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Abstract: Solar energy has been extensively used in industry and everyday life. A more suitable solar
collector orientation can increase its utilization. Many studies have explored the best orientation of
the solar collector installation from the perspective of data analysis and local-area cases. Investigating
the optimal tilt angle of a collector from the perspective of data analysis, or guiding the angle of
solar collector installation, requires an a priori theoretical tilt angle as a support. However, none of
the current theoretical studies have taken the real motion of the Sun into account. Furthermore, a
complete set of theoretical optimal tilt angles for solar energy is necessary for worldwide locations.
Therefore, from the view of astronomical mechanics, considering the true orbit of the Sun, a mathe-
matical model that is universal across the globe is proposed: the Kepler motion model is constructed
from the solar orbit and transformed into the local Earth coordinate system. After that, the calculation
of the optimal tilt angle solution is given. Finally, several examples are shown to demonstrate the
variation of the optimal solar angle with month and latitude. The results show that for daily fixed
solar collectors, the altitude angle of the collector should be about 6◦ above the noon solar altitude
angle in summer and 6◦ lower in winter. For annual fixed collectors, the tilt angle should be slightly
higher than the latitude. In summary, this study demonstrates that when a location is specified, this
model can be used to calculate the theoretical optimum tilt angle of solar collectors for that position.

Keywords: Kepler orbit; coordinate transformation; solar collector; tilt angle

1. Introduction

As a green energy source, solar energy has been widely used around the world. A
solar collector can keep soaking in maximal rays when it is orthographic to the sunlight.
In addition to improving the conversion efficiency from solar to chemical energy [1], one
of the key points for solar energy to be fully utilized is the optimized design of the tilt
angle (or its complementary angle: elevation angle) of the solar collector. For a given solar
collector position, the optimization of the solar tilt angle can be mainly summarized into
two schemes as follows.

One is to change the elevation angle of the solar collector periodically to ensure
that more direct sunlight is obtained: Yakup [2] showed that changing the inclination
angle 12 times a year can improve the utilization rate by 5% (latitude = 4.90◦ N and
longitude = 115◦ E); this method has been proven to be effective by experiments [3]. A
further study showed that adjusting the tilt angle a different number of times during the
year will result in different solar reception effects [4]. Furthermore, Solar trackers that
allow for both tilt and azimuth angle can offer a better solution: Zsiborács [5] explored the
performance of solar collectors at different azimuth angles, which has provided theoretical
support for the tracker. Racharla [6] introduced the principles and methods of active and
passive trackers. Afterwards, Junbin Zhang [7] proposed a two-axis tracking method
using BeiDou and GPS to determine the position of solar collectors. In order to try not
to introduce additional energy losses in the tracker, Henriques [8] recently proposed an
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npTrack approach. By using the scheme of adjusting the angle, more than 10% additional
energy can be collected into a solar battery, but its own energy consumption would increase
by 2–3% [9]. In addition, not all solar collectors have the ability to adjust their angle
automatically, especially when deployed over a large area. For fixed solar collectors, it is
especially critical to set the optimal tilt angle at the beginning.

Thus, there is also a need to fix solar collectors and calculate the best elevation angle for
that year or even many years. The study of fixed solar tilt can be divided into two categories:
empirical schemes using actual measured data and theoretical simulation models.

Empirically, the solar inclination can be obtained using numerical calculations with
reference to local latitude, longitude, and meteorological conditions. Breyer [10] proposed
a global model that considers the reception of multiple rays, but the model relies on a
horizontal diffuse reflection dataset. Racharla [6] introduced the coordinate system and
the parameters concerning the solar orientation, starting from a presumed circular orbit.
Adell [11] proposed a theoretical model that takes local climate conditions into account.
Kallioğlu [12] experimentally explored the optimal tilt angle for some regions of the North-
ern Hemisphere by adjusting the tilt angle of the solar energy. Deng [13] proposed a new
solar model from the perspective of simulation and data analysis. Chinchilla [14] used
global horizontal radiation data collected from 2551 sites across the world to calculate the
best annual average angle. Considering the influence of the actual environment, Kim’s
study [15] used machine learning method to determine the optimal tilt angle. Similarly, a
neural network can be constructed to determine the local solar oblique illumination accep-
tance rate [16]. For long-term fixed solar collectors, the impact of the actual environment
needs to be considered [17].

Theoretically, Nfaoui [18] used true solar time, however, only the Moroccan region
is used as a case study. Vician [19] used the best angle of the day for a solar collection
efficiency analysis. Gardashov [20] provided a solution for highland areas by modifying
the cloud transmittance model for light. Abood [21] simulated solar orbit and gave a
practical solution.

In fact, in the above studies, scholars have simplified the solar motion to a circular
motion and used the simplified model for calculation. Since the Earth moves in an elliptical
orbit around the Sun, the Sun is at a focal point of the ellipse—it is necessary to take this
factor into account. One of the reasons for not considering the real solar orbital motion
is that in the past there has not been a complete orbital motion system and geodetic
coordinate frame. However, in recent years, with the development of orbital theory [22]
and the coordinate frame system [23], it has become possible to solve the orientation of
solar collectors theoretically.

In summary, none of the existing studies have explored the orientation of a place
on Earth toward the Sun from the perspective of Keplerian orbits. In addition, global
analysis of the optimal tilt angle has not been reported. To provide guidance for fixed
installation angles of solar collectors around the world, a refined theoretical model is
proposed. This model mainly considers the Kepler motion of the Sun [22,24–26]. This
motion can be transformed and then described by the local coordinate system. When the
latitude, longitude, and geodetic height are known, the theoretical optimal angle of solar
energy can be modeled according to this theory.

2. Methods

The conversion of the coordinate system is the basis for completing the description of
the solar motion from the local coordinate system of the Earth. Therefore, first of all, the
coordinate system used by the model is presented.

2.1. Coordinate Frames and Orbit Parameters

There are several coordinated frames. Note that both the Earth-centered ecliptic
inertial (ECEI) coordinate frame and the Earth-centered inertial (ECI) coordinate frame are
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celestial coordinate frame. The Earth-centered, Earth-fixed (ECEF) coordinate frame is the
terrestrial coordinate system.

2.1.1. ECEI Coordinate Frame

ECEI’s original point is the center of the Earth, its X-axis points to the J2000.0 vernal
equinox (12 h 2000.1.1 solar calendar), its X-Y plane is the ecliptic plane, and its Z-axis
points to ecliptic pole.

2.1.2. ECI Coordinate Frame

(1) Definition
ECI’s original point is the center of the Earth. Its X-axis points to the J2000.0 vernal

equinox (12 h 2000.1.1 solar calendar). Its Z-axis points to the conventional international
origin (CIO). The X-Y-Z obeys the right-hand rule. This coordinate frame moves around
the Sun, not around the CIO.

The ecliptic plane in the ECI coordinate frame is defined as the great circle where the
Earth’s orbital plane intersects the celestial sphere.

(2) The transformation between ECEI and ECI
The coordinate transformation between ECEI and ECI can be described as follows [27]:

XECEI = Re(−ε)XECI (1)

where X denotes the coordinate system, Re is the rotate matrix, and ε is the obliquity of
the ecliptic.

2.1.3. ECEF Coordinate Frame

(1) Definition
The ECEF coordinate frame is a kind of right-hand Cartesian coordinates system. In

space rectangular coordinate frame ECEF, the original point is Earth centroid, the X-axis
points to the mean Greenwich meridian, and the Z-axis points to the CIO. The X-Y plane is
a mean equatorial plane, the X-Z plane is mean zero meridian.

(2) Transformation to ellipsoid geodetic ECEF coordinate frame
The formula from the ECI coordinate system to the ECEF coordinate system is ex-

pressed as follows [28]:
XECEF = RMRSRNPXECI (2)

where RS is the Earth rotation matrix; RM is the polar shift matrix, and RNP is the precession
nutation matrix. RM and RNP are relatively small and can be ignored.

(3) The transformation between space rectangular coordinate frame and spherical
coordinate frame in ECEF

In ellipsoid geodetic coordinate system ECEF, (X, Y, Z) in space rectangular ECEF
coordinate frame can be transformed to spherical coordinate (ϕ, λ, h) [29]:

 X
Y
Z

 =


(N + h) cos φ cos λ

(N + h) cos φ sin λ(
N
(
1− e2)+ h

)
sin φ

 (3)

Conversely: 

tan φ = Z√
X2+Y2

(
1− e2 N

N+h

)−1

tan λ = Y
X

h =
√

X2+Y2

cos φ − N

(4)



Energies 2021, 14, 4454 4 of 17

where
N =

a√
1− e2 sin2 φ

(5)

where N is the prime vertical curvature radius, e is the first eccentricity, ϕ is the latitude,λ
is the longitude, and h is the height.

2.1.4. The local Horizontal Coordinate System

(1) Definition
XENU is a left-handed Cartesian coordinate system. Its origin is a self-defined local

point L1(x1, y1, z1). Its X-axis points to north direction, its Y-axis points to east direction,
and its Z-axis points to up direction.

(2) Transformation
The rotation matrix from the ellipsoid geodetic ECEF coordinate system to the local

horizontal coordinate system can be expressed as follows [27]:

XENU = REXECEF (6)

The rotation step from ECEF to ENU is as follows [26]:

(a) rotate angle λE around Z-axis;

(b) rotate angle (90◦−φE) around Y-axis;

(c) Change X-axis to the opposite direction

Therefore, the rotation matrix can be stated as follows [27]:

RE =


− sin φE cos λE − sin φE sin λE cos φE

− sin λE cos λE 0

cos φE cos λE cos φE sin λE sin φE

 (7)

2.2. Theoretical Model for Calculating the Sun Position

By the above statement, it is known that ECEI is a coordinate system more related
to the Sun. The motion of the Sun is first characterized under this coordinate system. Six
parameters are needed to represent the orbit of the Sun.

2.2.1. Kepler Orbit Parameters for Solar in ECEI

(1) Parameters
There are six parameters in a Kepler orbit: the semi-major axis of the ellipse, orbital

eccentricity, orbit inclination, the longitude of ascending node, the argument of perigee,
and mean anomaly. These parameters for solar orbit are calculated as follows [26,30]:

as = 1.0000002 AU

es = 0.016709114− 0.000042052 T − 0.000000126 T2

εs = 84381.448′′ − 46.8150′′ T − 0.00059′′ T2 + 0.001813T′′ 3

Ωs = 0

fs = 2arctan
[√

1+es
1−es

tan Es
2

]
ωs = Lsun − fs

(8)

where as is the semi-major axis of the ellipse, AU is astronomical unit: 1 AU = 149,597,870,691
× 108 km; es is the orbital eccentricity; εs is the orbit inclination (here, it is the obliquity
of the ecliptic from the equatorial plane); and Ωs is the longitude of ascending node. The
vernal equinox of the Sun is the ascending intersection of the ecliptic with the celestial
coordinate system, so Ωs = 0. The parameters of the orbit are shown in Figure 1.
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Figure 1. Kepler orbital parameters of the Sun in the celestial coordinate system with the Earth’s 
equator as the X-Y plane. 
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Figure 1. Kepler orbital parameters of the Sun in the celestial coordinate system with the Earth’s
equator as the X-Y plane.

(2) Calculation of fs
Parameter Es is the eccentric anomaly, and it can be calculated by mean anomaly

Ms [27]:
Es − es sin Es = Ms (9)

It can be solved iteratively under the condition
(

Mi+1 −Mi ≤ 1.0′′ × 10−8), then fs
can be calculated by Es. Where Ms is given by [31,32]:

Ms = 357.52910918◦ + 129596581.0481′′T − 0.5532′′ T2 + 0.000136′′ T3 − 0.00001149′′ T4 (10)

(3) Calculation of ws
ws is the argument of Perigee. Lsun is solar zodiac longitude, and it is derived from

three parameters [27]:
Lsun = D− F−Ωmoon (11)

D donates average angular distance from the Sun to Moon.F = Lmoon −Ωmoon, and
there are several amendments to F [33,34]. Lmoon is the average longitude of the Moon.
Ωmoon is the average longitude of the Moon’s ascending node. D, F, and Ωmoon are shown
in [31]:

D = 297.8019547◦ + 1602961601.2090′′ T − 6.3706′′ T2 + 0.006593′′ T3 − 0.00003196′′ T4 (12)

F = 93.27209062◦ + 1739527262.8478′′ T − 12.7512′′ T2 − 0.001037′′ T3 − 0.00000417′′ T4 (13)

Ωmoon = 125.04455501o − 6962890.2665T′′ + 7.4722′′ T2 + 0.007702′′ T3 − 0.00005939′′ T4 (14)
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2.2.2. Describe the Solar Motion in ECEI
→
q and

.
→
q are used to represent the position and velocity of the Sun, respectively [27]:

→
q =


a(cos E− e)

a
√

1− e2 sin E

0

 =

 q cos f
q sin f

0

,
.
→
q =

 − sin f
e + cos f

0

 na√
1− e2

(15)

The Sun’s position and velocity vector in the ECEI coordinate system of the ecliptic
coordinate system are as follows [27]: →

p
.
→
p

 = R3(−Ω)R1(−i)R3(−ω)

 →
q
.
→
q

 (16)

where R and its subscripts represent the rotation matrix [27]:

R3(−Ω)R1(−i)R3(−ω) =


cos Ωs − sin Ωs 0

sin Ωs cos Ωs 0

0 0 1




1 0 0

0 cos is − sin is

0 sin is cos is




cos ωs − sin ωs 0

sin ωs cos ωs 0

0 0 1

 (17)

2.2.3. Describe the Solar Motion in ECEF

Since the final need is to describe the solar orbital motion in the Earth coordinate
system, this motion should be transferred from the coordinate system associated with the
Sun to the geocentric geodesic coordinate system. This transformation process consists
of two parts, first the rotation of the Z-axis, followed by the rotation of the X-axis. The
specific two rotation processes are as follows.

(1) From ECEI to ECI
The movement of the Sun is described in ECI coordinates, the transformation For-

mula (1), where ε = 84, 381.448”− 46.8150T”− 0.00059”T2 + 0.001813”T3. T is the mea-
surement time of the Julian century from J2000.0 [35].

(2) From ECI to ECEF
Considering that the X-axis is pointing differently in ECI and ECEF, the rotation

between ECI and ECEF is needed. The transformation Formula (2) can be expressed as
follows [27]:

XECEF = Rs(GAST)XECI (18)

where

Rs(GAST) =


cos(GAST) − sin(GAST) 0

sin(GAST) cos(GAST) 0

0 0 1

 (19)

GAST is the Earth rotation angle from the true vernal equinox to Greenwich merid-
ian [27].

GAST = GMST + ∆Ψ cos ε + 0.00264” sin Ω + 0.000063′′ sin 2Ω (20)

where GMST is the mean equinox to Greenwich meridian. ∆Ψ is the nutation in longitude.
The effect of the last two items is negligible [27]:

GAST = GMST + ∆Ψ cos ε (21)

where
GMST = GMST0 + αUT1 (22)
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In the above formula,
GMST0 = 6× 3600.0′′ + 41× 60.0′′ + 50.54841′′ + 8, 640, 184.812866′′ T + 0.093104′′ T2

− 6.2′′ × 10−6T3 and α ≈ 1.
GMST0 is the Greenwich angle of mean vernal equinox at 0:00 on the measuring day,

UT1 = UTC + dUT1, dUT1 is published by the International Earth Rotation Service (IERS)
(dUT1 < 0.7 s), so that UT1 ≈ UTC and GMST = GMST0 + UTC.

Without considering the influence of nutation, it is approximated that ε = 84181.448′′ .

2.2.4. Description of the Solar Motion in the Local Coordinate System

For a given latitude, longitude, and altitude for a solar collector place position
P0(ϕ, λ, h), P0 (x0, y0, z0) can be calculated using Formula (3).

First, location P0 (x0, y0, z0) is defined as the origin point of local ENU (east-north-up)
coordinate frame. In this frame, X-axis points to north, Y-axis points to east, and Z-axis
points to up.

Then, the solar position Pi (xi, yi, zi) from ECEF can be transformed to the local
coordinate frame using Formula (6). The rotation matrix RE can be seen in Formula (7).
The relationship between azimuth AE, ZE and Pi (xi, yi, zi) is as follows:

 xi
yi
zi

 = d


cos AE sin ZE

sin AE sin ZE

cos ZE

,


dE =

√
x2

i + y2
i + z2

i

tan AE = yi/xi

cos ZE = zi/dE

 (23)

For easy calculation, a spherical coordinate system is defined with the same origin
and axis as local ENU frame. In this spherical frame, solar position Pi (xi, yi, zi) can be
expressed as Pi (Ai, Zi, r) or P2 (

→
r ).

Z is the angle between the perpendicular and the diameter, then the Sun position is
expressed as Pi (Ai, Zi,

→
r ), where A is the azimuth from north to the projection of

→
r i on

X-Y plane and Z is the angle between up and
→
r i, as shown in Figure 2.
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system.

2.3. Mathematical Solution to Capture Maximum Irradiation
2.3.1. Building a Formula for Maximum Solar Energy Reception under a
Mathematical Model

According to Kepler’s second law, a line segment joining a planet and the Sun sweeps
out equal areas during equal intervals of time. Therefore, for every equal small time
interval t,

∫ →
r i · dt is a constant value. Let the normal vector of the solar collector be

→
r 0.
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The problem of solving the optimal pointing angle of a solar collector is transformed into
a mathematical problem: the maximum cumulative projection from

∫ →
r i · dt on

→
r 0. The

cumulative amount received in a period can be expressed as follows:

Speriod =

SN∫
0

→
r i ·

→
r 0dt (24)

where Speriod is the total tme.

(1) ri under the spherical coordinate system

For the spherical coordinate system,
→
r i (Ai, Zi, ri) can be computed as follows: Zi = arccos z′

ri

Ai = arctan y′
x′

(25)

where 

ri =
√
(xi − x0)

2 + (yi − y0)
2 + (zi − z0)

2

x′ = −(xi − x0) sin ϕ cos λ− (yi − y0) sin ϕ sin λ + (zi − z0) cos ϕ

y′ = −(xi − x0) sin λ + (yi − y0) cos λ

z′ = (xi − x0) cos ϕ cos λ + (yi − y0) cos ϕ sin λ + (zi − z0) sin ϕ

(26)

Then the problem is transformed into solving the value of
→
r 0 when Speriod gets the

maximum value. Note that (a) the sun can only be seen during the daytime, so Zi ranges
from 0 to π

2 ; (b) P0 (x0, y0, z0) and Pi (xi, yi, zi) are in the ECEF frame.

(2) ri under the Cartesian coordinate system

For the Cartesian coordinate system,
→
r i and

→
r i can be expressed as follows:

→
r i(r0 · cos Zi · cos Ai, r0 · cos Zi · sin Ai, r0 · sin Zi)

→
r 0(r0 · cos Z0 · cos A0, r0 · cos Z0 · sin A0, r0 · sin Z0)

(27)

where r0 is unit length and is independent of the final result.

2.3.2. Solution for this Model

The model in a Cartesian coordinate system is used for solving the problem. For
each epoch

→
r i ·

→
r = r0

2 · [cos Zi · cos Z0 · (cos Ai · cos A0 + sin Ai · sin A0) + sin Zi · sin Z0] (28)

(1) Optimal Azimuth

Ai and Zi can be calculated at eac epoch following the model mentioned above. The
mathematical problem then becomes finding the value of cosZ0, sinZ0, cosA0, and sinA0

when Speriod =
SN∫
0

→
r i ·

→
r 0dt acquires the maximum value in a time period. This problem

seems very difficult to solve, but it can be simplified by using the laws of celestial mechanics
of motion. It can be inferred from Kepler’s second law that the projection of ri in the y = Z0
plane varies uniformly with time. Therefore, the optimum azimuth can be taken as the
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mean of the precise azimuth of sunrise and sunset moments. In that case, the value of A0 is
known and can be stated as follows:

A0 =
Asunrise + Asunset

2
(29)

At this point, the value of Ai is no longer relevant to the final result, so Ai can take
any value. To simplify the calculation, we make Ai = A0. Usually, in the ENU coordinate
system, A0 is very close to π during the day (i.e., the azimuth of the Sun at noon is the best
azimuth for the day).

(2) Optimal Elevation

In the ENU coordinate system, when A0 = π, the formula for direct solar radiation for
each calendar element is simplified as follows:

→
r i ·

→
r = r0

2 · (cos Zi · cos Z0 · cos(Ai − π) + sin Zi · sin Z0) (30)

Zi and Ai for all epochs of each day can be calculated by the theory of the previous
sections. Therefore,

→
r i ·

→
r is a function of Z0. The value of Z0 is taken to be the value of the

day when
→
r i ·

→
r takes its maximum value.

2.4. Calculation Process

To summarize the above process visually, Figure 3 has been used to show the solar
motion and the process of coordinate system transformation.
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First, six orbital parameters are necessary to describe the orbital motion. These
six parameters are shown in Equation (8). Among them, it is necessary to calculate
two parameters.

Second, since the X-Y plane of the ECEI coordinate system is the ecliptic plane, it is
easier to describe the solar motion in the ECEI coordinate system in the beginning.

Third, ECEF is a coordinate system that rotates with the Earth. The solar collector
also rotates with the Earth, so the solar motion needs to be described under this coordinate
system as well. Since ECI and ECEI have the same X-axis orientation, and also ECI and
ECEF have the same Z-axis orientation, the ECI coordinate system is used as a transition.
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After that, the Sun’s motion in the ECEF coordinate system is transformed into the
local coordinate system. In this way, the coordinate system of the solar collector and the
Sun is unified.

Finally, from a mathematical view, the cumulative amount of direct sunlight hitting
the collector is used to determine the optimal tilt angle.

3. Results and Analysis

The essence of the above method is to describe the Keplerian motion between the
Sun and the Earth in the Earth’s local coordinate system. When this model is constructed,
theoretical sunrise and sunset moments can be calculated. The azimuth and altitude angles
of the Sun at each moment can be simulated. The frequency of the solar elevation angle and
azimuth angle calculation is once per minute. The calculation of solar altitude angle and
azimuth angle is an attached work based on The National Renewable Energy Laboratory’s
(NREL) Solar Position and Intensity (SOLPOS 2.0) C function [36].

3.1. Daily Variation of Solar Tilt Angle in Different Months

Taking Weihai at 37◦ N and 122◦ E as an example, the annual variation of solar
elevation angle and azimuth angle are analyzed. The moment of sunrise ranges from seven
o’clock on 1 January to 4:30 on 1 June, and the length of sunshine ranges from 9.5 h in
January to 14.5 h in June. The different intercepts of the curves from the horizontal axis
indicate the length of light hours on that day. The light hours are longest in summer and
shortest in winter. In both winter and summer, at noon, the solar elevation angle reaches
its maximum (Figure 4). This means that throughout the year, the optimal azimuth of the
Sun should point to the position of the Sun at noon, and the optimal tilt angle of the Sun
should be higher in summer than in winter.
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The solar azimuth is counted from due north, and 180◦ indicates due south. Basically,
the Sun reaches south at noon in the Weihai area. The closer to noon, the faster the Sun’s
azimuth changes, which is especially obvious in summer, but not in winter (Figure 5). Since
the daily azimuth distribution is symmetrical, this inconsistency does not affect the fixed
orientation of the solar optimum azimuth.

In practical engineering, for one day, a general solar collector tilt angle scheme is to
take the complementary angle of the noon solar altitude angle as the collector tilt angle.
However, simulation results show an inconsistency with this common sense. It can be
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seen by Figure 6 that the maximum solar elevation angle changes from 30.0◦ on 1 January
to 76.1◦ on 1 July, while the optimal solar angle in Weihai area changes from 23.8◦ to
82.4◦. During the period from the vernal equinox to the autumnal equinox, the optimal
tilt angle of the day is greater than the solar tilt angle at noon. This means that during the
summer and surrounding months, the inclination of the solar collector should be as small
as possible for receiving more top-to-bottom irradiation. Conversely, near winter, solar
collectors should be more upright and used to receive irradiation from south to north.
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The table with the tilt angle on the first day of each month as a representative of
that month is shown in Table 1. The optimal tilt angle is the complementary angle of the
optimal elevation angle shown in Figure 6. This result is compared with the simulated
and measured results of Turkey [37]: the tilt angle in this study is lower for most months,
with June to August being 1.9◦ to 6.3◦ lower. However, this result for the lower tilt angle
is much closer to the measured value in study [37]. A highly probable reason for this is
that the solar collector is planar and therefore, in theory, it can only receive radiation from
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the front (i.e., half of the celestial sphere). When real solar motion is incorporated, the low
tilt scheme is able to receive radiation from the upper half of the celestial sphere without
having to wait until the solar motion crosses the front of the solar collector.

Table 1. The average value of the best inclination angle for each month in Weihai.

Month 1 2 3 4 5 6
Tilt Angle 60.03◦ 54.58◦ 45.39◦ 33.08◦ 22.18◦ 15.00◦

Month 7 8 9 10 11 12
Tilt Angle 13.86◦ 19.02◦ 29.18◦ 41.12◦ 52.29◦ 59.07◦

Darhmaoui [38] used a solar radiation prediction model with the best predicted
inclination of 36.6◦–36.7◦ and the optimal inclination of 36.5–36.9◦ at a latitude of 37.5◦.
Averaging the inclination angles for each month of Table 1, the average value of the best
inclination angle for each month in Weihai yields 37.07◦, which is close to Darhmaoui’s
prediction and optimal model.

3.2. Variation of Best Angle with Latitude

The variation of the optimal tilt angle with latitude was analyzed on 21 March 2019
(vernal equinox). Figure 7 represents the daily variation of solar collector tilt angle for
different latitudes. At the spring equinoxes, the global day and night are of equal length,
both with sunrise at 6:00 and sunset at 18:00. At the equator, it is close to 90◦ at noon. This
figure shows that the optimal inclination of the Sun on the equinox is only related to the
latitude. With increasing latitude, the tilt angle of the Sun decreases at all moments. At 80◦

N, the solar tilt angle is below 10◦ at noon, corresponding to an optimal placement angle of
about 6.5◦ on that day.
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Figure 7 illustrates the daily variation of the solar azimuth with latitude. At high
latitudes, the solar azimuth is essentially at a uniform rate. The lower the latitude, the
faster the azimuth changes at noon, and the slower it changes at sunrise and sunset. For
the point on the equator, since the Sun shines directly on the equator at the equinox, the
Sun is always due east (90◦ azimuth) before noon, and after noon, it is always in the west
(180◦ azimuth). Therefore, the curve at 0◦ N behaves as a vertical line at 12:00, as shown in
Figure 8.
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On the 2019 vernal equinox, the maximum and optimum tilt angles of the Sun on that
day decrease with increasing latitude. Both are linearly decreasing in relation to latitude.
This can be seen in Figure 9. In addition, the optimal tilt angle is not exactly equal to
latitude but is about 0.9◦ smaller than latitude. Before the vernal equinox, the optimal tilt
angle is smaller than latitude; around the vernal equinox, it is close to latitude; after the
vernal equinox, it is greater than latitude.

The vernal equinox is used as a representative of the whole year, using 50.5◦ N as an
example. The altitude angle of the Sun calculated by the model is 38.8◦. Therefore, the
tilt angle of the solar collector is 51.2◦, which is 0.8◦ greater than the ‘latitude definition’
method [10] of 50.5◦. This shows how the model differs from the conventional method.
When the levelized cost of electricity model [10] is taken into account, an integrated optimal
inclination angle should also be slightly larger than it is in the conventional method.
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3.3. Losses Due to Deviation from the Optimal Angle

Figure 10 visualizes the potential losses that could result from deviating from the
optimal solar placement angle. The vertical axis represents the solar energy accumulation
calculated according to Equation (30). During the day, the difference in the tilt angle setting
of the solar collectors causes a change in this accumulation. On the day shown, the optimal
solar tilt angle for areas above 60◦ N is 15◦ or less. The higher the solar tilt angle at high
latitudes, the more severe the solar loss. If the tilt angle is too high (e.g., 70◦), it will result
in only half the optimal angle of direct solar energy accumulation for that day. Similarly, at
low latitudes, a high solar tilt angle, meaning that the solar collectors are nearly vertical to
the ground, will also result in a reduction in direct solar accumulation. In addition, this
figure shows that, with both sets to the local optimum inclination, lower latitudes receive
higher solar energy accumulation than higher latitudes, although not significantly.
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Figure 10. The date is 20 February 2019. The horizontal coordinate indicates the solar tilt angle
setting; the vertical coordinate indicates the measure of ri·r0 accumulated on that day (no units).
The larger this value, the more direct radiation is accumulated at that solar tilt angle. The different
colored curves indicate the variation brought by different latitudes from the equator to the Tropic of
Cancer, separated by 5◦ N.
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4. Conclusions

In this paper, a solar collector tilt model that incorporates solar orbital motion was
presented. Based on this, the optimal tilt angles were analyzed for different latitudes and
different times. The key steps of coordinate conversion of solar motion and the calculation
method of solar energy accumulation were described in detail. When the latitude and
longitude of a point on Earth are given, the theoretical optimal solar tilt angle for that day
can be calculated. Then, the optimal tilt angle can be calculated accordingly. Subsequently,
some analyses have shown that the optimal tilt angle is characterized by temporal and
spatial variation.

First, in a typical northern latitude, the optimal tilt angle is higher in summer and
lower in winter, inconsistent with the solar altitude angle at noon. The cut-off points for
the variation are at the vernal and autumn equinoxes. This indicates that the optimal
inclination angle of solar energy in summer should be lower than the remainder of the
solar altitude angle at noon in summer in order to receive more radiation from directly
above; while the collector in winter should be more inclined to receive more radiation from
the south.

Second, the optimal tilt angle varies with latitude. The lower the latitude, the higher
the optimal tilt angle. This variation is linear. In general, the tilt angle of solar collectors
used throughout the year should be consistent with the local latitude [39]. However, the
results show that the optimal tilt angle should be slightly higher than the latitude.

If the optimal tilt angle is not calculated and used, there is a loss of solar energy. The
variation of the loss rate with the solar tilt angle setting has also been demonstrated. For
residential single solar collectors, the losses due to deviations from the optimal tilt angle
of up to 5◦ are insignificant. However, for large-area solar collectors, the losses due to
deviation from the optimal tilt angle can rapidly increase.

In this study, only the daily accumulated optimal height angle was shown. For a fixed
solar placement, it can also be used to calculate the annual cumulative optimum angle.
In addition, when the local geographic and climatic factors do not affect the visibility of
the Sun, one can directly use this model to calculate the optimal tilt angle. Since there is a
general tendency in industry to use refined and simplified models, a more concise model
that can be numerically described clearly in one or two equations can be proposed in the
future and be generalized in the calculation of the tilt angle of solar collectors. Otherwise,
in practical applications, factors such as atmospheric refraction, mountain blockage, and
local climate should also be taken into account.
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Abbreviations
Specific abbreviations and their full names.

ECEI Earth-centered ecliptic inertial
ECI Earth-centered inertial
ECEF Earth-centered, Earth-fixed
CIO conventional international origin
X* coordinate system
R* rotate matrix
ε obliquity of the ecliptic
N the prime vertical curvature radius
e the first eccentricity
ϕ latitude
λ longitude
h height above the sea level
as the semi-major axis of the ellipse
es the orbital eccentricity
εs the orbit inclination
Ωs the longitude of ascending node
fs the true anomaly
ws Perigee angular distance
AU astronomical unit (149,597,870,691 × 108 km)
Ms the flat anomaly
Lsun solar zodiac longitude
D average angular distance from the Sun to Moon
F F = Lmoon −Ωmoon
Lmoon average longitude of the Moon
Ωmoon the average longitude of the Moon’s ascending node
q the position and velocity of the Sun
GAST the Earth’s rotation angle from the true vernal equinox to Greenwich Meridian
GMST the mean equinox to Greenwich meridian
∆Ψ the nutation in longitude
UT Universal Time
IERS the International Earth Rotation Service
ENU local east-north-up coordinate frame
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