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Abstract: This study estimates the environmental efficiency of 150 economies during the period of 
2010–2017 to understand the environmental efficiency trend worldwide. This research adopts the 
meta-Malmquist approach to compare and capture the dynamic change in environmental efficiency 
among different income groups. The empirical results indicate that among the four income groups, 
only the low-income group suffers from regression in terms of environmental efficiency, while the 
high-income group achieves the greatest progress. For the high-income group, the source of im-
provement originates from the frontier shift rather than from efficiency change. By contrast, the 
improvement of the lower-income groups results from the catching-up effect. With regard to the 
effect of the Paris Agreement, only the lower middle-income group exhibits a statistical difference 
between the two periods, and environmental efficiency increases after the adoption of the Paris 
Agreement. The fight against global warming cannot succeed by relying only on specific countries. 
The whole world must cooperate and improve together, and thus, additional help must be devoted 
to the low-income group. The statistical results support that differences exist in terms of environ-
mental efficiency among the four income groups. In particular, the low-income group is deteriorat-
ing. 

Keywords: environmental efficiency; Paris Agreement; data envelopment analysis; meta-
Malmquist; climate change; common but differentiated responsibilities 
 

1. Introduction 
Climate change is a major threat to mankind in the 21st century [1]. According to the 

Intergovernmental Panel on Climate Change (IPCC), the world’s climate is changing at 
an unprecedented pace. If the global average surface temperature exceeds a 1.5 °C limit, 
devastating consequences will occur [2]. Therefore, reducing greenhouse gas (GHG) emis-
sions by countries collectively are urgently needed. 

In 1992, countries gathered at the “Rio Earth Summit” and signed the United Nations 
Framework Convention on Climate Change (UNFCCC) to combat global warming. The 
subsequent Kyoto Protocol is a milestone in taking the first step to secure the commitment 
of industrialized countries and economies in transition to limit their GHG emissions. The 
Paris Agreement adopted by 196 parties in 2015 is another landmark where all signatories 
are bound to take actions to combat climate change. The most significant departure of the 
Paris Agreement from the Kyoto Protocol is the so-called “nationally determined contri-
butions” (NDCs) [3]. Unlike the Kyoto Protocol that assigned a set of emission reduction 
quantities to the Annex I (industrialized) countries only, the Paris Agreement involved all 
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countries in the effort by requiring them to submit their own voluntary mitigation ambi-
tions. Under the Paris Agreement, ‘Parties aim to reach global peaking of greenhouse gas 
emissions as soon as possible’, and all are asked to take on ‘ambitious efforts’ to achieve 
the target to limit the growth of global average temperature to below 2 °C by the end of 
the century [4]. 

However, countries need to pursue economic growth to eliminate poverty or main-
tain prosperity simultaneously. Economic growth is often accompanied by higher energy 
consumption and GHG emissions [5]. The reduction in energy use, especially fossil fuels 
such as coal and oil, would lead to a reduction in carbon dioxide (CO2) emissions, but 
countries are hesitant to do so because energy is a driving force for economic growth [6,7]. 

Achieving economic prosperity and mitigating global warming simultaneously is a 
complex problem. In this context, improving environmental efficiency became prominent. 
A decision-making unit (DMU) is more environmentally efficient if it can produce in-
creased desirable outputs (gross domestic product (GDP)) and reduced undesirable out-
puts (such as CO2) using the same number of inputs [8]. Thus, environment efficiency 
measurement is useful in providing improvement suggestions for policymakers. 

Different quantitative approaches have been proposed in environmental efficiency 
evaluation [9]. Data envelopment analysis (DEA) that incorporates all relevant indicators 
into an overall index is an effective approach for computing environmental performance 
[10]. Zhou et al. [11] also indicated that DEA has gained great popularity after they sur-
veyed 100 studies regarding the application of DEA to energy and environmental studies 
published from 1983 to 2006. Therefore, this study employs DEA to compare the environ-
mental efficiency performance of countries worldwide. 

This study has two main purposes. The first goal is to explore the trend of environ-
mental efficiency worldwide and identify the drivers of environmental efficiency perfor-
mance. The second goal is to compare whether the environmental efficiency performance 
exhibited any difference before and after the implementation of the Paris Agreement. 
From the Kyoto Protocol to the Paris Agreement, a paradigm shift from a “top-down” to 
a “bottom-up” approach was observed [12]. However, limited research has investigated 
the effect of the paradigm shift on environmental efficiency. This study is organized as 
follows. Section 2 describes the methodology adopted. First, it discusses the rationale of 
the selection of a meta-Malmquist method. Then, it introduces the data sources and con-
ducts statistical tests to validate the methodology. Finally, it presents the methodology 
used. Section 3 discusses the empirical results. Section 4 summarizes the conclusions. 

2. Research Method 
2.1. Method Selection 

Many of the previous environmental efficiency studies focused on the Organization 
for Economic Cooperation and Development (OECD) member countries [13,14]. Zaim and 
Taskin [15] quantified the CO2 emission efficiency of OECD countries by using a hyper-
bolic efficiency measure. Rashidi et al. [16] evaluated the eco-efficiency of OECD countries 
incorporating non-discretionary factors. Iram et al. [17] examined the energy efficiency of 
OECD countries and the connection between energy efficiency and CO2 emissions and the 
environmental efficiency for several OECD countries.  

The limitation of these studies lies in that they did not consider the possible technol-
ogy heterogeneity. Countries around the world differ in their geographical locations and 
resource endowments that influence their production technologies. Countries at different 
developmental stages also face different pollution abatement costs [18,19]. The principle 
“common but differentiated responsibilities and respective capabilities (CBDR-RC)” (UN-
FCCC 1992, articles 3 and 4) established from international climate negotiations also re-
flects the concession and consensus in the international community. Industrialized coun-
tries and developing countries have diverged on environmental issues since the 1972 UN 
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Conference on the Human Environment. Southern countries feared that international en-
vironmental regulations would endanger their economic growth, but several powerful 
developed countries, such as the United States, declined to reduce their GHG emissions 
unless poor countries did the same [20]. The CBDR-RC settled the north–south climate 
disputes by requesting the industrialized countries to reduce their carbon emissions first 
and provide financial and technical assistance to the developing countries to fulfill their 
mitigation responsibilities. 

Environmental efficiency grounded on the unrealistic assumption that countries run 
under the same production boundary could lead to biased results [8,19]. Similarly, the 
experience of OECD countries does not necessarily apply to countries with different in-
come levels [21]. Acknowledging the heterogeneities of different DMUs, recent literature 
employed the meta-frontier approach in assessing environmental efficiency [22]. Chiu et 
al. [8] measured the environmental efficiency in 90 countries during 2003–2007 by adopt-
ing a meta framework with directional distance function (DDF). Energy efficiency with 
CO2 emissions of 63 countries for the period of 1981–2005 was measured by Lin et al. [23], 
combining the meta-frontier and the DDF approach. Li and Lin [22] also measured the 
environmental efficiency of 30 provinces in China using the DDF meta-frontier approach. 

Zhou et al. [24] pointed out that earlier studies about CO2 emission performance usu-
ally lacked a time-series analysis; therefore, they introduced a Malmquist CO2 emission 
performance index (MCPI) to study the world’s top 18 emitters’ MCPI over time. Chang 
[25] used the Malmquist index to measure energy efficiency and its decomposition of eight 
Southern Africa Development Community members over time. Lin et al. [19] employed a 
meta-frontier framework entrenched on the Malmquist productivity index to measure the 
environmental efficiency of 70 countries from 1981 to 2007. 

Owing to the above considerations, this study utilizes a meta-frontier Malmquist in-
dex, which considers group heterogeneity to measure spirited changes in the environmen-
tal performance of countries from 2010 to 2017. The following section introduces the data 
first, and then conducts statistical tests to show the suitability of the model selection. 

2.2. Data Collection 
In this analysis, the data of 150 countries for 2010–2017 were collected to estimate 

international environmental efficiency. The inputs were three, namely, labor, capital, and 
energy use, one desirable output (GDP), and one undesirable output (CO2 emissions). The 
variables in this study are consistent with most of the environmental efficiency research 
[26]. The data were collected from the websites of the US Energy Information Administra-
tion [27] and Penn World Table (PWT), version 9.1 [28]. Information about the related 
variables is shown in Table 1. 

Table 1. Input and Output Variables to Estimate Environmental Efficiency. 

Variable Definition Unit Source 
 x1 Labor force Million people Penn World Table 

Input x2 Energy consumption PJ US EIA 
 x3 Capital stock Billion 2017 US dollars Penn World Table 

Desirable Output y1 GDP Billion 2017 US dollars Penn World Table 
Undesirable output y2 CO2 emissions Million metric tones US EIA 

A DMU should minimize inputs and maximize outputs to achieve efficiency. Reduc-
ing undesirable outcomes is preferred as undesirable outcomes contradict conventional 
outcomes. The application of DEA for performance measurement is not an exception, so 
researchers have to treat undesirable outputs specially. Reviewing the analyses on unde-
sirable outputs, Song et al. [9] came out with three categories. The first category treated 
undesirable outputs as investments. The second category conducts data transformation 
with undesirable outputs first. Having done that, the environmental efficiency is evalu-
ated in accordance with the traditional efficiency model based on transformed data. For 
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example, Seiford and Zhu [29] converted all negative undesirable outputs as positive by 
multiplying the negative undesirable outputs by −1 and identifying a proper translation 
vector. The third category is the distance function method [30]. In addition, Cooper et al. 
[31] introduced an adjusted slacks-based measure of efficiency to deal with undesirable 
outputs. The slacks-based measure is non-radial and non-oriented, utilizing input and 
output slacks directly to measure efficiency. This study adopts the first category which 
takes CO2 emissions as inputs to estimate environmental efficiency. 

The calculation of environmental efficiency in this study is based on a meta-frontier 
framework that countries do not operate under the same technology frontiers due to dif-
ferent characteristics, which places constraints on their feasible input–output combina-
tions. Several researchers utilize geographical location to group countries [32–34]. Devel-
opment level is a major factor that affects the technology level of a country [21]. Lin et al. 
[19] classified a sample of countries into developed countries and developing countries, 
whereas Lin et al. [23] divided 63 countries into four groups according to income level. 
Chiu et al. [8] used a more sophisticated method to cluster different groups. According to 
the combination of the technological competitiveness indicator provided by the World 
Economic Forum and the average annual per capita income, four groups were identified. 
In this analysis, the countries were divided into four groups based on their income level 
according to the World Bank [35]. The World Bank classified the world’s economies to 
four income groups, namely, low, lower middle, upper middle, and high, based on gross 
national income per capita in current US dollars and updated every year. All sample econ-
omies and their groups are illustrated in Table 2. In this analysis, 51 economies are in the 
high-income group (denoted as H), 42 are in the upper-middle-income group (denoted as 
UM), 31 are in the lower-middle-income group (denoted as LM), and 26 are in the low-
income group (denoted as L).  
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Table 2. Data Set of 150 Economies. 

Group Annex I  List of Countries in the Group 

High-income 
Yes 

Australia, Austria, Belgium, Canada, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 
Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Malta, Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, 

Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States 

No 
Argentina, Aruba, Bahrain, Barbados, Chile, Israel, Kuwait, Oman, Panama, Qatar, Saudi Arabia, Seychelles, Singapore, Taiwan, Trinidad 

and Tobago, United Arab Emirates, Uruguay 

Upper-middle income 

Yes Belarus, Bulgaria, Romania, Turkey 

No 
Albania, Algeria, Armenia, Azerbaijan, Belize, Bosnia and Herzegovina, Botswana, Brazil, China, Colombia, Costa Rica, Dominican Re-
public, Ecuador, Equatorial Guinea, Fiji, Gabon, Grenada, Guatemala, Iraq, Jamaica, Jordan, Kazakhstan, Lebanon, Malaysia, Maldives, 

Mauritius, Mexico, Montenegro, Namibia, North Macedonia, Paraguay, Peru, Saint Lucia, Serbia, South Africa, Suriname, Thailand  

Lower-middle income No 
Angola, Bangladesh, Bhutan, Cabo Verde, Cambodia, Cameroon, Djibouti, Egypt, El Salvador, Eswatini, Georgia, Ghana, Honduras, In-

dia, Indonesia, Kenya, Kyrgyzstan, Lesotho, Mauritania, Mongolia, Morocco, Nicaragua, Nigeria, Pakistan, Philippines, Sri Lanka, Sudan, 
Tunisia, Ukraine, Uzbekistan, Zambia 

Low-income No 
Benin, Burkina Faso, Burundi, Central African Republic, Chad, Comoros, Ethiopia, Guinea, Guinea-Bissau, Haiti, Liberia, Madagascar, 

Malawi, Mali, Mozambique, Nepal, Niger, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Tajikistan, Togo, Uganda, Yemen, Zim-
babwe 

Annex I countries are categorized by the UNFCCC which are obliged for higher commitment for mitigation. 

The descriptive statistics of all the variables among different groups are shown in Table 3. On average, the high-income group 
has the most capital, whereas the lower-middle-income group has the greatest amount of labor. Generally, the high-income group 
relies on capital-intensive industries, whereas the lower-income group relies on labor-intensive industries. The high-income group 
consumes the most energy, but the upper-middle-income group contributes the most in terms of CO2 emissions. The upper-middle-
income group shows a large deviation on all the input and output variables among all groups. As expected, the low-income group 
has the lowest value for all the variables.
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Table 3. Descriptive statistics for all input and output factors by different income groups. 

Group Variable Mean Median Min Max S. D. Variance Test of  
Normality 

H 

x1 10.584  3.391  0.043  154.440  22.862  523.000  <0.01 *** 
x2 5.106  1.284  0.013  103.681  14.480  209.658  <0.01 *** 
x3 3757.119  1194.549  11.924  56,215.310  8323.285  69,277,075.000  <0.01 *** 
y1 938.487  267.543  1.810  17,711.020  2394.224  5,732,311.000  <0.01 *** 
y2 267.162  56.557  0.908  5585.600  757.408  573,667.000  <0.01 *** 

UM 

x1 27.659  2.884  0.053  792.580  120.020  14,406.000  <0.01 *** 
x2 4.767  0.362  0.004  147.104  21.048  443.038  <0.01 *** 
x3 2802.006  282.305  4.616  94,903.730  11,005.070  121,111,472.000  <0.01 *** 
y1 702.699  87.507  1.086  18,978.500  2507.320  6,286,667.000  <0.01 *** 
y2 327.827  21.041  0.271  10,801.770  1560.610  2,435,496.000  <0.01 *** 

LM 

x1 32.500  7.606  0.175  537.830  90.958  8273.000  <0.01 *** 
x2 1.849  0.260  0.010  32.153  5.049  25.493  <0.01 *** 
x3 1764.667  310.144  7.293  29,931.070  4761.905  22,675,741.000  <0.01 *** 
y1 506.796  112.147  1.935  8769.180  1301.838  1,694,782.000  <0.01 *** 
y2 118.979  14.179  0.400  2312.060  359.703  129,386.000  <0.01 *** 

L 

x1 6.801  4.537  0.048  47.919  8.327  69.345  <0.01 *** 
x2 0.076  0.042  0.002  0.369  0.087  0.008  <0.01 *** 
x3 87.944  50.030  3.286  625.933  96.319  9277.300  <0.01 *** 
y1 29.430  21.455  0.588  188.206  31.481  991.077  <0.01 *** 
y2 3.651  2.483  0.100  24.340  4.255  18.106  <0.01 *** 

H: the high-income group; UM: the upper-middle-income group; LM: the lower-middle-income group; L: the low-income group. x1: labor force; x2: energy consumption; 
x3: capital stock; y1: GDP; y2: CO2 emissions. The asterisks *** indicate significance levels of 1%. 
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Two statistical tests were conducted to test the validity of the methodology employed 
in this analysis. A unique feature of DEA is that it does not require variables to match the 
normal distribution. With non-normal distributed samples, median values better describe 
the central tendency [36], and this study conducted a normality test of all input and output 
variables. The results of the normality test (Kolmogorov–Smirnov test) are significant, 
showing that the sample variables are not normally distributed, and DEA is suitable for 
adoption in this study. In addition, the meta-frontier approach that assumes economies 
with different income levels operate under different production technology frontiers was 
used. To determine whether differences exist in different income groups, a non-paramet-
ric statistical analysis (Kruskal–Wallis test) is used to test the unknown distribution [37]. 
The results of the Kruskal–Wallis test of all variables among high, upper middle, lower 
middle, and low income economies are illustrated in Table 4. The p-values of all variables 
are smaller than 0.001, indicating differences among different income groups, and justify-
ing the applicability of a meta-frontier framework. 

Table 4. Kruskal–Wallis test of all variables in four income groups. 

 Labor Energy Capital GDP CO2 
Kruskal–Wallis test 37.155 363.766 312.975 253.743 353.961 

p-value 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 
1 The asterisks *** indicate significance levels of 10%, 5%, and 1% or better, respectively. 

2.3. Methodology 
The theory of Malmquist productivity index (MPI) was first introduced by 

Malmquist [38]. An attractive feature of the MPI is that it can be decomposed [39]. Several 
researchers, such as Caves et al. [40], Färe et al. [41], and Orea [42], developed MPI in the 
non-parametric productivity structure. 

MPI is a dynamic efficiency estimation indicator of the change in productivity of a 
DMU over time. If ,t t

jθ  is the efficiency of DMU j at time t (subscript) relative to technol-
ogy frontier t (superscript), the productivity change between period t and t + 1 is illus-
trated as 1, 1 ,/t t t t

j jθ θ+ + , and t frontier is the reference frontier. Given that the reference period 
can be time period t or t + 1, MPI is the geometric mean of the distance to t and t + 1 frontier 
[43,44], as Equation (1): 

, 1t t
jMPI + = ( ) ( )

1/2 1/2, 1 1, 1 1, 1 , 1 ,

, 1, , 1, 1 1,   
t t t t t t t t t t

j j j j j
t t t t t t t t t t

j j j j j

catching up effect frontier shift effectθ θ θ θ θ
θ θ θ θ θ

+ + + + + +

+ + + +

   
   × = × × = ×


−
  

   
− , (1) 

Equation (1) shows that MPI can be decomposed into two sub-indices, namely, effi-
ciency change and frontier change (technical change). Productivity change originates from 
these two indices. Efficiency change indicates the catching-up effect, whereas technical 
change indicates the frontier-shift (innovation) effect. The catching-up term relates to the 
degree to which a DMU improves or worsens its efficiency, whereas the frontier-shift term 
reflects the change in the efficient frontiers between the two time periods [31]. 

The Malmquist index has been applied to various topics and industries, including 
the environmental field [26]. Wu et al. [45] utilized the DEA-based Malmquist index to 
evaluate the dynamic energy and environmental efficiency change of 30 regions in China. 
The Malmquist index is also used as an economic model to measure the change in the 
productivity of various industries, such as the non-ferrous metal industry [46] and power 
plants [47]. 

However, MPI only measures productivity changes across time, and the observation 
of different performances among DMUs with heterogeneities cannot be accomplished un-
til the introduction of the meta-frontier concept [32]. Meta-production functions were 
popularized by [48] for the estimation of stochastic meta frontiers, and the latter was ap-
plied by [49] to compute a global Malmquist index. 
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The meta-frontier Malmquist performance index (MMPI) originated from the tradi-
tional MPI and can be further decomposed into three parts: efficiency change (EC), best 
practice gap change (BPGC), and technology gap ratio change (TGRC). Traditional MPI 
solves the cross-period measurement of productivity, but it does not address the problem 
that the DMUs have different production technologies. This study adopts the MMPI ap-
proach that considers overall and group productivity. 

This study employs the MMPI approach based on Oh and Lee [33] to evaluate envi-
ronmental efficiency changes of countries belonging to different income groups that are 
assumed to have different production technologies. The relevant distance measurement 
methods for MMPI, EC, BPGC, and TGRC are described as follows: 

Assume the panel data consist of 1,...,j n= countries and 1,...,t T= periods, and 
every country uses an input vector t mu R+∈  to generate output vector t sv R+∈  in time t. 
The production technology of all countries around the world is grounded on production 
possibility set { }( , )  is obtained from u v v uΡ =  with ,  0λ λΡ = Ρ > . In this analysis, coun-
tries are categorized into four groups according to their income level. Thus, the whole 
sample has four subgroups with different technological possibilities. To calculate the 
MMPI, Oh and Lee [33] introduced three technology sets of contemporaneous, inter tem-
poral, and global benchmark technology. 

The contemporaneous benchmark technology of subgroup ( )1,...,kc k K=  is ex-

pressed as { }( , )  is obtained from t t t t t
k u v v uΡ =  with ,  0,  1,...,t t t Tλ λΡ = Ρ > = . At each 

time period t, countries with contemporaneous best technology form a production set [49]. 
Supposing the similar subjects of nonnegative input and output vector under kth group 
technology possibilities, the inter-temporal benchmark technology is defined as 

( )1 2 1...I T T
k k k k kconv −Ρ = Ρ ∪Ρ ∪ ∪Ρ ∪Ρ , and output distance function 

( ) ( ){ }, inf 0 , /I t t t t IDist u v u vδ δ= > ∈Ρ . For the specific subgroup kc , countries with in-

ter-temporal best technology form a production set including all countries in this sub-
group across the whole time period. 

The best production possibility set of all countries across all subgroups at all times is 
defined as ( )1 2 1...G I I I I

k Kconv −Ρ = Ρ ∪Ρ ∪ ∪Ρ ∪Ρ . This best production possibility is also 

noted as MMPI. The MMPI is expressed on GΡ  as Equation (2): 

( ) ( ) ( )1 1 1 1, , , , / , .t t t t G t t G t tMMPI u v u v Dist u v Dist u v+ + + +=  (2) 

Output distance function ( ) ( ){ }, inf 0 , /G t t t t GDist u v u vδ δ= > ∈Ρ  is the best pro-

duction possibility set and demonstrated as Equation (3): 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1
1 1

1 1 1 1 1 1 1

1 1 1 1 1

1

,
, , ,

,

, , , , ,

, , , , ,

G t t
t t t t

G t t

t t t t t t I t t I t t G t t

t t t t t t I t t I t t G t t

t

Dist u v
MMPI u v u v

Dist u v

Dist u v Dist u v Dist u v Dist u v Dist u v

Dist u v Dist u v Dist u v Dist u v Dist u v

TE
T

+ +
+ +

+ + + + + + +

+ + + + +

+

=

      = × × × ×   
      

=
, 1 , 1

, ,

C.

I t G t

t I t G t

BPG TGR
E BPG TGR

EC BPGC TGR

+ +

× ×

= × ×

 (3) 

where zTE  and ,I zBPG , 1z t t= +  show the countries’ technical efficiency level and best 
practice gap (BPG), and BPRG shows the changes in best practice gap that also can be 
noted as technical change. The ,G zTGR , 1z t t= +  shows the technology gap ratio (TGR) 
among the kth group’s technology relative to the overall best production possibility set 
(meta-frontier technology). TGR determines the distance between the kth group’s technol-
ogy and the overall frontier technology. When , 1G zTGR = , countries overlap with the 
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meta frontier and have the potential for breakthrough innovation, making them global 
leaders in environmental efficiency. The technology level of the kth group is closer to the 
overall meta frontier when , 1G zTGR > . TGRC shows the technology leadership change. 

This study adopts linear programming to illustrate the output distance function as 
suggested by Färe et al. [43,49]. Equation (4) contends countries in the specific subgroup 
k. The productivity of the oth country of group kc  across time period t and t + 1 can be 
calculated and decomposed by using Equation (4) as follows: 

( ) 1
,      , 1

subject to
,   1,..., ,

,   1,..., ,

0.

k

k

z z z z
o o o

z z z z
j rj o roj c

z z z
j ij roj c

z
j

Dist u v Max z t t

v v r s

u u i m

δ

λ δ

λ

λ

−

∈

∈

  = = + 

≥ =

≤ =

≥

∑
∑

   (4) 

where z
jλ  demonstrates the intensity of production activity.  

Equation (5) contends the countries in the specific subgroup k across the entire re-
search period. 'z

oδ  is the optimal solution from Equation (4). The inter temporal distance 
functions are calculated by utilizing Equation (5) as follows: 

( ) ( )

{ }

1

'
,

,

, / ,    

subject to
,   1,..., ,

,   1,..., ,

0,  1, 2,..., .

k

k

I z z z z z I
o o o o o

z z I z z
j rj o o roj c z

z z z
j ij ioj c z

z
j

Dist u v Dist u v Max

v v r s

u u i m

T

τ

τ

δ

λ δ δ

λ

λ τ

−

∈ ∈

∈ ∈

  = 

≥ =

≤ =

≥ =

∑
∑

 (5) 

Equation (6) contends all countries and subgroups over time. The 'I
oδ  is the optimal 

solution from Equation (5). The global distance functions are computed as follows: 
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3. Empirical Analysis 
3.1. Results of MMPI 

MMPI measures the dynamic changes of environmental efficiency performance of 
countries around the world. When MMPI > 1, an improvement is observed in 
environmental performance. The larger the MMPI is, the better the improvement in 
environmental efficiency. MMPI = 1 indicates no change in environmental performance, 
and MMPI < 1 indicates performance degradation. The overall average MMPI during the 
study period is 1.004, indicating a progression in environmental efficiency worldwide. 

Figure 1 shows the average MMPI of four different income groups from 2010 to 2017. 
Unlike the three other income groups, most of the MMPIs are smaller than 1 for the low-
income group. Only two periods, namely, 2010–2011 and 2016–2017, have MMPI values 
greater than 1. The average MMPI for the low-income group is 0.999, indicating a 0.1% 
regress annually in environmental efficiency. For the high-income group, the average an-
nual MMPI is 1.007, and the values of MMPI are greater than 1 except for 2011–2012. The 
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upper-middle and lower-middle-income groups also progressed during the research pe-
riod. The average MMPI for the upper-middle group is 1.002. For the lower-middle-in-
come group, the values of MMPI are greater than 1, except for 2014–2015. The annual 
improvement rate of the lower-middle-income group is 0.8%. 

 
Figure 1. Mean Plot of MMPI of Different Income Groups. Note: This figure depicts the average meta-frontier Malmquist 
performance index for four different income groups: the high-income group (denoted as H), the upper-middle-income 
group (denoted as UM), the lower-middle-income group (denoted as LM), and the low-income group (denoted as L). 

To investigate and compare the trend of MMPI among different groups further, the 
accumulated value of MMPI was calculated. Table 5 shows that the high-income group 
made the greatest progress because its accumulated value of MMPI is the largest. The low-
income group suffered from regression in environmental efficiency. Figure 2 presents the 
trend of MMPI among different groups. The MMPI shows an upward trend for the high-
income and lower-middle-income group. The trend for the upper-middle-income group 
is flatter, although the environmental efficiency is improving. Only the low-income group 
regressed, although the MMPI rose from 2016 to 2017. To understand the factors that in-
fluence the performance of different income groups, the next section decomposes the 
MMPI.  
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Table 5. Average and Accumulated MMPI of Different Income Groups. 

Group Overall High Upper Middle Lower Middle Low 

Year Ave.  
MMPI 

Accu.  
MMPI 

Ave.  
MMPI 

Accu.  
MMPI 

Ave.  
MMPI 

Accu.  
MMPI 

Ave.  
MMPI 

Accu.  
MMPI 

Ave.  
MMPI 

Accu.  
MMPI 

2010–11  1.006  1.006  1.017  1.017  1.006  1.006  1.007  1.007  0.981  0.981  
2011–12 1.001  1.007  0.996  1.013  1.001  1.007  1.002  1.009  1.010  0.992  
2012–13 1.005  1.012  1.006  1.019  1.008  1.016  1.018  1.027  0.998  0.989  
2013–14 1.004  1.016  1.014  1.033  0.998  1.013  1.002  1.029  0.999  0.989  
2014–15 1.000  1.016  1.005  1.038  1.000  1.013  0.997  1.025  0.994  0.983  
2015–16 1.000  1.016  1.001  1.039  0.997  1.011  1.011  1.037  0.989  0.972  
2016–17 1.010  1.026  1.008  1.047  1.000  1.011  1.021  1.058  1.019  0.990  

Ave. 1.004  1.014  1.007  1.030  1.002  1.011  1.008  1.027  0.999  0.985  
Ave. MMPI is the average MMPI value; Accu. MMPI is the accumulated MMPI value. Accumu-
lated MMPI is calculated as follows: deduct the numerical value 1 (value 1 represents neutrality in 
efficiency) from the average MMPI and add the resulting value to the previous year’s accumulated 
MMPI value. 

 
Figure 2. Accumulated MMPI of Different Income Groups. Note: This figure presents the trend of 
environmental efficiency of different income groups from 2010 to 2017 based on their estimated 
accumulated meta-frontier Malmquist performance index. 

3.2. Decomposition of MMPI 
The results of the Kruskal–Wallis test in Table 6 support differences among different 

income groups for MMPI. Further investigation will bring insights into the causes of im-
provement or degradation in environmental efficiency because MMPI can be decomposed 
into MMPI = EC*BPGC*TGRC. 

The dynamic productivity change may stem from EC (catching-up) or BPGC (inno-
vation). From the perspective of EC, only the high-income group shows a value lower 
than 1 (0.993). The values of EC for the upper-middle-income, lower-middle-income, and 
low-income groups are 1.010, 1.017, and 1.023, respectively. The room for maneuvering 
the input–output combination is very minimal for the high-income countries. By contrast, 
catching up is relatively easy for the three other groups [19]. 

For the high-income group, its BPGC is larger than 1, whereas its EC is less than 1. 
These results indicate that the improvement of environmental efficiency stems from fron-
tier shifts rather than efficiency change, that is, the innovation effect contributes to the 
improvement of environmental efficiency, not the management capability, for high-in-
come countries. These results echo the finding of [8,50] that the environmentally sensitive 
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productivity growth of 26 OECD countries is mainly due to technical change. The lower-
income countries (including lower-middle-income groups and low-income groups) have 
much less capability and capital to develop advanced, innovative environmental technol-
ogy. 

Table 6. Difference test of environmental efficiency among different income groups. 

2010–2017 Income Level Average Standard Deviation Kruskal–Wallis Test (p-Value) 
MMPI High 1.007  0.031  0.017 ** 

 Upper-Middle 1.002  0.044   
 Lower-Middle 1.008  0.048   
 Low 0.996  0.058   

EC High 0.993  0.047  0.000 *** 
 Upper-Middle 1.010  0.064   
 Lower-Middle 1.017  0.057   
 Low 1.023 0.073  

BPGC High 1.014  0.048  0.000 *** 
 Upper-Middle 1.017  0.057   
 Lower-Middle 0.990  0.043   
 Low 0.981  0.057   

The asterisks **, and *** indicate significance levels of 10%, 5%, and 1% or better, respectively. 

As to TGRC, among the four income groups, only the low-income group has a value 
less than 1, which means the low-income group lags behind the overall frontier. The up-
per-middle-income group (TGRC = 1.024) is moving toward the global frontier most rap-
idly, followed by the lower-middle-income group (TGRC = 1.003) and the high-income 
group (TGRC = 1.001). However, a higher TGRC does not guarantee the position of a 
global technology leader because TGRC is the change rate of the technology leadership 
[33]. More detailed information about TGR is needed to identify which group is the global 
technology leader in environmental efficiency. 

Figure 3 presents the boxplot of different income groups according to their median 
and variance. The lower-middle-income group has the largest variance among the four 
groups, whereas the high-income group has the least variance. Countries of low and 
lower-middle income have more extremes that either perform much better or worse than 
most other countries in their groups. Therefore, several of them are very far from the 
global frontier compared with their peers in the same group. By contrast, the high-income 
countries demonstrate homogeneity in terms of TGRC. In addition, the boxplot shows that 
more countries of the high- and upper-middle-income group are located at the global 
frontier. 
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Figure 3. Boxplot of TGRC of different income groups. Note: This figure demonstrates the boxplot of different income 
groups based on their average technology gap ratio change from 2010 to 2017. This figure also shows the median and 
variance of each income group for comparison. 
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3.3. Comparison of Environmental Efficiency Before and After the Paris Agreement 
Under the framework of the Kyoto Protocol, only the majority of the high-income 

group members have the responsibility to reduce GHG emissions, that is, compared with 
the three other groups (upper-middle-, lower-middle-, and low-income groups), the high-
income group members have the incentive and pressure to increase their environmental 
efficiency. The empirical results also demonstrate that the high-income group makes pro-
gress in environmental efficiency.  

The Paris Agreement has two distinctive features apart from the Kyoto Protocol. 
First, all signatories, not only industrialized countries, are obligated to contributions to 
mitigation. Second, all signatories determine their own contributions based on their own 
capabilities and conditions instead of being assigned by an international treaty. With the 
shift from the “top-down” to the “bottom-up” approach for the climate treaty, all coun-
tries, not only the industrialized countries, have to exert effort in mitigation since the 
adoption of the Paris Agreement. Therefore, any difference in environmental efficiency 
performance before and after the adoption of Paris Agreement must be determined for 
the three other income groups because they need to contribute to the mitigation after the 
adoption of the Paris Agreement. Table 7 shows that only the lower-middle-income group 
shows a statistical difference in terms of MMPI between the two periods. Its MMPI in-
creases from an average value of 1.005 to 1.016.  

However, the decomposition of MMPI reveals more insights. The BPGC of the high- 
income group deteriorates after the adoption of the Paris Agreement. In 2016, the newly 
elected US President Donald Trump posed potential threats to the implementation of the 
Paris Agreement because he has been skeptical about climate change and vowed to with-
draw from the Paris Agreement during his campaign. Concerns were raised that other 
countries would follow the US lead in postponing their research and development of re-
newable energy [51,52]. The retreat of the US from the international climate governance 
may upset and cause the fluctuation of mitigation efforts for industrialized countries. 

The EC of the upper-middle-income and lower-middle-income groups improved 
from the first period to the second period, indicating their enhanced capabilities to allocate 
resources. The picture of the low-income group is different. The value of EC for the low-
income group worsened following the adoption of the Paris Agreement, whereas the 
value of BPGC increased, indicating a technology improvement for the low-income group.  
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Table 7. Comparison of Environmental Efficiency Pre- and Post-Paris Agreement. 

Group Efficiency 2010–2015 2015–2017 
Kruskal-Wallis Test  

(p-Value) 
High MMPI 1.008  1.004  0.484  

 EC 0.989  1.003  0.051  
 BPGC 1.019  1.001    0.004 ***  
 TGRC 1.001  1.001  0.505  

Upper-Middle MMPI 1.003  0.999  0.583  
 EC 1.007  1.017   0.036 **  
 BPGC 0.996  0.982    0.004 ***  
 TGRC 1.001  1.001  0.435  

Lower-Middle MMPI 1.005  1.016   0.043 **  
 EC 1.015  1.023   0.012 **  
 BPGC 0.990  0.989  0.243  
 TGRC 1.002  1.004  0.983  

Low MMPI 0.993  1.004  0.159  
 EC 1.031  1.005    0.024 **  
 BPGC 0.972  1.004    0.001 ***  
 TGRC 0.994  0.996  0.550  

The asterisks **, and *** indicate significance levels of 10%, 5%, and 1% or better, respectively. 

4. Conclusions 
Climate change is a major challenge to humankind, but eliminating poverty is also 

an arduous, important task for decision-makers or country leaders. Combating global 
warming and enhancing living standard simultaneously relies on environmental effi-
ciency improvement. Thus, this study estimates the environmental efficiency of 150 econ-
omies during 2010–2017 to understand the worldwide trend. This research also intends to 
compare whether the environmental efficiency performance exhibited any difference be-
fore and after the implementation of the Paris Agreement. 

This research adopts DEA and the Malmquist index to compare and capture the dy-
namic change of environmental efficiency among different income groups. Considering 
the heterogeneity of countries, a meta-frontier framework is also applied. The empirical 
results show that among the four income groups, only the low-income group suffered 
from regression in terms of environmental efficiency during the research period based on 
their average MMPI. The high-income group made the greatest progress because its accu-
mulated value of MMPI is the largest. The improvement for the high-income group came 
from frontier shifts rather than efficiency change. By contrast, the improvement of the 
lower-income groups came from the catching-up effect. As to the impact of the Paris 
Agreement, only the lower-middle-income group showed a statistical difference between 
the two periods, and its environmental efficiency increased after the adoption of the Paris 
Agreement. 

The results provide important policy implications. The statistical results support dif-
ferences in terms of environmental efficiency among the four income groups, especially 
that the low-income group is in deterioration. Combatting global warming successfully 
cannot rely on specific countries. The world as a whole needs to cooperate and improve 
together, thus, more help needs to be devoted to the low-income group. 

This study emphasizes the macro view about the differences among different groups, 
and the detailed discussion about specific countries is not the focus of this analysis. More-
over, the study period only covers two years after the Paris Agreement under the con-
straint of data availability, hence, a long-term trend cannot be observed. For future anal-
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ysis, a longer-term comparison will provide more information about the effect of a bot-
tom-up approach. An in-depth study to explore the benchmark country for each group 
will also be beneficial for poor performers to catch up. 
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