are the most common energy storage devices in items such as electric
vehicles, portable devices, and energy storage systems. However, if lithium batteries are not con-
tinuously monitored, their performance could degrade, their lifetime become shortened, or severe
damage or explosion could be induced. To prevent such accidents, we propose a lithium battery
state of health monitoring method and state of charge estimation algorithm based on the state of
health results. The proposed method uses four neural network models. A neural network model
was used for the state of health diagnosis using a multilayer neural network model. The other three
neural network models were configured as neural network model banks, and the state of charge was
estimated using a multilayer neural network or long short-term memory. The three neural network
model banks were defined as normal, caution, and fault neural network models. Experimental results
showed that the proposed method using the long short-term memory model based on the state of
health diagnosis results outperformed the counterpart methods.

Keywords: lithium battery; state of charge; state of health; multilayer neural network; long short-term
memory; estimation

1. Introduction

Lithium batteries are secondary batteries recognized as a core future technology for
renewable energy. Their advantages include having high power density, low self-discharge
rate, and they are lightweight, so they are used in various items, such as electric vehicles,
portable devices, and energy storage systems [1–4]. However, if lithium batteries are not
continuously monitored, their performance could degrade, their lifetime become shortened,
or severe damage or explosion could be induced [5]. Therefore, it is crucial to monitor the
internal parameters, such as the state of charge (SOC) and state of health (SOH) to optimize
lithium battery performance and extend their lifetime. Thus, the internal parameters of
lithium batteries must be continuously monitored through a battery management system
while the battery is operating to ensure their reliability and efficiency [6,7].

The SOC refers to the remaining capacity of the battery. SOC estimation for a battery
can predict the remaining capacity in the battery, which prevents over-discharging and
overcharging of the battery. It also provides reliability by enabling stable battery use. The
SOH refers to the state of aging of a battery. Knowing a battery’s SOH can determine its re-
placement cycle. Therefore, it is an efficient operating system because it prevents accidents,
such as fire and explosion due to the progress of battery aging. A battery’s voltage, current,
temperature, and operating environment affect the SOC and SOH; therefore, an algorithm
that can model the characteristics of batteries is required.

Recently, many researchers have studied SOC estimation or SOH monitoring methods
for batteries. SOC estimation and SOH monitoring methods can be categorized into the
following types: model-based, data-driven, and coulomb-counting methods [8]. The model-
based methods can be powerful and accurate because they rely on a deep understanding
of the system. However, there are practical and theoretical problems in obtaining a perfect
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model of any system. The data-driven methods rely extensively on data analysis of a
process, which eliminates the need for practitioners to develop an in-depth, domain-
specific understanding of the background process. However, a large amount of data is
required. The coulomb-counter methods measure the discharge current of a battery and
integrate it over time to obtain the current capacity of the battery. Table 1 summarizes the
three methods.

Table 1. Advantages and disadvantages of model-based, data-driven, and coulomb-counter methods.

Method Advantages Disadvantages Example Model

Model-based
[9,10]

Reliable and accurate
Has universal validity

Requires extensive
domain knowledge

Longer development
time

Equivalent circuit
model

Electrochemical
model

Kalman filter

Data-driven
[11–18]

Shorter development
time

Does not require very
much

specialized
knowledge.

Requires a large
amount of data

Neural network
Deep learning
Look-up table

Coulomb-counter
[19,20] Simple to implement Errors accumulate

over time. Coulomb-counter

Among the example models, for the equivalent circuit model, a lithium battery is
modeled abstractly by combining the parameters of resistance, capacitor, and inductor.
However, since the model is based on electrical characteristics, the internal reaction of the
battery cannot be explained [21]. In the case of the open-circuit voltage (OCV)-SOC model,
SOC estimation is performed by modeling the SOC relationship according to the OCV of a
battery. It is simple to implement and accurate; however, it is vulnerable to uncertain factors
such as temperature, aging, and driving cycle [22]. For the coulomb-counter model, the
current capacity of a battery is estimated using a red current integration method. It can be
implemented simply, but if it is used for a long time, measurement errors will accumulate,
and accuracy will deteriorate [23]. For the Kalman filter, the nonlinear characteristics of a
battery can be learned and estimated in real time; however, as the predicted state variable
increases, the calculation becomes more complex, and the calculation time increases [24].
For the neural network (NN) and deep learning models, the relationship between the
capacity and parameters of a battery is learned on the basis of the parameters measured
in the battery. The main challenge of these models is to accurately model the aging of a
battery by extracting useful characteristics from the measured signals [25].

In this article, we propose a lithium battery SOH monitoring method and SOC es-
timation algorithm based on the SOH results. The main contributions of this paper are
highlighted as follows. First, the proposed method with an MNN model was used to diag-
nose the SOH. Second, the battery’s SOC was estimated using the outputted SOH results.
This allowed us to obtain both SOH and SOC simultaneously, and we estimated SOC using
the SOH results. The proposed method also obtained more accurate SOC estimation results
using information from the current state of the battery when estimating the SOC. Third,
the multilayer NN and long short-term memory models were used to learn the nonlinear
characteristics of the lithium battery.

The proposed algorithm uses one multilayer NN (MNN) model for SOH diagnosis
and three NN model banks for SOC estimation. Each NN model bank comprises a normal
model, a caution model, and a fault model according to the learned data. The proposed
algorithm estimates SOC by selecting one of three NN model banks according to the SOH
results and outputs the SOC and SOH results simultaneously. For example, if the output
of the SOH diagnostic model is normal, the SOC estimation result of the normal model is
the output. To verify the performance of the proposed algorithm, we compared it with
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the general MNN and long short-term memory (LSTM) models. This is discussed in more
detail in Section 3.2.3.

2. Proposed SOC Estimation and SOH Diagnosis Method
2.1. Definition of SOC and SOH

The SOC refers to a battery’s remaining current capacity and is a critical parameter to
consider when monitoring a battery. It is a percentage of the current releasable capacity
from a battery’s rated capacity, defined as follows [26]:

SOC =
CRemaining

CInitial
× 100 (%), (1)

where CRemaining is the measured usable remaining capacity and CInitial is the measured
capacity of the battery at the beginning.

The SOC can be calculated in the coulomb counter. However, this method has the
disadvantage that the correct SOC value cannot be calculated if the initial SOC setting is
incorrect or a sensor error is accumulated. This study estimated the SOC using an NN that
can model battery characteristics.

The SOH is an indicator of performance degradation because of the battery, and the
battery state can be measured on the basis of the SOH. The SOH refers to the current battery
capacity as a percentage of the initial capacity, defined as follows [27]:

SOH =
CCurrent
CFresh

× 100 (%), (2)

where CCurrent is the measured capacity after one cycle is over and CFresh is the measured
capacity of the battery at the beginning of its life.

If the capacity of a battery decreases to lower than 80% of its initial capacity, it is a
failure [28]. In this study, when the SOH was in the range of 100–90%, 90–80%, or <80%,
the battery was, respectively, in a normal, caution, or fault state.

2.2. Proposed SOH Monitoring and the SOC Estimation Algorithm Based on the SOH Results
2.2.1. Proposed SOH Diagnosis Method

The proposed method uses the SOH diagnosis and SOC estimation NN models
simultaneously. In addition, the SOH results are used for the SOC estimation. The SOH
diagnosis model is shown in Figure 1.

Figure 1. Structure of the SOH diagnosis method.
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The SOH diagnosis model is used in the MNN model. The SOH model outputs three
results, normal, caution, or fault, which are defined in the interval of the capacity decrease
due to aging of a battery, as of Section 2.1. Afterward, the SOH result is input into the NN
model bank, which outputs the SOC estimation result by selecting one of the three models
according to the SOH result.

2.2.2. Proposed SOC Estimation Based on the SOH

Existing SOC estimation methods use parameters such as voltage, current, temper-
ature, and internal resistance to model the deterioration characteristics of a battery to
estimate the SOC [29,30]. The proposed method works in three key steps. Step 1: The
acquired battery data is input into the SOH model and the SOC NN model bank simul-
taneously. Step 2: The SOC is estimated and diagnosed in the SOH model and SOC NN
model bank. Step 3: According to the SOH result, one of the three SOC NN model banks is
selected, and the SOH and SOC results are output. The structure of the proposed method
is shown in Figure 2.

Figure 2. Structure of the proposed method.

The NN model bank consists of three models: normal, caution, and fault. Each model
was defined as normal, caution, or fault according to the learned data group. In addition,
the models of the NN model bank used MNN or LSTM to compare which NN performs
better when using MNN or LSTM.

The proposed method process is described below. First, the battery voltage data are
acquired from the experimental device. The acquired data are transformed so that they
can be input into each SOH and SOC NN. The battery voltage data are transformed into
one cycle of discharge and a voltage dataset with a different number of inputs, respectively.
Next, the one cycle of discharge dataset is input into the SOH diagnostic model and
classified as normal, cautious, or faulty. Then, one of the normal, cautious, or faulty NN
models in the selected NN model bank receives the voltage dataset. Afterward, the NN
model bank estimates the SOC. Finally, the SOC estimation and SOH diagnostic results are
output together. Figure 3 shows this method in detail via a flowchart.
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Figure 3. Flowchart of the proposed method.

2.3. MNN

The structure of an MNN consists of two or more hidden layers (Figure 4). For the
SOC estimation model, the input layer takes the operating time and voltage values, and
the output layer outputs SOC values. For the SOH diagnosis model, the input layer takes
the voltage values, and the output layer outputs three values: normal, caution, or faulty.
By teaching the MNNs with input–output pairs, it is possible to form a nonlinear map
that accurately models input–output relationships without prior knowledge of the internal
structure of the battery [31].
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Figure 4. Structure of an MNN.

The Adam method is used as a learning method for the SOC and SOH models.
The Adam method is a first-order gradient-based optimization algorithm of a stochastic
objective function based on adaptive estimation of low-order moments. This method
is simple to implement, has high computational efficiency, rescales the diagonal of the
gradient, and is suitable for large problems in terms of data or parameters [32]. The Adam
equation is as follows:

mt = β1mt + (1− β1)∇θ f (θ) (3)

vt = β2vt−1 + (1− β2)(∇θ f (θ))2 (4)

In the above equation, since m and v are initialized as 0, a bias close to 0 is expected at
the start of learning, and they go through the following process to make them unbiased.
The equations are as follows:

m̂t =
mt

1− βt
1

(5)

v̂t =
vt

1− βt
2

(6)

θ = θ − η√
v̂t + ε

m̂t (7)

where mt is the exponential moving averages of the gradient, vt is the squared gradient,
and ∇θ f (θ) is the gradient of the network; β1 and β2 are exponential decay rates for the
moment estimates, the value of β1 is 0.9 and β2 is 0.999; t is the time step initialization, θ is
the initial parameter vector, and ε is 10−8.

The rectified linear unit (ReLU) is used as the activation function for each hidden layer.
The ReLU outputs 0 when x < 0, and conversely, it outputs a linear function when x ≥ 0.
Therefore, it can converge as fast as possible [33]. The ReLU is as follows:

f (x) =


x, f or x > 0

0, f or x ≤ 0
(8)
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2.4. LSTM

In a recurrent NN (RNN), the recurrent or hidden layer consists of a recurrent cell
whose state is affected by both the past state and current input. RNNs are used to learn
sequential time series data with temporal dependencies. Moreover, RNNs have a problem
with learning long-term dependencies. LSTM models were devised to solve this problem.
LSTM is a structure in which a cell state is added to the hidden layer of an RNN. LSTM
stores past and current information through a cell and controls the weight of information
by adding three gates: input, output, and forget [34]. The LSTM structure is shown in
Figure 5.

Figure 5. Structure of an LSTM.

An LSTM is a computed mapping between the input and output sequences, calculated
by the following equations:

Step 1. Forget gate
ft = σ

(
W f · [ht−1, xt] + b f

)
(9)

Step 2. Input gate
it = σ(Wi · [ht−1, xt] + bi) (10)

C̃t = tanh(WC · [ht−1, xt] + bC) (11)

Step 3. Cell state update

Ct = ft ∗ Ct−1 + it ∗ C̃t (12)

Step 4. Output gate
ot = σ(Wo · [ht−1, xt] + bo) (13)

ht = ot ∗ tanh(Ct), (14)

where ht−1 is the past parameter, xt is the current input parameter, W is weight, b is the
bias, ft is the value of the forget gate, it and C̃t are the values calculated using the sigmoid
function and the activation function, respectively, Ct is the value updated in the cell state,
ot is the value of the output gate, and ht is the output.
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3. Experiment and Results
3.1. Experiment Setup

Experiments were conducted using lithium polymer batteries of the specifications
shown in Table 2. The experiment process was as follows. First, a battery charged to 2.4 V
was discharged using a power supply until it reached 0 A with a voltage of 4.2 V. The
SOC of the battery at that time was defined as 100%. After charging was complete, we
let the battery rest at room temperature for 1 h. Afterward, the battery was placed in a
40 ◦C chamber and exposed to high temperatures for 8 h. Then, the battery was completely
discharged with a 1.3 A constant current. This state was defined as SOC 0%, and this
process was defined as 1 cycle of the experiment. The battery data used for learning were
used for a total of 10 cycles of data. The test used 6 cycles of battery data.

The experimental environment for the lithium battery simulation is shown in Figure 6.
Figure 6- 1© shows the electronic load (replaced with the power supply when charging), Fig-
ure 6- 2© shows the battery system (battery, current and voltage sensor, and microcontroller
unit to communicate with the PC), and Figure 6- 3© shows the PC and serial communication
with a battery system to receive battery voltage and current data and monitor the battery
SOH.

Figure 6. Experimental environment for lithium battery simulation.

Table 2. Battery internal resistance used in the test.

Battery Type Li-Po Battery

Capacity 1.3 Ah
Voltage range 2.4–4.28 V

Nominal voltage 3.7 V

When the capacity of the battery reached 80% of the rated capacity, the battery was
defined as faulty. Therefore, we assumed that the state of the battery changed when the
current capacity of the battery decreased by 10% from the original rated capacity. When
the capacity reached 100–90% of the rated capacity, it was defined as a normal state. When
the capacity reached 90–80%, it was defined as a warning state. When the capacity was less
than 80%, it was defined as a fault state. If the SOH is an estimate of the current capacity,
the remaining useful life (RUL) is an assessment of the remaining life. The RUL prediction
provides reliability and safety for long-term use of systems [35].

Figure 7a shows the battery discharge voltage data used for learning. In Figure 7a,
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patterns 1–5 were learned in a normal state, patterns 6 and 7 were learned in a warning
state, and patterns 8–10 were learned in a fault state.

Figure 7b shows the RUL of the battery. The RUL of the battery was obtained by
calculating the current obtained from the current sensor in the experimental equipment.
The ampere counting method has the advantage of being able to calculate the battery’s
capacity easily; however, it can output incorrect results depending on the battery operating
time owing to an error in the ADC offset of the current sensor. Therefore, in the proposed
method, the SOH was diagnosed using a model that learned the patterns of the discharge
voltage and the battery RUL was used to label one of the normal, warning, and fault states
according to the defined criteria of each pattern.

In Figure 8, patterns 1 and 2 depict the normal state with an SOH of 90% or more,
patterns 3 and 4 depict the warning state with an SOH close to 80%, and patterns 5 and 6
are for the fault state with an SOH less than 80%.

Figure 7. (a): Battery discharge data for learning. (b): Graph of battery’s remaining useful life
determined using the current sensor in the experimental equipment.
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Figure 8. Battery discharge data for testing.

3.2. SOC Estimation Based on the SOH Result
3.2.1. Structure of SOH Diagnosis Using MNN

To proceed with the proposed method, first, we diagnosed the SOH of a lithium
battery. An MNN model was used as an NN model for the SOH diagnosis of the lithium
battery; Figure 9 shows the structure of the MNN model used for SOH diagnosis. The
MNN model for the SOH diagnosis was in a 3600-256-256-3 MNN structure. The network
used Adam as the learning method, each hidden layer used ReLU as the activation function,
and the output layer used softmax.

Figure 9. MNN structure for the SOH diagnostic model.

3.2.2. Structure of SOC Estimation Using a NN Model Bank

MNN and LSTM were used to estimate the SOC. In addition, to compare the SOC
estimation performance according to the difference in the number of input parameters,
the number of inputs of voltage parameters was changed to one, two, four, and six. The
operating time t and voltage were used as input parameters. The MNN and LSTM used
for estimation are shown in Figures 10 and 11, respectively.
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Figure 10. MNN structure for the SOC estimation model.

Figure 11. LSTM structure for the SOC estimation model.

The MNN models for SOC estimation were in an N (number of set voltage parameters)
+ 1-150-100-1 MNN structure. The network used Adam as the learning method, and each
hidden layer used ReLU as the activation function.

The LSTM models for the SOC estimation are in an N (number of set voltage parame-
ters) + 1-100-50-1 LSTM structure. The network used Adam as the learning method, and
each hidden layer used the sigmoid function as the activation function.

Each error rate was calculated using the mean absolute error (MAE), given by

MAE =
1
n

n

∑
i=1
|yi − ŷ|, (15)

where n is the total number of parameters, y is the target value, and ŷ is the estimated
value.

3.2.3. Comparison of the Proposed and General Methods

The experimental results are as follows. Table 3 shows the results of the SOH diag-
nostic model. Tables 4–7 show the SOC estimation results of the MNN or LSTM model
using the proposed method according to the SOH diagnosis result and the SOC estimation
results using only the MNN or LSTM model. In addition, Tables 4–7 show the results for
one, two, four, and six voltage input parameters.

Table 3. The SOH diagnosis result for the proposed method.

Methods Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

SOH diagnosis
model normal normal caution caution fault fault
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Table 3 shows the SOH diagnostic results of testing. The proposed system classified
patterns 1 and 2 as normal states, patterns 3 and 4 as caution states, and patterns 5 and 6 as
fault states. From the results, the proposed SOH system diagnosed the battery status using
its SOH data very well.

Table 4 shows the SOC estimation result of testing when one voltage parameter
was input. As a result of the estimation, the average errors were 1.18% and 2.1% in the
proposed method using LSTM and the proposed method using MNN, respectively. The
SOC estimation results using only LSTM and only MNN showed average errors of 3.96%
and 4.07%, respectively, indicating that the SOC estimation performance of the proposed
method using LSTM was the best with one the voltage parameter.

Table 4. The SOC estimation error for each model when one voltage parameter was input.

Methods Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

Proposed method
using LSTM 1.31% 0.18% 1.59% 1.19% 1.13% 1.68%

Proposed method
using MNN 1.59% 0.33% 1.09% 1.65% 1.23% 1.55%

Only LSTM 1.96% 4.12% 2.65% 3.19% 5.83% 6.05%
Only MNN 1.93% 4.45% 2.18% 2.96% 6.23% 6.67%

Table 5 shows the SOC estimation result when two voltage parameters were input.
The proposed method using LSTM and the proposed method using MNN showed average
errors of 0.58% and 1.12%, respectively, and only LSTM and only MNN showed average
errors of 3.88% and 4.11%, respectively. Even when there were two voltage parameters, the
proposed method using LSTM showed the best SOC estimation performance, and the error
of the other patterns except for pattern 4 was less than 1%, showing the best performance.

Table 5. The SOC estimation error for each model when two voltage parameters were input.

Methods Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

Proposed method
using LSTM 0.31% 0.3% 0.95% 1.04% 0.63% 0.24%

Proposed method
using MNN 1.59% 0.28% 1.48% 1.08% 0.76% 1.57%

Only LSTM 2.27% 4.37% 2.52% 2.94% 5.33% 5.88%
Only MNN 1.94% 4.65% 1.73% 2.7% 6.68% 6.96%

Table 6 shows the SOC estimation result when four voltage parameters were input.
The proposed method using LSTM and the proposed method using MNN showed average
errors of 0.92% and 0.973%, respectively, and only LSTM and only MNN showed average
errors of 3.98% and 4.01%, respectively. Even when there were four voltage parameters,
the proposed method using LSTM showed the best SOC estimation performance, but it
can be seen that the performance was worse than when two voltage parameters were used.

Table 7 shows the SOC estimation result when six voltage parameters were input. The
proposed method using LSTM and the proposed method using MNN showed average
errors of 0.975% and 1.09%, respectively, and only LSTM and only MNN showed average
errors of 4.02% and 4.03%, respectively. Even when there were six voltage parameters,
the proposed method using LSTM showed the best SOC estimation performance, but the
performance was worse than when two voltage parameters were used.
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Table 6. The SOC estimation error for each model when four voltage parameters were input.

Methods Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

Proposed method
using LSTM 1.23% 0.2% 1.3% 1.37% 0.29% 1.1%

Proposed method
using MNN 1.18% 0.39% 1.03% 1.62% 0.34% 1.28%

Only LSTM 2.35% 5.41% 2.91% 2.81% 4.89% 5.55%
Only MNN 2.05% 5.15% 2.07% 2.98% 5.86% 5.99%

Table 7. The SOC estimation error for each model when six voltage parameters were input.

Methods Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

Proposed method
using LSTM 1.46% 0.19% 0.88% 1.87% 0.47% 0.99%

Proposed method
using MNN 1.43% 0.32% 1.47% 0.87% 0.81% 1.21%

Only LSTM 2.53% 5.26% 2.4% 2.8% 5.53% 5.64%
Only MNN 2% 4.81% 1.47% 2.66% 6.56% 6.65%

Figures 12 and 13 show graphs of the SOH diagnosis and SOC estimation results of
pattern 6, those from the test datain Tables 3 and 5, respectively. Through this, it was shown
that the proposed method using the LSTM model using two voltage parameters performed
the most accurate diagnosis and estimation.

According to Chemali et al. [13], the SOC of a lithium battery was estimated using
the LSTM model and obtained the SOC estimation MAE of 0.6%. From these results, the
best performance of our proposed method’s MAE is 0.58%. So, our proposed method was
better than that of the presented study.

According to Alejandro Gismero et al. [23], the SOC of a lithium battery was estimated
using coulomb counting and OCV and obtained the SOC estimation MAE within 3%.
These results show that the performance of our proposed method is better than that of the
presented study.

We compared the performance of our proposed model with two studies [13,23]. The
comparison confirms that the proposed model performs well.

Figure 12. The SOH diagnosis result of pattern 6.
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Figure 13. The SOC estimation result of pattern 6 when there were two input voltage parameters:
(a); the proposed method using the LSTM result (b); the proposed method using the MNN result (c);
only LSTM result (d); only MNN result.

4. Conclusions

In this study, we proposed an SOC estimation method based on the SOH diagnosis
using NNs. The proposed method used four NNs. One NN was used for SOH diagnosis
using MNN. The remaining three NNs were configured as NN model banks, and the SOC
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was estimated using MNN or LSTM. Each of the three NN model banks was defined as a
normal NN model, a caution NN model, or a fault NN model according to the learned data
after learning the normal, caution, and fault data groups of the lithium battery. Then, one
of the three NN models was selected according to the result of the SOH diagnosis model
and the SOC estimation result was output. Moreover, full cycle battery discharge data were
needed for the SOH.

To verify the proposed method, data from a lithium battery tested at a high temper-
ature were used. The acquired data were used as input for the SOH diagnosis, and a
dataset with one, two, four, and six voltage parameters was used to verify the estimation
performance according to the number of input parameters when estimating the SOC.

As a result of the experiment, the proposed method using the LSTM model based
on the SOH diagnosis result had the lowest average error of 0.58% when two voltage
parameters were used, and the proposed method using the MNN model had the lowest
average error of 0.973% when four voltage parameters were used. Using only the LSTM
model had the lowest average error of 3.88% when two voltage parameters were used.
Using only the MNN models had the lowest average error of 4.01% when four voltage
parameters were used. From this result, the highest accuracy was realized when the
number of voltage parameters was two or four. In addition, the diagnostic and estimation
performance of the proposed method was excellent.

In future research, we plan to apply the proposed method to the real environment to
confirm whether it continues to show good performance.
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