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Abstract: A climate resilient city, perforce, has an efficient and robust energy infrastructure that
can harvest local energy resources and match energy sources and sinks that vary over space and
time. This paper explores the use of an urban building energy model (UBEM) to examine the
potential for creating a near-zero carbon neighbourhood in Dublin (Ireland) that is characterised by
diverse land-uses and old and new building stock. UBEMs are a relatively new tool that allows the
simulation of building energy demand across an urbanised landscape and can account for building
layout, including the effects of overshadowing and the potential for facade retrofits and energy
generation. In this research, a novel geographic database of buildings is created using archetypes,
and the associated information on dimensions, fabric and energy systems is integrated into the
Urban Modelling Interface (UMI). The model is used to simulate current and future energy demand
based on climate change projections and to test scenarios that apply retrofits to the existing stock
and that link proximate land-uses and land-covers. The latter allows a significant decoupling of
the neighbourhood from an offsite electricity generation station with a high carbon output. The
findings of this paper demonstrate that treating neighbourhoods as single energy entities rather than
collections of individual sectors allows the development of bespoke carbon reducing scenarios that
are geographically situated. The work shows the value of a neighbourhood-based approach to energy
management using UBEMs.

Keywords: UBEM; UMI; zero-carbon; climate resilience; digital twin; renewables; closed loop

1. Introduction

Cities have been described as ‘entropic black holes’ as they are sustained by resources
far outside their boundaries [1]. Making cities more sustainable requires increased efficien-
cies by managing the attributes of the urban system (its physical form and functions) to
reduce demand and recycle resources internally, thus closing open links between sources
and demand. The latter has been characterised as urban harvesting to create a flexible
network of resource linkages that reduces reliance on one resource and enhances resilience.
A key resource that links land-cover (form) and land-use (function) is the flux of energy,
which is generally attributed to building, transport and industrial sectors [2–4]. While cities
are a focus of energy use (and CO2 emissions), they are also ideally scaled for reconfiguring
systems of energy production, distribution and reuse owing to the juxtaposition of different
functions.

Buildings are responsible for 40% of energy consumption globally, which corresponds
to 33% of greenhouse gas (GHG)-related emissions [5]. In the EU, the Green Deal sets out a
roadmap to achieve 50% reduction in GHG emissions by 2030 and carbon neutrality by
2050. To meet the 2030 target, the roadmap requires reductions of 14% building final energy
consumption, of 18% heating-related energy consumption and of 60% in GHG-related
emissions. Many of the policy tools are based on Energy Saving Measures (ESMs), such as
retrofits to improve the thermal properties of the building envelope and the efficiency of

Energies 2021, 14, 4445. https://doi.org/10.3390/en14154445 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3061-0606
https://orcid.org/0000-0003-2186-8936
https://orcid.org/0000-0001-5790-878X
https://doi.org/10.3390/en14154445
https://doi.org/10.3390/en14154445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14154445
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14154445?type=check_update&version=1


Energies 2021, 14, 4445 2 of 17

HVAC systems. However, ESMs are currently applied to just 1% of the European building
stock annually [6,7], and the same is true in Ireland [8,9]. The effectiveness of ESMs is
typically assessed using building energy simulations (BESs), which rely on modelling tools
that are distinguished by the precision and scale of application. Detailed BESs have relied
on building energy models that require considerable information on individual buildings,
which can be representative of a category of building type (an archetype). Urban building
energy models (UBEMs) are a recent development that permit simulation of multiple
buildings using parsimonious information on the building stock. While the results are
less precise for individual buildings, they can account for urban layout (and its impact on
daylight and shadowing, for example) and allow for evaluation of neighbourhood-scale
ESMs, including community retrofits and energy grid management [10]. This research
focusses on the application of a UBEM to a diverse neighbourhood in Dublin (Ireland) to
explore the best pathway to achieving energy resilience through a combination of building
retrofits and energy sharing among proximate urban functions and local resources.

2. Materials and Methods

In the field of building energy management there are two mainstream approaches
to estimating demand across a building stock, namely top-down and bottom-up [11,12].
Both methods have advantages and drawbacks, and each will be better suited for different
applications. For instance, the top-down approach has been traditionally used to estimate
energy demand for existing buildings stock in the context of grid-energy management.
Statistical methods are employed to disaggregate energy into coarse (e.g., commercial,
industrial and residential) and finer (e.g., dwelling and business types) resolution energy
use. This method needs few computational resources and low levels of data, yet can
be reasonably accurate. However, the top-down approach is mostly static and does not
support energy simulations that can test responses to changes in policy or technology
or behaviour. Alternatively, bottom-up approaches can capture the complexities of heat
flow within and around buildings and the influence other buildings and objects have on
energy demand [13]. These methods can simulate the impact of ESMs as building fabric,
systems and occupant patterns can be altered to describe future scenarios. These models
can be used to calculate energy use for representative building profiles (archetypes) using
weather files that are aggregated to match the building stock at urban, regional or national
levels [14–16]. Until recently, the data resolution and computational power needed for
bottom-up approaches has been a major obstacle, but advancements in the field of BES
software has made them more feasible for use [10,13].

Building energy models (BEMs) are the standard tool for understanding and simu-
lating energy use and losses and for testing management strategies. BEMs have evolved
from simple steady-state to transient models that can capture dynamic conditions in the
real world [17,18]. However, applying these highly complex BEMs to examine the energy
exchanges within and between many neighbouring buildings simultaneously is not feasible
yet. UBEMs have emerged as tools for examining energy use in neighbourhoods. To run
efficiently, these UBEMs must compromise on the precision of simulation for an individual
building, but they can evaluate the impacts of ESMs that change the form and function of
neighbourhoods with a reasonable level of accuracy [13,19,20]. Moreover, these models
can address issues of energy harvesting and sharing at a community scale using novel
technologies, which are beyond the scope of BEMs.

The range of building types in a neighbourhood coupled with the varying occupant
profiles and seasonal variation in energy needs represent major simulation challenges and
opportunities for UBEMs. For example, in a seasonal climate dominated by heating needs,
significant solar energy potential may exist in summer months when there is little demand
for space heating, which means energy storage systems (ESS) may be needed, but these are
expensive and cannot store energy for long periods of time [21]. However, urban areas have
a diverse range of energy consuming activities that are independent of seasonal variation.
Energy credit schemes can be used to distribute excess energy during off-peak demand
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among users to reduce the overall energy demand by a neighbourhood [22]. UBEMs have
the capability of modelling temporal energy yields onsite to meet or mitigate temporal
energy demand [23]. This type of modelling provides the opportunity to examine both
neighbourhood energy grid management (e.g., energy transfers between proximate users
with different temporal needs) and building retrofits [24]. UBEMs have been used to trial
ESM policy goals to estimate the time and cost associated with hitting certain targets [25,26]
and to assess how best to address energy poverty [27,28]. Finally, UBEMs can be linked to
urban systems models that consider wider energy-related socio-economic issues such work–
home commuting patterns, district heating and local food production [23,29,30]. Apart
from the computational resources required to run a UBEM for a diverse neighbourhood,
the main obstacle for their wider use is the need for detailed geospatial information on the
building stock and uses.

Resilience in cities has been defined as a city’s ability for both its socio-technical
and ecological systems scales, to adapt and/or maintain functions when faced with dis-
turbances [31,32]. Urban energy harvesting seeks to take advantage of local supply and
demand management to reduce reliance on external resources, which are often carbon
intensive. To accomplish this, it is important to map its magnitude, quality and temporal
characteristics [32]. This paper applies a UBEM—the Urban Modelling Interface (UMI)—to
examine the energy profile of a neighbourhood that is experiencing significant redevelop-
ment as tall apartment blocks are inserted into an urban landscape with commercial offices
and a variety of residential buildings, many of which have poor energy ratings. UMI simu-
lates building- and neighbourhood-scale energy demand using building archetype data
that is linked to a geographic database. Here, these data are derived from a GIS database
created using an EU building categorisation database that provides basic information on
building types. UMI is used to explore pathways toward carbon neutrality in line with the
EU Green Deal, using the example of a neighbourhood in Dublin (Ireland).

The structure of the paper outlines the methodology (the UMI infrastructure and
methods and the study area and its current and future building make-up), the results of
simulations for the baseline (current) situation and future outcomes based on the imple-
mentation of ESMs and projected climate change. We consider the potential for energy
sharing within the neighbourhood using solar power and district heating/cooling sys-
tems [30]. We also consider the impact of novel carbon mitigating interventions, such as
closed environment agriculture [29].

3. Methodology

The first section of the methodology introduces how UMI operates and its data
requirements, and briefly details how these data are generated. The second part of the
methodology outlines the study area and how UMI simulations help examine the potential
for creating a near-zero carbon neighbourhood in Dublin.

3.1. Urban Modelling Interface (UMI)

UMI is an urban building energy modelling platform that uses EnergyPlus at its
core to simulate energy use for multiple buildings that make-up extensive urban areas
comprised of diverse user needs and occupation patterns [23]. UMI can account for mutual
interactions among buildings including shadowing and reflections. Each building is
divided into core and conditioned parts; the latter form the occupied space at the perimeter
of the building envelope and are bounded on one side by the façade. Detailed simulations
are performed on the conditioned parts. To overcome the computation demands associated
with simulating the energy uses of large groups of buildings, it uses a sampling technique
(Shoeboxer) to select representative conditioned zones from buildings. This is done using
an annual solar radiation map of the building facades that are clustered into groups of
similar radiation intensity [19]. The results from the sample are applied to the population
of buildings under study. While this procedure reduces the precision of the findings for
individual buildings, it provides sufficiently accurate results for neighbourhoods rapidly.
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The UMI integrates geospatially referenced building data that describes the fabric of the
envelope, the building energy systems and the typical occupation patterns. The model
permits the examination of ESMs that assess the consequences of change to building
materials, upgrade heating/cooling systems, integration of PV generated solar energy
and so on. In addition, it can incorporate to neighbourhood-scale changes, such as energy
redistribution and home–work commutes. The critical information to run these models is
the provision of detailed neighbourhood-scale building data.

The geospatial database used in this work was created by linking building archetypes
and their attributes to a GIS database of building footprints. The residential archetypes
were generated as part of an EU project (Tabula/Episcope) that categorised the national
building stock into types, each of which is linked to descriptions of the original construction
properties (walls, roof and windows) and heating systems. The project allows for rapid
assessment of the potential of retrofits and expresses the energy demand in terms of annual
energy use intensity (EUI in kWh m2). These residential archetypes and their data must be
translated into templates to be incorporated into UMI, but those associated with commercial
buildings are available within the software (based on SIA archetypes and DOE occupant
schedules). Once created, the templates for all buildings can be modified to simulate ESMs
to reduce energy demand (and carbon emissions); these measures include changes to the
fabric (e.g., insulation and glazing), to heating/cooling systems (both technological and
fuel sources) and occupancy schedules and set temperatures [33–35]. In this study, all the
buildings in Dublin city centre (about 30,000) were classified into these archetypes using
imagery (GoogleStreetview), census data (which indicates age of dwelling) and field work;
this process is described in detail elsewhere [36]. Data from the Tabula archetype tables
was used to construct 3D building templates using Rhino and to generate the EnergyPlus
files used by UMI. These steps are described in Buckley et al. [25], which also evaluated the
simulations of residential EUI values reported in Tabula and against BER data. The entire
process creates a digital ‘twin’ of the study area with capability of modelling spatiotemporal
energy flows.

3.2. Neighbourhood Study Area

The study area located in Dublin city centre and was chosen based on its relative
isolation, mix of residential buildings with diverse socio-economic profiles, adjacency to a
transportation hub and a planned large mixed-use development (Figure 1). The boundary
of the study area was the river Liffey (south-side), the Royal canal (east side) and the
railway lines (west side), which form a triangular area of 0.5 km2. The landscape here
was dominated by port activities until the middle of the 20th century, and many of the
buildings in this area were large warehouses used for storage of goods that were being
transferred to/from the railway and canal system. Since the 1970s port activities have
declined, the canals and the riverside docks are unused and the train system now handles
mostly passenger transport. Since the 1990s the area has developed as a financial services
centre, and the new buildings in this area are comprised of large commercial office space
and apartment buildings.

The current building composition of the study area (Table 1) consists of residences
(a mix of both single-family homes (SFHs) and apartment blocks (ABs)) and modern
office blocks. Much of the SFHs were built before the 1980s and the start of building
energy standards; a significant proportion of these consists of solid brick terraced houses
constructed before 1950. Some SFHs were constructed in the 1990s, but the bulk of modern
buildings are apartment blocks (ABs) constructed after 1990. The 2016 household census
provides some detail on the socio-demographic composition of the census areas that make-
up the neighbourhood. The Deprivation Index (DI, or socioeconomic status) is based
on the demographic profile, social class composition and labour market situation for
each area; scores indicate position relative to the average socioeconomic status, and higher
negative scores indicate higher levels of deprivation and vice versa) (Haase T. and Pratschke
J. (2017) The 2016 Pobal HP Deprivation Index for Small Areas (SA): Introduction and
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Reference Tables. Available at: https://www.pobal.ie/app/uploads/2018/06/The-2016
-Pobal-HP-Deprivation-Index-Introduction-07.pdf) (accessed on 1 April 2021). There were
3061 residents in 2016 of which 43% lived in single-family homes (SFHs) and the remainder
in apartment blocks (ABs). Most of the families (74%) living in SFHs were classed as semi-
skilled/unskilled, while 87% of adults in ABs were classed as professional/manager; 12%
of those living in SFHs were renters, while 88% of those in apartments were renters. The
office buildings were constructed since the 1990s and are mostly associated with financial
service functions.
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Building Energy Ratings (BERs; generated as part of an energy performance certificate
(EPC)) are required of every dwelling sold or rented since 2008; the BER grade is based on
an evaluation of the dwelling following an inspection that generates an EUI (kWhm−2).
The EUI assigned depends on both the building fabric and the heating system, including
the energy source. The reported BER values are an imperfect sample of the building
stock, much of which has undergone no envelope retrofits since built, although many
will be heated by gas and/or electricity replacing the original solid fuel fireplaces. Where
the supply system is gas/oil, the efficiency of the heating system in the dwelling (or
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building) is key, and the typical coefficient of performance for a conventional system
from the 1980s onwards is between 0.6 and 0.8. Where the energy supply is electricity,
the BER assessment accounts for the efficiency of the generation system, which is offsite;
consequently, electricity-based heating systems are relatively inefficient compared to gas-
based system. These differences partly explain the variation in BER ratings within the
study area shown in Table 1. The overall conclusion is that more deprived populations
generally occupy older houses with poorer energy standards.

Table 1. A list of the census areas within the study area, alongside information based on the 2016 household census,
the age of housing from building archetype classification and BER (https://www.seai.ie/publications/Your-Guide-to-
Building-Energy-Rating.pdf accessed on 1 April 2021). The census information identifies the relative deprivation score,
and the population in single family homes (SFH) and apartment blocks (AB). The age of buildings is categorised by age
of construction. The BER information is based on surveys that are required of dwellings sold or rented (there are many
dwellings within an apartment block).

Residential Population Age of Housing (N) BER

Dublin Site
Small Areas
Numeric IDs

DI SFH AB Pre–1978 1978–1982 1983–1999 2000+
Median

kWhm−2

(BER Grade)

BER
Samples
(Surveys)

268109001 −26.69 342 8 0 100 4 0 192 (C2) 85

268109002 −21.18 253 0 0 87 0 0 213 (C3) 78

268109003 −14.74 140 1 85 0 0 0 398 (F) 43

268109004 −14.96 175 46 32 0 27 0 283 (D2) 55

268109005 −22.10 214 92 0 0 62 0 130 (B2) 252

268109006 13.28 0 103 0 0 0 1 209 (C3) 46

268109007 19.49 0 169 0 0 0 3 188 (C2) 66

268109008 19.06 0 223 0 0 2 0 248 (D1) 49

268109009 23.59 0 375 0 0 0 2 176 (C2) 57

268109010 22.36 0 297 0 0 0 1 160 (C1) 135

268109011 27.41 0 218 0 0 0 2 165 (C1) 111

268109012 15.65 0 272 0 0 0 2 178 (C2) 37

268109013 23.42 0 211 0 0 6 0 226 (D1) 73

268109014 19.79 0 135 0 0 2 0 234 (D1) 49

Area 1124 2150 117 187 103 11

The new development (Connolly Quarter) planned for this neighbourhood (Figure 1)
is a mixed-use high-density site consisting of residential properties with some retail. The
buildings are arranged into blocks 4 to 23 storeys in height on an elevated site currently
used for car parking. It will have 741 residential units and supporting amenities, such as
green space. This development will increase the population by over 2900 (nearly doubling
the population of the area) and increase the floor space significantly. However, as the
anticipated EUI is <25 kWhm−2 (BER of A1), it will also reduce the overall EUI of the
neighbourhood. The new development is located next to a major transportation hub
(Connolly station) that includes a bus depot, a regional train station and an urban light rail
system (LUAS). This spatial juxtaposition is important, as the station canopy provides an
extensive area for PV installation, and the LUAS is run on electricity (demand 360 mWh
per month) from the national grid [37].

https://www.seai.ie/publications/Your-Guide-to-Building-Energy-Rating.pdf
https://www.seai.ie/publications/Your-Guide-to-Building-Energy-Rating.pdf
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3.3. UMI Simulations

A series of simulations was performed on the building stock by comparing the energy
performance of the neighbourhood (assuming no change from the original build) in the
current climate and projected 2050 climate; examples of residential building stock are
provided in Figure 2. The focus of this work is on residential single-family houses (SFHs)
and apartment blocks (ABs), but the energy demand of office buildings was taken into
account when we considered the potential for energy harvesting and sharing. The new
residential development was included in the UMI model as an additional 108,139 m2 of
available floor space. Following the application of standard retrofits appropriate to the
types of residential building present, these current and future climate simulations were
repeated. Finally, we considered the value of treating the entire neighbourhood as a single
entity in which energy is captured and shared among residential units to match demand
profiles. In all simulations, the energy supply used the same heating system.
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Figure 2. Residential building types in the study area: single family homes constructed in terraced
layout prior to 1980 (1) and between 1980 and 2000 (2), and apartment blocks constructed in the 1990s
(3) and after 2000 (4).

The standard Dublin EPW weather file available from DOE EnergyPlus website was
used for current climate, which is based on observations made at Dublin Airport (5 km
from the study area). These simulations provided the baseline results against which the
impacts of ESMs and climate change were evaluated. The Climate Change World Weather
File Generator for World-Wide Weather Data (CCworldWeatherGen) [38,39] was used for
future climate conditions. This process altered the Dublin EPW file in line with projections
under an IPCC emissions scenario (A2), for which expected global CO2 concentrations for
2050 are 575 ppm.

Here, this approach was simply used to indicate the likely change in background
climate conditions to judge how the current residential building stock will be impacted
by a warmer climate. Figure 3 shows monthly heating degree days (HDD) using a base
temperature of 15.5 ◦C, which suggests that the annual HDD will decrease from 2166 to
1751 by 2050; by comparison, the annual cooling degree days using a base temperature of
22 ◦C increases from 1 to 3 days. Thus, we may expect that the impact of climate change
over the next 30 years will be to reduce the annual residential heating demand and have a
marginal impact on cooling demand.
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Figure 3. Heating degree days using the current Dublin weather file (2020) and the modified file to
represent the impact of climate change (2050).

To place the results in context, it is worth examining energy (heating and cooling)
demand in the neighbourhood overall. Figure 4 shows that the bulk of the heating demand
currently is driven by residential needs and that the offices have both heating and cooling
demands, owing to the considerable internal energy generation during daytime work
hours. The potential solar energy generation within the neighbourhood is also shown on
this graph.
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Figure 4. Simulated heating (positive) and cooling (negative) energy demand in the neighbourhood
for office and residential buildings. The energy generated by photovoltaic (PV) surfaces using the
rooftops of public buildings in the neighbourhood is also shown.
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4. Results
4.1. Status Quo (SQ)

Table 2 shows the different EUI values associated with each of the building types
assuming no change to the envelope since built (that is, status quo). The residential
building simulations were evaluated against reported EUI and showed good agreement;
these comparisons are discussed elsewhere [25]. In this study, office buildings were
benchmarked against CIBSE’s guide F, which estimates good practice air-conditioned
office buildings to have an EUI between 97 and 114 kWh/m2/year. Keep in mind that
we assumed the same energy supply (and COP) across the residential neighbourhoods,
so that the focus here was on the building fabric only. The predicted EUI for the SFH
were 313 and 203 kWhm−2 for the older and newer buildings and, for apartment blocks
(AB), 147 and 140 kWhm−2 for the older and newer buildings, respectively. The new
development (ND) had an EUI (25 kWhm−2) that was significantly lower than the existing
stock, which averaged 183 kWhm−2. Adding the ND alone would reduce the average EUI
for the neighbourhood to 115 kWhm−2 and the per capita energy use and associated carbon
emissions from 1.87 to 1.13 tCO2 (Table 2). If the neighbourhood were to remain as is until
2050, then the impact of warming temperatures would be to reduce the heating demand
while having a negligible impact on cooling demand. The neighbourhood averaged EUI
with the ND would now be 100 kWhm−2, which is 45% lower than the 2020 EUI without
the ND.

Table 2. Summary of UMI simulation results for the residential sector in the study area. The CO2 emissions are estimated
using 0.237 kg CO2 (kWh)−1 based on the fuel mix in Ireland.

SFH
Pre–1980

SFH
1981–1999

AB
1981–1999 AB 2000+ ND Offices Existing

Residential (ND)

Conditioned Zone (m2) 31,488 16,954 31,469 75,403 118,125 374,519 155,314 (273,439)

Population 600 350 782 1879 2940 20,589 3611 (6551)

Status Quo

2020 EUI (kWhm−2) 312.9 202.9 147.0 139.6 24.6 99 183 (115)

t CO2 per capita 3.89 2.33 1.40 1.33 0.23 0.59 1.87 (1.13)

2050 EUI (kWhm−2) 255.1 173.0 131.4 125.6 22.3 95 158 (100)

Standard retrofits

2020 EUI (kWhm−2) 23.0 22.1 21.7 23.3 24.6 99 21 (23)

t CO2 per capita 0.29 0.25 0.21 0.22 0.23 0.59 0.23

2050 EUI (kWhm−2) 20.9 20.6 20.6 21.8 22.3 95 20 (22)

4.2. Retrofit (R)

Table 2 shows the simulations following a complete retrofit to the existing building
stock that increased the U values of the envelope by insulating the roof and walls, replacing
the windows, reducing heat loss by infiltration and replacing the lighting system. The
default and retrofit parameter values used in the UMI simulation are shown in Table 3.
The Coefficient of Performance (CoP) describes the efficiency of the heating system; in
the simulations we replaced conventional systems that have CoP values < 1 with heat
pumps that are more than 5 times more efficient. Table 3 also shows estimated cost
per dwelling that accounts for the floor size and the nature of the envelope, especially
the walls. Buildings constructed prior to 1950 have solid wall construction, while those
constructed since use cavity walls that are easier to insulate. Based on the conditioned
areas (Table 1), the cost to upgrade the existing residential stock was estimated at about €35
million for the materials. Currently, retrofits are applied on a building-by-building basis;
financial incentives by the state to retrofit are available to homeowners who must pay for the
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refurbishment and then claim the associated grant. However, this support system process has
resulted in a low take-up that leaves significant parts of the energy efficient stock untouched.

Table 3. Parameter values for components of buildings before status quo (SQ) and after retrofit (R) modifications and estimated cost per
dwelling based on size. The default system used to heat the dwelling is a heat pump. For solid wall buildings and apartments, external
wall insulation is applied. All costs and associated EUIs for each measure are derived from the Tabula webtool and associated literature
linked below (https://episcope.eu/fileadmin/tabula/public/docs/brochure/IE_TABULA_TypologyBrochure_EnergyAction.pdf)
(accessed on 20 February 2021).

SFH Pre–1980 SFH
1981–1999

AB
1981–1999 AB 2000+

Georgian Solid Brick Cavity

Component SQ R SQ R SQ R SQ R SQ R SQ R

Roof (U) W(m2K)−1 1.35 0.13 0.68 0.13 0.4 0.13 0.26 0.13 0.4 0.15 0.35 0.14

Façade (U) W(m2K)−1 1.5 0.27 2.1 0.24 1.1 0.41 0.55 0.32 0.6 0.16 0.55 0.15

Floor (U) W(m2K)−1 0.61 0.61 1.58 1.58 0.86 - 0.66 - 1.22 - 0.86 -

Windows (U) W(m2K)−1 4.8 2 5.7 1.3 3.7 1.3 2.8 - 4.8 1.3 2.8 1.3

System (CoP) 0.62 5 0.62 5 0.62 5 0.62 5 0.62 5 0.62 5

Lighting (Wm−2) 5 1.8 5 1.8 5 1.8 5 1.8 5 1.8 5 1.8

Air tightness (ACH) 0.4 0.2 0.4 0.1 0.2 0.1 0.2 0.05 0.2 - 0.2 -

Cost per dwelling €47,000 €37,000 €22,000 €19,000 €15,000 €15,000

Cost per m2 €265 €231 €211 €117 €239 €239

4.3. Energy Harvesting and Distribution

A retrofit programme, such as that described above, would increase the energy effi-
ciency of every dwelling; in this case, the database that underpins the UBEM identifies
the clusters of buildings in an area that may benefit from an economies of scale approach
to retrofits. A holistic approach would treat the entire area as a single energy entity and
consider how best to harvest and redistribute energy within the neighbourhood based on
the temporal and spatial supply and demand. This approach enhances energy resilience by
reducing the reliance on a single supply of energy and linking users at a community scale.
The advantage of an UBEM is that it allows us to test a variety of energy scenarios designed
around the local geography of resources. Sources used for estimating cost-, energy- and
CO2-related savings are listed in the Appendix A of this paper.

In the neighbourhood case-study, most of the energy supply is obtained from the
national grid, which currently has a carbon intensity of 324 gCO2 per kWh, which has
been falling due to fuel switches and incorporation of wind power (https://www.seai.ie/
publications/Energy-Emissions-Report-2020.pdf) (accessed on 20 February 2021). Figure 5
shows a diagram of the neighbourhood, which identifies the main energy sinks (residences,
offices and the LUAS) and the local resources. The latter includes extensive flat roof areas
that can be used for solar energy generation and water in the canal system that can be
integrated into a district heating/cooling system.

The potential roof space for PV installation includes the local railway canopy, the
flat-roofed public buildings in the area and the roof of the new development (30,613 m2).
If all this space were used, the PV area would cover over 3 hectares and generate a
monthly average of 405 MWh, which is concentrated in the daytime summer months
when the energy is more than three times (600 MWh) the value in winter. Assuming a
cost of €550 m−2, the overall cost of this system is just over €17 m (https://www.seai.ie/
publications/Best_Practice_Guide_for_PV.pdf) (accessed 21 February 2021). The challenge
is how best to use this energy by matching the resource to the demand; there are four
options:

https://episcope.eu/fileadmin/tabula/public/docs/brochure/IE_TABULA_TypologyBrochure_EnergyAction.pdf
https://www.seai.ie/publications/Energy-Emissions-Report-2020.pdf
https://www.seai.ie/publications/Energy-Emissions-Report-2020.pdf
https://www.seai.ie/publications/Best_Practice_Guide_for_PV.pdf
https://www.seai.ie/publications/Best_Practice_Guide_for_PV.pdf
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1. Export to the national grid.
2. Offset the winter-time residential heating demand.
3. Offset the summer-time office cooling demand.
4. Offset all-year energy demand of Luas.
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The first option is the simplest, as it could use the larger grid to store and redistribute
the additional energy; however, it would disconnect the supply and use of energy locally.
The other three options require some form of local energy storage system (ESS) to manage
the redistribution. The cost of the ESS is based on its ability to handle peak capacity
generation; UMI calculates what the system would need to cope with peak daily and
hourly outputs of 21,855 and 911 kW, respectively. Based on the estimated recharge rate
and storage capacity, the notional cost of the system would be about €4.5 m, based on a
value of €200 per kWh (https://www.nrel.gov/docs/fy19osti/73222.pdf) (accessed on 21
February 2021). Ideally, the best option for the local use of this stored energy depends on
matching the temporal patterns of energy generation and use. The correspondence between
PV energy output and office cooling demand match closely, as both peak in the warm
season, but the maximum cooling demand in July is 370 kWh, which is 380 kWh lower than
PV energy available. By comparison, the LUAS system has a near constant monthly energy
demand of 357 MWh, such that from March to September there is a surplus (peaking in July)
and there is a deficit in the winter half of the year (https://www.tii.ie/public-transport/
luas/track-power/) (accessed on 21 February 2021). Finally, the solar energy resource is
not a good match to heating energy demand, as the peak supply and demand occur at
opposite times of the year. The best solution is to use the energy to run the LUAS (reducing
dependence on the national grid) and to use extra energy in the summer months to provide
office cooling and/or meet residential needs for lighting and water heating. Figure 6 shows
a closed loop system that uses the canal as a cooling/heating resource; during summer,
canal water temperatures are about 11 ◦C, or about 5 ◦C cooler that the average daytime
high. Available surplus energy from the PV arrays, having met the LUAS demand, could
power the plant during summer peak demands, essentially converting solar energy into
cooling loads. A district heating/cooling system with a capacity to manage the estimated
peak cooling demand of 307 kW and an annual load of roughly 13,000 MW at €0.07 kWh
coupled with the cost of 650 €/m piping, would cost approximately €2.65 m [40].

https://www.nrel.gov/docs/fy19osti/73222.pdf
https://www.tii.ie/public-transport/luas/track-power/
https://www.tii.ie/public-transport/luas/track-power/
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5. Discussion

The EU Green Deal seeks to reduce CO2 emissions by 55% of 1990 levels by 2030 and
to achieve carbon neutrality by 2050. Typically, emissions are categorised by source into
residential, commercial, transport, industry and agriculture, each of which is associated
with distinct policies. However, many of these functions are spatially ‘bundled’ together
in urban areas where there is the potential for devising policies that are neighbourhood-
rather than sector-based. In the case study area selected here, commercial and residential
land-uses are co-located with old (canal) and new (transport) transportation systems. An
UBEM is ideally suited to looking at neighbourhoods in a holistic manner by reducing
energy demand, decarbonising energy supply and managing energy uses.

Here the focus was on housing within the neighbourhood, much of which will remain
in place through 2050 and will require significant refurbishment. Table 4 shows the
estimated cost of retrofits by type of dwelling. Treating each dwelling as an independent
entity results in an estimated cost of about €35 m, but this could be reduced considerably if
economies of scale were applied. The most expensive retrofits are needed for the pre-1980
housing stock, which accounts for more than 20% of this budget; coincidentally, these
dwellings have a strong link to social deprivation (Table 1). The largest component of the
retrofit budget (52%) is allocated to apartment blocks constructed after 2000, simply due to
the size of the conditioned area. The impact of the retrofits is to reduce energy demand
from this building stock by 88% and the CO2 emissions from 6741 to 839 tCO2. This means
that the carbon savings amount to about €5900 per tCO2; this equates to an annual saving
of €5 m and a payback period of 7.5 years, based on the current cost of electricity obtained
from the national grid (Figure 5). Adding new, energy-efficient stock to the neighbourhood
lowers the neighbourhood EUI and, although the total EUI increases, the per capita energy
use is reduced by 40% (from 7877 to 4786 kWh per cap).

A neighbourhood perspective can consider energy sharing among different urban
functions that are co-located. Here, we have used the LUAS light rail system, which has
a constant energy demand through the year (https://www.tii.ie/public-transport/luas/
track-power/) (accessed on 21 February 2021) as an ideal way of decoupling the energy
demand in the neighbourhood from the national grid. From October to February, the
available solar energy cannot meet all the needs of the LUAS, but for the remainder of the

https://www.tii.ie/public-transport/luas/track-power/
https://www.tii.ie/public-transport/luas/track-power/
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year, there is surplus energy generated. The PV installation described above costs about
€20 m for the system, including the ESS, and generates 4865 MWh of energy, which is about
the equivalent of 1400 tCO2 saved (or €1.12 m) based on the carbon concentration and cost
of electricity grid supply. This equates to nearly €15,000 per tCO2 saved and a payback
period of 18 years.

Table 4. The estimated cost and impacts of retrofits by dwelling age and type.

Property SFH
Pre–1980

SFH
1981–1999

AB
1981–1999 AB 2000+ ND

Conditioned area (m2) 31,488 16,954 31,469 75,403 118,125

Population 600 350 782 1879 2940

Status Quo

EUI (kWhm−2) 312.9 202.9 147 139.6 24.6

EU (MWh) 985 3440 4626 1053 2906

Retrofit

EUI (kWhm−2) 23 22.1 21.7 23.3 24.6

EU (MWh) 724 375 683 1757 2906

Change % 92.6 89.1 85.2 83.3 0

Costs
Cost (€m−2) 231 117 239 239 0

Cost (€) 7,273,728 1,983,618 7,521,091 18,021,317 0
Cost (€/cap) 12,123 5667 9618 9591 0

There are other methods that can be used to offset local drivers of carbon emissions,
such as that associated with the supply of food [29]. UMI allows assessment of controlled
environmental agriculture (CEA) using the Harvest plugin, which uses electricity to power
UV lighting and climate control systems in a space that is isolated from the outdoor climate.
The closed environment regulates nutrients, energy and water to optimise productivity
and allows multiple layers of crops to be stacked on the same floor space. It also provides
insights on the economic performance of the farms through metrics such as operational
costs and jobs created locally. Additionally, it compares simulation outputs to existing
urban supply chains and provides a carbon balance as well as a site profit. However, unlike
the energy harvesting options discussed, the CEA is aspatial in that it can be located in any
part of the city and is not tied to geographically-specific resources. Here we used the model
to examine the potential for growing tomatoes, lettuce and broccoli, which are relatively
high value crops currently imported from Mediterranean climates (distance of 4500 km).
If we consider a future city in which fewer private cars are used, then some existing car
spaces can be re-purposed.

In the case examined here, three floors of an existing multi-storey carpark (Figure 1)
with a total area of 5673 m2 are converted into a CEA farm. The energy and water
needs could be met from a combination of conventional and local energy and water
supplies. Based on price, local consumption, water and energy demand, and production-
related CO2 emissions, UMI estimates the carbon savings and profit. We estimate that
such a facility would have an energy demand of 2229 MWh (equivalent 745 tCO2 and
€580,000 from the national electricity grid) (Figure 7). The output of the CEA would
satisfy 28%, 4% and 1% of Dublin’s lettuce, broccoli and tomato demand, respectively
(http://www.fao.org/faostat/en/#data) (accessed on 1 March 2021). The estimated CO2
savings associated arising from substituting CEA products for those imported is 5885
tCO2, based on FAO values. The cost of the CEA infrastructure varies between €7.5 m

http://www.fao.org/faostat/en/#data
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and €12.5 m, which equates to nearly €1200–2200 per tCO2 saved. The payback period,
using the national electricity supply as the benchmark, is less than 3 years. There are other
costs involved; the estimated annual nutrient bill is €300,000 and the water cost is €25,000,
although the latter could draw on the canal for supplies.
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Figure 7. A closed agricultural environment (CEA) and the inputs needed to grow lettuce, tomatoes
and broccoli. The inputs needed for a CEA that occupies three floors of a parking structure are
listed. The photograph shows lettuce plants being grown in a vertically-stacked hydroponic system
(VertiCrop System by Valcenteu, licensed under CC by 3.0).

The best mix of policy strategies to achieve the EU’s targets under the Green Deal
would focus on building retrofits as the best way to reduce energy demand to meet heating
needs. In any scenario, improving building facades in the study has a greater impact than
any other initiative, and the advantage of the UBEM is to identify clusters of buildings
where multi-dwelling retrofits can reduce overall costs. The addition of a large new
development that is energy efficient increases the total neighbourhood demand but reduces
the energy intensity (by area and by population). The generation and sharing of PV energy
locally can offset some of the residential energy needs but is probably best used to support
the electrified mass transit system (LUAS) and summer cooling needs of offices using the
nearby canal. The investment and payback period for this policy is longer but has the
advantage of linking land-uses locally and reducing reliance on outside energy imports. In
the case of the LUAS, the neighbourhood would get carbon credit for replacing the carbon
emissions of commuters. Finally, the addition of CEA is a relatively inexpensive way of
offsetting indirect carbon emissions associated with food production and transport but,
like the LUAS, the carbon benefits extend well outside the neighbourhood.

6. Conclusions

The study presented here shows the value of an area- rather than sector-based ap-
proach to achieving energy resilience in a neighbourhood. This approach requires the
appropriate tools and data to assess the diversity of energy demands associated with build-
ing types and occupancy patterns. Urban building energy models (UBEMs) are ideally
suited to this task, as they can simulate energy demand across urban landscapes and can
incorporate novel approaches to managing energy use and generating and sharing energy
locally. However, the software and data requirements of these models can be onerous.

Here, we used the publicly available Urban Modelling Interface (UMI) to test the best
fit carbon reducing policies in a complex urban geography, given the context of the EU
Green Deal and the short timeline for meeting its goals. This is the first application of
this model to neighbourhood-scale energy management, using Tabula building archetype
data, which is available for over 20 countries in Europe. While the work here focused on
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one neighbourhood in Dublin (Ireland) using the national archetypes, the broader work
project has generated UMI building templates for all Tabula archetypes. The remaining
challenge is to link these archetypes to their geography using building footprints, so that
the work shown here can be replicated. This research shows the potential for UBEM to
create bespoke energy policies for complex neighbourhoods that can account for different
land-covers and land-uses and their time varying energy needs. The path shown in this
paper is an efficient way of applying and testing these models.
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