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Abstract: In this paper a new mathematical algorithm is proposed to improve the accuracy of DGPS
(Differential GPS) positioning using several GNSS (Global Navigation Satellites System) reference
stations. The new mathematical algorithm is based on a weighting scheme for the following three
criteria: weighting in function of baseline (vector) length, weighting in function of vector length error
and weighting in function of the number of tracked GPS (Global Positioning System) satellites for a
single baseline. The algorithm of the test method takes into account the linear combination of the
weighting coefficients and relates the position errors determined for single baselines. The calculation
uses a weighting scheme for three independent baselines denoted as (1A, 2A, 3A). The proposed
research method makes it possible to determine the resultant position errors for ellipsoidal BLh
coordinates of the aircraft and significantly improves the accuracy of DGPS positioning. The analysis
and evaluation of the new research methodology was checked for data from two flight experiments
carried out in Mielec and Dęblin. Based on the calculations performed, it was found that in the flight
experiment in Mielec, due to the application of the new research methodology, DGPS positioning
accuracy improved from 55 to 94% for all the BLh components. In turn, in the flight experiment in
Dęblin, the accuracy of DGPS positioning improved by 63–91%. The study shows that the highest
DGPS positioning accuracy is seen when using weighting criterion II, the inverse of the square of the
vector length error.

Keywords: DGPS; weighted mean model; accuracy; position errors; flight test; GNSS base stations

1. Introduction

The GNSS (Global Navigation Satellites System), as a satellite technology, is continu-
ously developed and widely used in many areas of human life, including the entire aviation
industry [1]. However, it is important to note that the benefits of the GNSS in aviation
are enormous, ranging from improved flight safety to reduced fuel emissions for example
for RNAV (Area Navigation) [2] or the economic factor itself through improved airport
capacity and an increased number of flight operations [3]. This is especially important as
the GNSS, as one of many on-board sensors, is now a fundamental navigation sensor on
board every aircraft. This makes the implementation of this sensor in aircraft positioning
and the selection of an appropriate positioning method or technique particularly important
for aviation science. GNSS satellite technology allows the user to determine the position
of the aircraft using absolute and differential methods [4]. Within the presented work,
the Differential DGPS (Differential GPS) method [5] in the GPS (Global Positioning Sys-
tem) satellite system will be discussed. In the differential DGPS technique, the location
of the base stations relative to the mobile on-board GPS receiver mounted in the aircraft
plays a key role [6]. Moreover, the number of GNSS reference stations involved in DGPS
positioning is also very important [7]. The calculation of the aircraft position in DGPS
technique usually uses code observations at the L1 frequency of the GPS system, to ensure
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that it is possible to compare the pseudoranges between the GNSS reference station and the
on-board GPS receiver [8]. This comparison of pseudoranges for the same instant of time
has been called differential satellite observations. The differential process itself allows for
the reduction in many systematic errors such as satellite clock error, hardware TGD (Timing
Group Delay) or relativistic correction [9]. On the other hand, the influence of atmospheric
delays is reduced thanks to pseudorange differentiation, which, consequently, also removes
the ionospheric and tropospheric correction from the observation equation [10]. A very
important parameter, i.e., receiver clock error is compensated in the observation equation
in the DGPS method [11]. In fact, the compensation results in the determination of the
receiver clock error difference from the observation equation in the DGPS method. As
regards the position navigation parameters, the DGPS method determines three position
components in the form of geocentric XYZ or ellipsoidal BLh coordinates [8].

2. Related Papers

The use of the differential DGPS technique in air navigation is crucial for at least
several reasons. Many applications of the DGPS method in air navigation can be found in
the research literature. In particular, the application of the DGPS technology was evident
in the following research areas:

- the use of the DGPS method as the primary method for aircraft positioning [6,12,13],
- the use of the DGPS method to determine the reference position of the aircraft trajec-

tory [14,15],
- the use of the DGPS method as part of the GBAS (Ground Based Augmentation

System) and the PA (Precision Approach) [16–24],
- the application of the DGPS method in mapping applications, cartography and pho-

togrammetry [25–28],
- the application of the DGPS method in monitoring the ionosphere [29],
- the use of the DGPS method in integration with various positioning sensors to deter-

mine flight altitude [30,31],
- the determination of the accuracy and precision of DGPS positioning in air naviga-

tion [8,32–34],
- the determination of the integrity of positioning using the DGPS technique [34,35],
- the integration of DGPS and DGLONASS (Differential GLONASS) solutions [6,13,36].

As shown in the research literature, the use of the DGPS technique in air navigation
has been thematically extensive. For navigation, the most relevant is the development and
elaboration of new mathematical algorithms to improve the accuracy of aircraft positioning,
also using the DGPS technique. Therefore, the development of a new position navigation
solution can significantly contribute to the improvement of the performance of the deter-
mined coordinates of the aircraft derived from the DGPS solution. It may also result in
the improved safety of flight and flight operations. Consequently, the main idea of the
paper is to develop an optimal algorithm to improve the accuracy of DGPS positioning in
aviation using GNSS reference stations. The publication shows a computational strategy for
determining the accuracy of the resultant aircraft position using a DGPS solution with three
GNSS reference stations. The concept of the algorithm is based on the use of a weighted
average model for three weighting criteria. Namely, in the research, a weighting scheme
was developed as a function of the baseline (vector) length, the vector length error and
the number of tracked GPS satellites. Such a weighting strategy is important for several
factors. First, it relates the geometry of the distribution of GNSS reference stations and
the flight position of the aircraft by calculating the vector length. Secondly, the weighting
scheme is also dependent on the number of GPS satellites taken for the DGPS solution for
a single baseline. Finally, the weighting process uses the vector length error values, which
are actually the determined average coordinate errors of the stochastic model from the
DGPS solution for a single baseline. One can notice that the choice of weighting parameters
is not random; therefore, indicating which weighting factor is optimal for improving the
accuracy of DGPS positioning for several baselines will be the main task to be carried out
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in the submitted scientific paper. The obtained research results will only confirm which
weighting variant is the most optimal and best for DGPS positioning using several GNSS
reference stations. This will also allow further research into the development of modern
and advanced algorithms optimising the mathematical model of DGPS positioning in air
navigation.

In summary, our main research achievements in the paper relate to the following:

- development of weighted average model algorithms to improve the accuracy of DGPS
positioning using several GNSS reference stations,

- implementation of a weighting model for the following three criteria: weighting as
a function of baseline (vector) length, weighting as a function of vector length error,
weighting as a function of the number of tracked GPS satellites,

- definition of algorithms to calculate the resultant position errors,
- conducting a formal evaluation of the research results obtained in percentage terms.

3. Research Method

Section 3 demonstrates the basic algorithm of the DGPS positioning method for a single
baseline and a new mathematical model to improve the accuracy of DGPS positioning,
including measurement weighting.

3.1. Basic DGPS Solution for a Single Baseline

The basic observation equation for the differential DGPS technique in the GPS naviga-
tion system for air navigation can be presented as follows [37–39]:

∆P1A = ρ1A + ∆I1A + ∆T1A + ∆M1A (1)

where ∆—the operator of a single difference for GPS code measurements, it allows de-
termining the difference in code measurements for two satellites tracked by one receiver;
→

1A—the vector in the space between the GNSS base station (
→
1 ) and the GPS rover receiver

(
→
A) mounted onboard the aircraft; P1A—the value of single code difference (expressed

in meters) on the vector
→

1A at the L1 frequency in the GPS system; ρ1A—the geometric

distance of the vector
→

1A for the single code difference (expressed in geocentric coordi-
nates XYZ) in the GPS system; ρ1A = ρ1 − ρA, ρ1—the geometric distance between the

GNSS base station (
→
1 ) and GPS satellite; ρ1 =

√
(X1 − Xsat)

2 + (Y1 −Ysat)
2 + (Z1 − Zsat)

2;

(X1, Y1, Z1)—the geocentric coordinates of the GNSS base station (
→
1 ); (Xsat, Ysat, Zsat)—

the geocentric coordinates of GPS satellite; ρA—the geometric distance between

the GPS rover receiver (
→
A) mounted onboard the aircraft and GPS satellite,

ρA =
√
(XA − Xsat)

2 + (YA −Ysat)
2 + (ZA − Zsat)

2; (XA, YA, ZA)—the geocentric coor-

dinates of aircraft vehicle, e.g., GPS rover receiver (
→
A) mounted onboard the aircraft;

I1A—the value of ionosphere delay at L1 frequency for single code difference in the GPS
system; T1A—the value of troposphere delay for single code difference in the GPS system;
M1A—the multipath effect and noise measurement at an L1 frequency for the GPS code
measurements.

Equation (1) describes the mathematical model for DGPS positioning in air navigation
for a single baseline. For this case, a single difference for GPS code observations on a

vector (
→

1A) between a GNSS reference station and an on-board GPS receiver is considered.
The position of the aircraft in geocentric XYZ coordinates (XA, YA, ZA) is estimated using
Kalman filtering, as written below [36,40]:
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(a) process of “prediction”: {
xp = A0 × x0

Pp = A0 × P0 × AT
0 + Qo

(2)

where

A0—the matrix of coefficients,
x0—the estimated values of the designated parameters a priori from the previous
step,
P0—the estimated values of covariance a priori from the previous step,
xp—a prediction of state value,
Pp—the predicted covariance values,
Q0—the variance matrix of the noise of the measurement process.

(b) process of “correction”:
Kk = Pp × HT ×

(
H × Pp × HT + R

)−1

xk = xp + Kk ×
(

z− H × xp

)
Pk =

(
I − Kk × H

)
× Pp

(3)

where

Kk—the Kalman gain matrix,
Pk—the covariance matrix of parameters determined a posteriori,
H—the matrix of partial derivatives,
R—the covariance matrix of measurements,
z—the vector of measured values,
I—the unit matrix,
xk—the parameters determined a posteriori.

For the purposes of air navigation, the position of an aircraft is much better expressed
in ellipsoidal BLh coordinates, as recorded below [41]:

 BA
LA
hA

 =


arc tan

(
ZA
p +

δ1×tgBi−1√
δ2×tg2Bi−1

)
arc tan

(
YA
XA

)
p

cos B − R

 (4)

where R—the radius of the curvature in the prime vertical, R = a√
1−e2×sin2 B

, (a, b)—the

ellipsoid semi-major axis (a) and semi-minor axis (b), e—the first flattening, e =
√

a2−b2

a2 ,

p =
√

X2
A + Y2

A, δ1 = a×e
ρ×
√

1−e2 , δ2 = 1
1−e2 , i− 1—the previous iteration, (BA, LA, hA)—the

aircraft ellipsoidal coordinates, BA—the geodetic latitude, LA—the geodetic longitude,
hA—the ellipsoidal height.

Furthermore, for each aircraft position expressed by the BLh components, their mean
error values are determined as shown in the scheme below [42]: mBA

mLA
mhA

 =


√

mBLh(1, 1)√
mBLh(2, 2)√
mBLh(3, 3)

 (5)

where

mBLh—the variance–covariance matrix of parameters in the BLh ellipsoidal frame,
mBLh = R× Pk × RT ,
R—the conversion matrix from the XYZ geocentric frame to the BLh geodetic frame,
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mBA—the mean error for geodetic latitude B,
mLA—the mean error for geodetic longitude L,
mhA—the mean error for ellipsoidal height h.

3.2. New Solution to Improve Positioning Accuracy of DGPS Technique for Multiple Baselines

The assumption in Equation (1), however, has a geometric limitation, because the
position of the aircraft is determined only from a single baseline, without controllability,
which results in a lack of degrees of freedom and limits the verification of the positioning
accuracy determination. A much better solution is to apply DGPS using several baselines.
In the presented case, DGPS positioning accuracy was analysed on the basis of a solution
using 3 baselines and a weight model. In the DGPS technique, 3 components of the
aircraft position are determined; therefore, the minimum geometry of the system consisting
of the GNSS reference station network and GPS receiver on-board should also have a
minimum of 3. Additionally, such a configuration allows 2 degrees of freedom from 2
independent baselines, which means that the user always has control over the calculation
of the determined coordinates of the aircraft position. This approach is very good, because
it will always enable the elimination of coarse errors from navigation calculations.

The improvement of the accuracy of the determined position using the DGPS tech-
nique for several baselines should be based on a weighting model. In this paper, a weighting
model for determining the positioning accuracy for the DGPS technique based on the solu-
tion of 3 independent baselines is presented. The weighting of measurements in the case of
the differential DGPS technique was determined on the basis of three mathematical models
taking into account the length of the baseline, the vector length error and the number of
tracked GPS satellites. The scheme for determining the resultant accuracy of the aircraft
position using the DGPS technique based on 3 independent baselines can be written as
follows:

(a) criterion I—weighting as a function of baseline (vector) length:
dB = dB1A × w1A + dB2A × w2A + dB3A × w3A
dL = dL1A × w1A + dL2A × w2A + dL3A × w3A
dh = dh1A × w1A + dh2A × w2A + dh3A × w3A

(6)


dB = dB1A × 1

d 1A + dB2A × 1
d 2A + dB3A × 1

d 3A
dL = dL1A × 1

d 1A + dL2A × 1
d 2A + dL3A × 1

d 3A
dh = dh1A × 1

d 1A + dh2A × 1
d 2A + dh3A × 1

d 3A

(7)

where (dB, dL, dh)—the resultant position accuracy of the aircraft in ellipsoidal BLh
coordinates; (dB1A, dL1A, dh1A)—the errors of the aircraft DGPS position in ellipsoidal
BLh coordinates determined for the baseline 1A, relative to the RTK–OTF (Real Time
Kinematic–On The Fly) solution [4,43]; dB1A = B1A − Brtk1A; dL1A = L1A − Lrtk1A;
dh1A = h1A − hrtk1A; (B1A, L1A, h1A)—the position of the aircraft in ellipsoidal BLh
coordinates determined from the DGPS solution for the baseline 1A (see Equation (4));
(Brtk1A, Lrtk1A, hrtk1A)—the reference position of the aircraft in ellipsoidal BLh co-
ordinates derived from the RTK–OTF differential technique for the baseline 1A;
(dB2A, dL2A, dh2A)—the errors of the aircraft DGPS position in ellipsoidal BLh coordi-
nates determined for the baseline 2A, relative to the RTK–OTF solution;
dB2A = B2A − Brtk2A; dL2A = L2A − Lrtk2A; dh2A = h2A − hrtk2A; (B2A, L2A, h2A)—
the position of the aircraft in ellipsoidal BLh coordinates determined from the DGPS
solution for the baseline 2A (see Equation (4)); (Brtk2A, Lrtk2A, hrtk2A)—the reference
position of the aircraft in ellipsoidal BLh coordinates derived from the RTK–OTF
differential technique for the baseline 2A; (dB3A, dL3A, dh3A)—the errors of the air-
craft DGPS position in ellipsoidal BLh coordinates determined for the baseline 3A,
relative to the RTK–OTF solution; dB3A = B3A − Brtk3A; dL3A = L3A − Lrtk3A;
dh3A = h3A − hrtk3A; (B3A, L3A, h3A)—the position of the aircraft in ellipsoidal BLh
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coordinates determined from the DGPS baseline solution for the baseline 3A (see
Equation (4)); (Brtk3A, Lrtk3A, hrtk3A)—the reference position of the aircraft in el-
lipsoidal BLh coordinates derived from the RTK-OTF differential technique for the
baseline 3A; (w1A, w2A, w3A)—the weighting functions for individual baselines; 1A—

the baseline between the GNSS reference station (
→
1 ) and the on-board GPS receiver

(
→
A); 2A—the baseline between the GNSS reference station (

→
2 ) and the on-board GPS

receiver (
→
A); 3A—the baseline between the GNSS reference station (

→
3 ) and the on-

board GPS receiver (
→
A); d1A—the distance between the GNSS reference station (

→
1 )

and the on-board GPS receiver (
→
A) expressed in geocentric cartesian coordinates XYZ;

d1A =
√
(X1 − XA)

2 + (Y1 −YA)
2 + (Z1 − ZA)

2; d2A—the distance between the

GNSS reference station (
→
2 ) and the on-board GPS receiver (

→
A) expressed in

geocentric cartesian coordinates XYZ; d2A =
√
(X2−XA)

2 + (Y2−YA)
2 + (Z2−ZA)

2;

d3A—the distance between the GNSS reference station (
→
3 ) and the on-

board GPS receiver (
→
A) expressed in geocentric cartesian coordinates XYZ;

d3A =
√
(X3 − XA)

2 + (Y3 −YA)
2 + (Z3 − ZA)

2.
(b) criterion II—weighting as a function of the error ellipse of the point position:

dB = dB1A × w1A + dB2A × w2A + dB3A × w3A
dL = dL1A × w1A + dL2A × w2A + dL3A × w3A
dh = dh1A × w1A + dh2A × w2A + dh3A × w3A

(8)


dB = dB1A × 1

m2
1A

+ dB2A × 1
m2

2A
+ dB3A × 1

m2
3A

dL = dL1A × 1
m2

1A
+ dL2A × 1

m2
2A

+ dL3A × 1
m2

3A
dh = dh1A × 1

m2
1A

+ dh2A × 1
m2

2A
+ dh3A × 1

m2
3A

(9)

where m1A—the vector length error for baseline 1A,

m1A =
√
(m2

B,1 + m2
B,A)

2
+ (m2

L,1 + m2
L,A)

2
+ (m2

h,1 + m2
h,A)

2, (mB,1, mL,1, mh,1)—the

mean errors of the GNSS reference station coordinates (
→
1 ), (mB,1 = 0, mL,1 = 0,

mh,1 = 0)—the DGPS technique assumes error-free coordinates of the GNSS reference

station (
→
1 ), (mB,A, mL,A, mh,A)—the mean errors of the determined aircraft coordi-

nates (
→
A),

 mB,A = mBA
mL,A = mLA
mh,A = mhA

 (see Equation (5)), m2A—the vector length error for

baseline 2A, m2A =
√
(m2

B,2 + m2
B,A)

2
+ (m2

L,2 + m2
L,A)

2
+ (m2

h,2 + m2
h,A)

2, (mB,2, mL,2,

mh,2)—the mean errors of the GNSS reference station coordinates (
→
2 ), (mB,2 = 0,

mL,2 = 0, mh,2 = 0)—the DGPS technique assumes error-free coordinates of the GNSS

reference station (
→
2 ), m3A—the vector length error for baseline 3A,

m3A =
√
(m2

B,3 + m2
B,A)

2
+ (m2

L,3 + m2
L,A)

2
+ (m2

h,3 + m2
h,A)

2, (mB,3, mL,3, mh,3)—the

mean errors of the GNSS reference station coordinates (
→
3 ), (mB,3 = 0, mL,3 = 0,

mh,3 = 0)—the DGPS technique assumes error-free coordinates of the GNSS reference

station (
→
3 ).

(c) Criterion III—weighting as a function of the number of GPS satellites tracked:
dB = dB1A × w1A + dB2A × w2A + dB3A × w3A
dL = dL1A × w1A + dL2A × w2A + dL3A × w3A
dh = dh1A × w1A + dh2A × w2A + dh3A × w3A

(10)
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
dB = dB1A × 1

ns 1A + dB2A × 1
ns 2A + dB3A × 1

ns 3A
dL = dL1A × 1

ns 1A + dL2A × 1
ns 2A + dL3A × 1

ns 3A
dh = dh1A × 1

ns 1A + dh2A × 1
ns 2A + dh3A × 1

ns 3A

(11)

where

ns1A—the number of tracked GPS satellites for the baseline 1A,
ns2A—the number of tracked GPS satellites for the baseline 2A,
ns3A—the number of tracked GPS satellites for the baseline 3A.

4. Research Test

The proposed calculation strategy for the mathematical Equations (6)–(11) was im-
plemented and tested for the GPS kinematic data collected from an airborne experiment
performed at the civil airport in Mielec, Poland. The test flight was performed over EPML
(Northern Europe Poland Mielec) airport in Mielec, Poland using a Seneca Piper PA34-200T
(manufacturer: Piper Aircraft, Vero Beach, FL, USA) aircraft. The test flight lasted from
09:55:00 a.m. to 11:10:00 a.m. according to GPST (GPS Time). Figure 1 shows a sketch of
the flight trajectory of the Seneca Piper PA34-200T aircraft over the airport in Mielec and
the location of the three GNSS base stations.
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Figure 1. The horizontal trajectory of Seneca Piper PA34-200T aircraft with localisation of GNSS base stations.

The aim of the test flight was to determine the basic parameters of the GNSS position-
ing quality for approach and landing procedures at Mielec airport. As part of the flight
test, navigational calculations were also performed for the research method proposed in
this paper. Navigational and observation data in RINEX format (Receiver Independent
Exchange Format) from the on-board GNSS receiver mounted on Seneca Piper PA34-200T
aircraft were used in the calculations. A Topcon HiperPro receiver was placed in the
cockpit, which recorded GPS satellite data with an interval of 1 s. Virtual GPS reference
stations generated in the positioning service POZGEO-D in ASG-EUPOS (Active Geodetic
Network EUPOS) [44] were used as GNSS base stations. Table 1 gives the ellipsoidal BLh
coordinates of the GNSS base stations. The location of the GNSS reference stations was
selected to ensure that the VirA, VirB and VirC stations were evenly distributed along the
flight path of the Seneca Piper PA34-200T aircraft.

Table 1. The coordinates of GNSS base stations.

Marker of GNSS
Base Station Latitude (B) Longitude (L) Ellipsoidal Height

(h)

VirA (
→
1 ) 50◦25′00′′, 00000 20◦35′00′′, 00000 200,000 m

VirB (
→
2 ) 50◦23′00′′, 00000 21◦43′00′′, 00000 200,000 m

VirC (
→
3 ) 50◦17′00′′, 00000 21◦09′00′′, 00000 200,000 m

The distance between the GNSS base stations was as follows:

- 80.603 km between VirA and VirB (designation d1),
- 41.918 km between stations VirA and VirC (designation d2),



Energies 2021, 14, 4431 8 of 30

- 41.246 km between VirB and VirC (designation d3).

An illustrative sketch of the location of the VirA, VirB and VirC reference stations is
shown in Figure 1.

The navigation calculations were divided into two stages. In the first stage, calculations
for mathematical Equations (1)–(5) were performed. This stage was implemented in
RTKLIB software [45]. RTKPOST application library was used in RTKLIB software, and
the following calculation configuration was set up sequentially:

- positioning mode: DGPS/DGNSS,
- elevation mask: 5◦,
- type of filtration: forward Kalman filtration,
- source of ionospheric correction: Klobuchar model,
- source of tropospheric correction: Saastamoinen model,
- ephemeris data source: GPS navigation message,
- GNSS system: GPS system,
- GPS observation type: C/A code on L1 frequency,
- resulting coordinates of the aircraft position: ellipsoidal BLh coordinates,
- base coordinates of the reference stations: catalogue coordinates of VirA, VirB and

VirC reference stations according to Table 1,
- calculation interval: 1 s.

On this basis, three reports were obtained from the RTKPOST calculation mode.
The reports contain information on the ellipsoidal coordinates of the plane, the time of
measurement, the number of GPS satellites tracked and the average errors of the de-
termined coordinates. In the next stage, all three reports were imported to the Scilab
software [46], in which a navigation application for calculations for the scheme of math-
ematical Equations (6)–(11) was developed. The entire source code with the positioning
algorithm for the three weighting criteria was written in Scilab. It should be additionally
emphasised that the flight reference position of the Seneca Piper PA34-200T aircraft was
also determined in the RTKPOST mode, separately for the three baselines. The results of
the calculations are presented in Section 5.

5. Results

The proposed weighted average model presented in Equations (6)–(11) gives the possi-
bility to determine the resultant positioning accuracy of the aircraft for the DGPS technique.
In the main, the model is based on the values of position errors (dB1A, dL1A, dh1A, dB2A,
dL2A, dh2A, dB3A, dL3A, dh3A) determined for individual baselines. Therefore, in the calcula-
tions in Scilab, the parameters (dB1A, dL1A, dh1A, dB2A, dL2A, dh2A, dB3A, dL3A, dh3A) were
determined first. The results of the calculations are shown in Figures 2–4. The determined
position errors of the B coordinate are as follows:

- from −0.482 to 4.988 m for the baseline 1A;
- from −0.750 to 5.286 m for the baseline 2A;
- from −0.565 to 3.797 m for the baseline 3A.

For the L component, the position errors for individual baselines were as follows:

- from −0.993 to 0.677 m for the baseline 1A;
- from −1.160 to 0.950 m for the base line 2A;
- from −1.073 to 1.036 m for the baseline 3A.

In turn, for the ellipsoidal height coordinate, the accuracy values were as follows:

- from −2.910 to 10.857 m for the baseline 1A;
- from −3.296 to 10.269 m for the base line 2A;
- from −3.151 to 10.846 m for the base line 3A.
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Based on the position errors obtained, it can be seen that the ellipsoidal height h has
the lowest accuracy, while the L component has the highest accuracy.

From the point of view of accuracy analyses, the key parameter is the determination of
the geometric coefficient PDOP (Position Dilution of Precision) [47,48]. The determination
of the PDOP is of fundamental importance for the determination of position errors, also
in the DGPS technique. Figure 5 shows the results of the PDOP parameter for the flight
experiment in Mielec. It is worth noting that for the initial measurement epochs, the PDOP
values are high, similar to the position errors in Figures 2–4. On the other hand, for the
rest of measurement epochs, the PDOP values are equal to or less than two. Thus, it can be
said that the higher the PDOP coefficient is, the lower the positioning accuracy is, which,
in turn, translates into worse measurement conditions and a lower GNSS measurement
quality [49]. This phenomenon is especially true for the h-component; it can be seen that
the initial values of the position errors in Figures 2–4 are up to about 11 m, while the PDOP
values are up to about 4.

The algorithm of the DGPS method (see Equation (1)) is characterised by strong
correlation between the coded measurements recorded by two GNSS receivers for the
same moment of time. This is of course related to the differentiation of code observations
and a comparison of the individual code observations from the same satellite for the
same epoch. It can be said that differential corrections in the DGPS method stimulate
this correlation, which is of course influenced by the measurement process itself and the
geometric construction in the DGPS method. This, in turn, ultimately translates into the
determination of the aircraft position coordinates and positioning accuracy for a single
baseline. This correlation is of course characteristic for the baselines 1A, 2A and 3A. Thus,
comparing with each other the obtained position errors, shown in Figures 2–4, will actually
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show how strong this relationship is. Therefore, the relationship between the individual
position errors for each baseline was determined, as recorded below:

rdB =


dB1A
dB2A
dB1A
dB3A
dB2A
dB3A

rdL =


dL1A
dL2A
dL1A
dL3A
dL2A
dL3A

rdh =


dh1A
dh2A
dh1A
dh3A
dh2A
dh3A

(12)

where
(dB1A, dL1A, dh1A, dB2A, dL2A, dh2A, dB3A, dL3A, dh3A)—the average accuracy deter-

mined for individual baseline,
(rdB, rdL, rdh)—the parameters of the relationship between the average accuracy.

Energies 2021, 21, x FOR PEER REVIEW 12of 35 
 

 

 
Figure 5. The results of PDOP values for each baseline. 

The algorithm of the DGPS method (see Equation (1)) is characterised by strong cor-
relation between the coded measurements recorded by two GNSS receivers for the same 
moment of time. This is of course related to the differentiation of code observations and a 
comparison of the individual code observations from the same satellite for the same 
epoch. It can be said that differential corrections in the DGPS method stimulate this cor-
relation, which is of course influenced by the measurement process itself and the geomet-
ric construction in the DGPS method. This, in turn, ultimately translates into the determi-
nation of the aircraft position coordinates and positioning accuracy for a single baseline. 
This correlation is of course characteristic for the baselines 1A , 2A  and 3A. Thus, com-
paring with each other the obtained position errors, shown in Figures 2–4, will actually 
show how strong this relationship is. Therefore, the relationship between the individual 
position errors for each baseline was determined, as recorded below: 

Figure 5. The results of PDOP values for each baseline.

Table 2 shows the results of determining the parameters of the relationship (rdB, rdL,
rdh). On this basis, it can be seen that the relationship between the position errors between
baseline 1A and 2A, as well as 1A and 3A is smaller than one. On the other hand, the
relationship between baseline 2A and 3A is larger than one. Going back to Figure 1 and
the distribution of the GNSS reference stations, it can be seen that the distance between the
VirB and VirC stations is the shortest. It can be concluded that the smaller the distance is
between stations, the greater the relationship is between position errors.
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Table 2. The results of parameters (rdB, rdL, rdh).

Parameter Value Relationship

rdB 0.643 dB1A
dB2A

rdB 0.835 dB1A
dB3A

rdB 1.326 dB2A
dB3A

rdL 0.856 dB1A
dB2A

rdL 0.926 dB1A
dB3A

rdL 1.081 dB2A
dB3A

rdh 0.883 dB1A
dB2A

rdh 0.923 dB1A
dB3A

rdh 1.046 dB2A
dB3A

For the developed calculation algorithm (Equations (6)–(11)), the key element is
the determination of measurement weights for criteria I–III. The measurement weights
were defined as a function of the baseline (vector) length, the vector length error and the
number of GPS satellites tracked. The multiplicity of weighting functions is good, as it
allows the user to determine the optimal measurement weighting strategy, which, in turn,
translates into an improvement of the determined aircraft coordinates. Figures 6–8 show
the measurement weighting values for criteria I–III. In the case of weighting in scheme I,
the values of measurement weights are from 0.013 to 0.239 for baseline 1A, from 0.013 to
0.169 for baseline 2A and from 0.025 to 0.164 for baseline 3A. It is worth noting a simple
relationship that follows directly from Figure 6. Namely, the more the measurement weight
increases, the shorter the geometric distance between the on-board receiver and the GNSS
reference station will be. This relationship of course occurs in reverse and is alternating.
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Figure 7 shows the results of the measurement weights for criterion II. For this criterion,
the measurement weights range from 0.003 to 0.125 for baseline 1A, from 0.003 to 0.100
for baseline 2A and from 0.010 to 0.096 for baseline 3A. For weighting criterion II, the
measurement weights vary inversely proportional to the squares of the mean errors,
according to Equation (9). It can be seen that the highest value of measurement weights for
criterion II reaches 0.125.

Figure 8 presents the results of the measurement weights for criterion III. In this
criterion, the measurement weights range from 0.111 to 0.250 for all the baselines, 1A, 2A
and 3A. For weighting criterion III, the measurement weights are, in most cases, equal and
the same.
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The following Figures 9–11 show the results of determining the resultant values of the
position errors determined according to Equations (7), (9) and (11). For the B coordinate,
the values of the resultant position errors are as follows:

- from −0.508 to 0.519 m for the weighting in criterion I,
- from −0.259 to 0.265 m for the weighting in criterion II,
- from −1.346 to 3.518 m for the weighting in criterion III.
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Looking at Figure 9, it can be seen quite well how the measurement weights have
reduced the position error values along the B axis. The smallest spread of position errors is
dB seen for weighting criterion II and the largest for weighting criterion III.

For the L component, the resultant position error values dL are as follows:

- from −0.488 to 0.091 m for the weighting in criterion I,
- from −0.269 to 0.051 m for the weighting in criterion II,
- from −1.122 to 0.223 m for the weighting in criterion III.

Comparing the results in Figures 9 and 10, it can be observed that the position errors
dL show a smaller scatter than the parameters dB. This is quite an important message,
saying that the positioning accuracy along the L-axis is the highest.

For the height coordinate h, the resultant position error values dh are as follows:

- from −0.078 to 1.334 m for the weighting in criterion I,
- from −0.039 to 0.696 m for the weighting in criterion II,
- from −0.332 to 6.764 m for the weighting in criterion III.

Analysing the results in Figures 9–11, it can be said that the positioning accuracy is
highest for the L component and lowest for the h coordinate. This only confirms that the
dispersion of position errors is the highest for the h component, while the lowest for the L
coordinate.

In the discussion of the results of the resultant position errors, a statement was made
that the weighting scheme for criteria I–III significantly reduced the parameter values
(dB1A, dL1A, dh1A, dB2A, dL2A, dh2A, dB3A, dL3A, dh3A). It is, therefore, necessary to deter-
mine the percentage reductions for these position errors. For this purpose, the reductions in
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the resultant position errors (dB, dL, dh) relative to the parameters (dB1A, dL1A, dh1A, dB2A,
dL2A, dh2A, dB3A, dL3A, dh3A), as shown in Equations (13)–(15), were calculated as follows:

PBI [%] =


(dBI−dB1A)

dB1A
× 100%

(dBI−dB2A)

dB2A
× 100%

(dBI−dB3A)

dB3A
× 100%

PBI I [%] =


(dBI I−dB1A)

dB1A
× 100%

(dBI I−dB2A)

dB2A
× 100%

(dBI I−dB3A)

dB3A
× 100%

PBI I I [%] =


(dBI I I−dB1A)

dB1A
× 100%

(dBI I I−dB2A)

dB2A
× 100%

(dBI I I−dB3A)

dB3A
× 100%

(13)



PLI [%] =


(dLI−dL1A)

dL1A
× 100%

(dLI−dL2A)

dL2A
× 100%

(dLI−dL3A)

dL3A
× 100%

PLI I [%] =


(dLI I−dL1A)

dL1A
× 100%

(dLI I−dL2A)

dL2A
× 100%

(dLI I−dL3A)

dL3A
× 100%

PLI I I [%] =


(dLI I I−dL1A)

dL1A
× 100%

(dLI I I−dL2A)

dL2A
× 100%

(dLI I I−dL3A)

dL3A
× 100%

(14)



PhI [%] =


(dhI−dh1A)

dh1A
× 100%

(dhI−dh2A)

dh2A
× 100%

(dhI−dh3A)

dh3A
× 100%

PhI I [%] =


(dhI I−dh1A)

dh1A
× 100%

(dhI I−dh2A)

dh2A
× 100%

(dhI I−dh3A)

dh3A
× 100%

PhI I I [%] =


(dhI I I−dh1A)

dh1A
× 100%

(dhI I I−dh2A)

dh2A
× 100%

(dhI I I−dh3A)

dh3A
× 100%

(15)

where (PBI , PBI I , PBI I I)—the improvement of the positioning accuracyforthe B-component
for criteria I–III presented as a percentage, (PLI , PLI I , PLI I I)—the improvement of the
positioning accuracy for the L-component for criteria I–III presented as a percentage,
(PhI , PhI I , PhI I I)—the improvement of the positioning accuracy for the h-component for
criteria I–III presented as a percentage, (dB1A, dL1A, dh1A, dB2A, dL2A, dh2A, dB3A, dL3A,
dh3A)—the average accuracy specified for individual baselines, (dBI , dLI , dhI)—the mean
positioning accuracy specified for weighting criterion I, (dBI I , dLI I , dhI I)—the mean posi-
tioning accuracy specified for weighting criterion II, (dBI I I , dLI I I , dhI I I)—the mean posi-
tioning accuracy specified for weighting criterion III.
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In the analysed example, the results of the parameters are presented as (PBI , PBI I ,
PBI I I , PLI , PLI I , PLI I I , PhI , PhI I , PhI I I) in Table 3. On the basis of the results presented in
Table 3, it can be concluded that the reduction in position errors using Equations (6)–(11) is
quite significant. It is only worth emphasising that in the case of the B component, one can
speak of a reduction at the level of 55–94%, depending on the weighting criterion and the
baseline. For the L component, the improvement in positioning accuracy ranges from 62%
to 94%. For the ellipsoidal height h, on the other hand, the improvement in positioning
accuracy is between 63 and 93%. As for the individual weighting criteria, criterion II gives
the best results in terms of improvement in positioning accuracy. In contrast, the positioning
accuracy improvement results are the worst for weighting criterion III compared to the
values for criteria I and II. The results in Table 3 show how important the measurement
weighting scheme is for the differential DGPS technique.

Table 3. The results of reducing the position errors according to Equations (13)–(15).

Parameter Percentage Value (%)
Criterion of

Measurement
Weights

Baseline

PBI 83 I 1A
PBI 89 I 2A
PBI 86 I 3A
PBI I 91 II 1A
PBI I 94 II 2A
PBI I 92 II 3A
PBI I I 55 III 1A
PBI I I 71 III 2A
PBI I I 62 III 3A
PLI 86 I 1A
PLI 88 I 2A
PLI 87 I 3A
PLI I 92 II 1A
PLI I 94 II 2A
PLI I 93 II 3A
PLI I I 62 III 1A
PLI I I 67 III 2A
PLI I I 64 III 3A
PhI 86 I 1A
PhI 87 I 2A
PhI 87 I 3A
PhI I 92 II 1A
PhI I 93 II 2A
PhI I 93 II 3A
PhI I I 63 III 1A
PhI I I 67 III 2A
PhI I I 65 III 3A

In the analysis of the results, the parameter of the arithmetic mean for the resultant
position errors from the individual criteria I–III was also determined, as recorded below:

dBw = dBI+dBI I+dBI I I
3

dLw = dLI+dLI I+dLI I I
3

dhw = dhI+dhI I+dhI I I
3

(16)

where

(dBw, dLw, dhw)—the arithmetic mean of the resultant position errors for criteria I–III,
(dBI , dBI I , dBI I I)—the resultant position errors for coordinate B for criteria I–III,
(dLI , dLI I , dLI I I)—the resultant position errors for coordinate L for criteria I–III,
(dhI , dhI I , dhI I I)—the resultant position errors for coordinate h for criteria I–III.
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Figure 12 presents the results of the parameter calculations (dBw, dLw, dhw). The
results of the parameters (dBw, dLw, dhw) produce the following values:

- from −0.114 to −0.654 m for the parameter dBw,
- from −0.197 to −0.539 m for the parameter dLw,
- from 0.575 to −0.146 m for the parameter dhw.
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For the analysed parameters (dBw, dLw, dhw), the highest positioning accuracy is
obviously for the L component, while the lowest is for the h coordinate.

6. Discussion

The scheme of the proposed mathematical model (Equations (6)–(16)) was verified
and checked for the accuracy improvement of the DGPS method in an additional airborne
experiment performed at the EPDE (European Poland Dęblin) airport in Dęblin. The flight
was performed with a Cessna 172 aircraft and the duration of the experiment was from
09:48:00 a.m. to 11:05:44 a.m. according to GPST time. Additionally, in this case, three
reference stations named VirA, VirB and VirC were placed along the flight route. The
coordinates of the GNSS reference stations were as follows:

- B = 51.816666667◦, L = 21.866666666◦, h = 150,000 m for VirA station;
- B = 51.616666667◦, L = 21.516666666◦, h = 150,000 m for VirB station;
- B = 51.46666666666◦, L = 22.06666666667◦, h = 150,000 m for VirC station.

Figure 13 presents the horizontal trajectory of the Cessna 172 aircraft with the localisa-
tion of the GNSS base stations.

RTKPOST software was also used in the calculations to obtain results from the DGPS
and RTK–OTF techniques. In addition, the algorithm scheme (Equations (6)–(16)) was
made in Scilab software and the calculation results are shown in a graphical and tabular
form.

Figures 14–16 show the values of the position errors (dB1A, dL1A, dh1A, dB2A, dL2A,
dh2A, dB3A, dL3A, dh3A), determined as the difference in the coordinates of the Cessna 172
(manufacturer: Cessna Aircraft Company, USA) aircraft between the DGPS and RTK–OTF
solutions for the individual baseline. The determined position errors of the BLh coordinate
between the DGPS and RTK–OTF solution are as follows:
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For the B component:

- from −6.302 to 6.075 m for the baseline 1A;
- from −6.262 to 6.170 m for the baseline 2A;
- from −6.276 to 6.253 m for the baseline 3A.

For the L component:

- from −4.714 to 0.547 m for the baseline 1A;
- from −4.746 to 0.542 m for the baseline 2A;
- from −4.749 to 0.538 m for the baseline 3A.

For the h component:

- from −12.987 to 7.130 m for the baseline 1A;
- from −13.175 to 7.208 m for the baseline 2A;
- from −13.352 to 6.941 m for the baseline 3A.
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Similarly, to the results from the flight experiment in Mielec, the dispersion of position
errors for the L component was the smallest for the flight test carried out in Dęblin. On the
other hand, the largest dispersion of position errors occurs for the h coordinate.

Figure 17 shows the results of the PDOP parameter for the flight experiment in Dęblin.
It is worth emphasising that for the initial measurement epochs, the PDOP values are very
high, since they amount to about 10. However, for the remaining measurement epochs,
PDOP values are on average about 2.5, with the exception of single outliers reaching
the level of 3.5. It should be added that the PDOP values from individual baselines are
practically identical in the flight experiment in Dęblin; therefore, their correlation between
each other is very close to one. It is important from the point of view of satellite-receiver
system geometry for a single baseline. Comparing the PDOP results obtained in Mielec
and Dęblin experiments, similar relations are visible. That is, large PDOP values are seen
in the initial phase of the flight. On the other hand, for the remaining measurement epochs,
the measurement conditions are favourable, with a PDOP value of about 2–2.5.
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Figure 17. The results of PDOP values for each baseline in flight test in Dęblin.

Table 4 shows the results of determining the parameters of the relationship (rdB, rdL,
rdh). In this case, one can notice a regularity that basically all the parameter results are
close to one. While in the flight test in Mielec, the parameter results (rdB, rdL, rdh) were
varied, in the flight experiment in Dęblin, this is no longer the case. Interestingly, the
values of the rdL correlations are always larger than one, on the other hand, the parameters
rdh are always smaller than one. This simply shows that the nature of the correlations
of the (rdB, rdL, rdh) parameters in the flight experiment in Dęblin is higher due to equal
distribution of GNSS base stations and shorter distances between them than in the Mielec
experiment.
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Table 4. The results of parameters (rdB, rdL, rdh) in flight test in Dęblin.

Parameter Value Relation

rdB 1.029 dB1A
dB2A

rdB 1.004 dB1A
dB3A

rdB 0.975 dB2A
dB3A

rdL 1.001 dB1A
dB2A

rdL 1.029 dB1A
dB3A

rdL 1.029 dB2A
dB3A

rdh 0.976 dB1A
dB2A

rdh 0.957 dB1A
dB3A

rdh 0.989 dB2A
dB3A

Figures 18–20 show the values of measurement weights for the flight experiment
carried out in Dęblin. The calculations resulted in the following values of measurement
weights:

For weighting criterion I:

- from 0.025 to 0.624 for the weight w1A,
- from 0.025 to 0.245 for the weight w2A,
- from 0.023 to 0.628 for the weight w3A.

For weighting criterion II:

- from 0.010 to 0.186 for the weight w1A,
- from 0.010 to 0.127 for the weight w2A,
- from 0.009 to 0.186 for the weight w3A.

For weighting criterion III:

- from 0.111 to 0.250 for the weight w1A, w2A, w3A.
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Figure 20. The measurement weights for criterion III.

It can be observed that the measurement weights determined as a function of the
vector length have quite large values. In turn, the measurement weights as a function of
the vector length error and the number of tracked GPS satellites are at a similar level, as in
the Mielec flight experiment.

Figures 21–23 present the results of the resultant position errors for the experiment in
Dęblin, calculated according to Equations (7), (9) and (11). The resultant position errors for
the flight experiment in Dęblin were as follows:

For the B coordinate:
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- from −2.268 to 0.824 m for weighting criterion I,
- from −0.901 to 0.440 m for weighting criterion II,
- from −2.355 to 3.083 m for weighting criterion III.

For the L coordinate:

- from −1.556 to 0.072 m for weighting criterion I,
- from −0.550 to 0.038 m for weighting criterion II,
- from −2.842 to 0.271 m for weighting criterion III.

For the h coordinate:

- from −3.388 to 0.942 m for weighting criterion I,
- from −1.137 to 0.502 m for weighting criterion II,
- from −6.586 to 2.950 m for weighting criterion III.
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The results of the resultant position errors show that the smallest scatter occurs for the
L component and the largest occurs for the h component. Moreover, the highest positioning
accuracy is observed for the weighting criterion II. Therefore, the results obtained from the
flight test in Dęblin only confirm the conclusions drawn for the test results determined in
the flight experiment in Mielec (see the descriptions to Figures 9–11).

Table 5 presents the parameter results (PBI , PBI I , PBI I I , PLI , PLI I , PLI I I , PhI , PhI I ,
PhI I I) for the Dęblin flight experiment. The results obtained only confirm the validity of the
proposed research method. Moreover, the values of parameters (PBI , PBI I , PBI I I , PLI , PLI I ,
PLI I I , PhI , PhI I , PhI I I) are at a similar level, as in the Mielec flight experiment. Based on
Table 5, it can be seen that the positioning accuracy for weighting criterion II is the highest.
On the other hand, for weighting criterion III, the worst results were obtained in terms
of the improvement of positioning accuracy in relation to criteria I and II. For weighting
criterion I, the improvement in accuracy ranges from 78% to 83%. For criterion II, the
improvement in accuracy is 90–91%, while for criterion III, the improvement in DGPS
positioning accuracy is 63–65%.
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The final stage in the development of the test results for the flight experiment in Dęblin
is the determination of the parameters (dBw, dLw, dhw), as shown in Figure 24. The values
of the parameters (dBw, dLw, dhw) are as follows:

- from −1.679 to 1.449 m for the parameter dBw,
- from −1.270 to 0.127 m for the parameter dLw,
- from −3.095 to 1.368 m for the parameter dhw.
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Table 5. The results of reducing the position errors in flight test in Dęblin.

Parameter Percentage Value (%)
Criterion of

Measurement
Weights

Baseline

PBI 82 I 1A
PBI 82 I 2A
PBI 82 I 3A
PBI I 91 II 1A
PBI I 91 II 2A
PBI I 91 II 3A
PBI I I 65 III 1A
PBI I I 64 III 2A
PBI I I 65 III 3A
PLI 83 I 1A
PLI 83 I 2A
PLI 82 I 3A
PLI I 91 II 1A
PLI I 91 II 2A
PLI I 91 II 3A
PLI I I 65 III 1A
PLI I I 64 III 2A
PLI I I 63 III 3A
PhI 78 I 1A
PhI 81 I 2A
PhI 81 I 3A
PhI I 90 II 1A
PhI I 90 II 2A
PhI I 90 II 3A
PhI I I 63 III 1A
PhI I I 64 III 2A
PhI I I 64 III 3A
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As in the Mielec flight experiment and also in Dęblin experiment, the highest position-
ing accuracy is seen for the L component, while the lowest positioning accuracy is for the h
coordinate.

The research problem shown in this paper concerned the accuracy of DGPS
positioning in air navigation. The subject of accuracy research was analysed in scientific
papers [6,13,32–34,39]. In these works, the accuracy of DGPS or DGLONASS positioning
was also determined in relation to the differential RTK technique. The developed test
methodology from Equations (6)–(16) can significantly improve the accuracy of DGPS posi-
tioning in air navigation, especially for a solution using several GNSS reference stations.
Moreover, the developed algorithm shows that it is still possible to improve the accuracy
of DGPS positioning in air navigation, especially when using different configuration of
weighting functions. The submitted work is part of a research trend of studies on improving
the accuracy of DGPS positioning, similar to articles [6,13,32–34,39].

A similar scope of research, as in the presented article, was conducted in works [50,51].
However, in these papers the research was carried out to improve the accuracy of DGPS
positioning in static measurements for a network of GNSS referee stations. In contrast, our
work shows an improvement of positioning accuracy in the kinematic mode, during flight
experiments. Moreover, papers [50,51] present a mathematical model for the improvement
of positioning accuracy using the weighting of measurements as a function of elevation
angle to the satellite. On the other hand, our paper presents three weighting schemes,
independent from each other, thanks to which it was possible to reduce the positioning
errors. The approach presented in this paper and in papers [50,51] shows and emphasises
how much of an important role in DGPS positioning model and weighting functions play,
enabling us to improve the accuracy parameter.

7. Conclusions

This paper proposes a new research methodology for improving the accuracy of DGPS
positioning using several GNSS reference stations. The paper proposes the use of a new
weighting scheme for improving the determination of position errors in a differential
DGPS technique. Namely, weighting functions in the form of the inverse of the vector
length, the inverse of the square of the distance error and the inverse of the number of
tracked GPS satellites for a single baseline were used in the calculations. On this basis,
the equations of the linear combinations linking the weighting functions and the position
errors determined for individual baselines were written. The weighting scheme for three
independent baselines was used in the calculations. The proposed algorithm makes it
possible to determine the resultant position errors for ellipsoidal BLh coordinates of the
aircraft and significantly improve the accuracy of DGPS positioning.

The study used real observations and GPS navigation data from a Topcon HiperPro
on-board receiver and the following three GNSS reference stations: VirA, VirB and VirC.
Calculations were performed for the flight experiment in Mielec for the test flight carried
out using a Seneca Piper PA34-200T aircraft. On the basis of the performed calculations,
the following was found:

- in the case of the B component, there is a 55–94% error reduction;
- for the L component, the improvement in positioning accuracy ranges from 62% to

94%;
- for the ellipsoidal height h, the improvement in positioning accuracy ranges from 63%

to 93%.

In addition, it is shown that weighting criterion II enables an improvement in DGPS
positioning accuracy of 91–94%. In contrast, for weighting criterion I, the accuracy im-
provement is in the range of 83–89%, while for weighting criterion III it is 55–71%.

As part of the research, DGPS data were also processed for an airborne experiment
carried out with a Cessna 172 aircraft at Dęblin airport. In the case of this flight experiment,
the proposed research method allowed for an accuracy improvement from 78 to 83% for
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weighting criterion I, 90–91% for weighting criterion II and 63–65% for weighting criterion
III.

The research methodology shown in this paper proved to be effective for improving
the accuracy of DGPS positioning. Therefore, the assumptions and purpose of the work
were fully achieved. Thus, the obtained research results are satisfactory for the performance
of a differential DGPS technique in air navigation. Moreover, two independent flight
experiments carried out in Mielec and Dęblin confirmed the high efficiency of the proposed
research method.

The mathematical model described in this paper was aimed at improving positioning
accuracy in the kinematic mode for air navigation. The presented model has an application
in positioning with GNSS satellite technology; hence, the presented work is focused
on this problem. The research is based on the fact that in air navigation newer and
newer navigation solutions are sought to improve the quality of positioning, including
the accuracy parameter. The presented navigation solutions only emphasise that the
model of weighting coefficients can be an interesting research method in the area of DGPS
positioning in air navigation. The model of weighting coefficients may turn out to be an
effective solution for improving the accuracy of DGPS positioning and, thus, for improving
the quality of the determined coordinates of an aircraft.
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Grulkowski, S. Analysis of positioning methods using Global Navigation Satellite Systems (GNSS) in Polish State Railways (PKP).
Sci. J. Marit. Univ. Szczecin 2020, 62, 26–35. [CrossRef]

2. Mrozik, M.; Jafernik, H.; Krasuski, K. Methods of reduction of negative effects of exhaust emissions in airport area. In Contemporary
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