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Abstract: The estimation of hydraulic and mechanical properties of bedrock is important for the
evaluation of energy-related structures, including high-level nuclear waste repositories, hydraulic
fracturing wells, and gas-hydrate production wells. The hydraulic conductivity and stress–strain
curves of rocks are conventionally measured through laboratory tests on cylindrical samples. Both
ASTM standards for hydraulic conductivity and compressive strength involve the use of the planar
bases of a cylindrical sample. Hence, an alternative test method is required for the simultaneous
measurement of hydraulic conductivity and stress–strain curves. This study proposes a novel
electrical resistivity estimation method using two perimeter electrodes for the estimation of hydraulic
properties. The theoretical background for the perimeter electrode setup is derived and the COMSOL
MultiPhysics® finite element numerical simulation tool is employed to verify the derived theoretical
equation. The accuracy of the numerical simulation tool is first validated by simulating the ASTM
standard testing method for electrical resistivity. The electrical resistance values derived from the
theoretical equation and numerical simulation are compared for different electrical resistivity and
electrode radius. The assumed equidistant, circular equipotential surface results in a theoretical
lower bound for the measured electrical resistance in the cylindrical specimen. The introduction
of a phenomenological distortion factor to correct for the theoretical equipotential surface results
in a good fit with the numerical simulation results. The effects of electrode length and equivalent
strap electrodes were investigated to assess the applicability of the suggested method for laboratory
testing. Consequently, this study presents an effective alternative theoretical assessment method for
the lower bound electrical resistivity of cylindrical rock core samples under confining conditions
when the installation of base electrodes is infeasible.

Keywords: electrical resistivity; cylindrical rock specimen; perimeter electrode; COMSOL Multiphysics

1. Introduction

Energy-related geostructures (e.g., high-level nuclear waste repositories, hydraulic
fracturing wells, and gas-hydrate production wells) are exposed to high pressure and fully
saturated conditions at depths ranging from hundreds of meters to several kilometers [1–4].
Hence, characterization of the hydro-mechanical properties of the surrounding rock mass
is required for accurate safety assessment and numerical simulations. The standardized
testing methods for the hydraulic conductivity and the uniaxial compressive strength of a
cylindrical rock sample use both ends of planar bases [5,6]. In other words, the hydraulic
gradient between two bases of the cylindrical sample measures the flow rate for hydraulic
conductivity tests and the top loading plate helps measure the change in force-displacement
during compression. However, simultaneous measurements of hydraulic and mechanical
properties for a single cylindrical rock sample are infeasible as both bases are preoccupied
for each test. In particular, the change in hydraulic conductivity during the loading stage
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should be estimated to predict the stability of energy-related geostructures. Therefore, there
is a need to employ indirect methods of identifying variations in hydraulic conductivity
that do not involve the use of the planar bases of cylindrical samples.

The electrical resistivity method has been widely used to obtain the water-related
physical properties of samples such as porosity and saturation [7,8] and is closely related
to the hydraulic conductivity [9,10]. The electrical resistivity of a rock core sample is
typically acquired according to the ASTM G187 standard test method for measurement
of soil resistivity. The electrical resistance is measured using electrodes installed on both
planar bases of a cylindrical sample, yet the use of base electrodes hinders the simultaneous
execution of uniaxial compressive strength tests. Several studies have attempted to measure
the electrical resistivity of rock samples using point electrodes and ring electrodes [10–13].
However, point electrodes installed on the sample cause unfavorable contact resistance
and stiffer ring electrodes around the perimeter of the rock sample imposes unexpected
lateral confinement.

In this study, an alternative electrical resistivity estimation method is proposed for
cylindrical rock samples under confining conditions using two cylindrical electrodes on
the perimeter of the rock core. The theoretical electrical resistance is formulated based on
the assumption that the equipotential surface line between the two perimeter electrodes
is circular and evenly distributed with respect to the distance from the electrodes. Finite
element analysis is conducted to validate the theoretical equation. In the discussion,
the proposed method is extended to investigate the effects of electrode length and the
consideration of an equivalent strap electrode for laboratory testing.

2. Governing Equations for Electrical Resistivity of Cylindrical Samples
2.1. ASTM Standard for Electrical Resistivity (ASTM G187)

ASTM G187 is the standard method for measuring the electrical resistivity of soil and
rock core samples [14]. The standard suggests the use of samples with a uniform sectional
area (i.e., cylindrical or blocky samples), and the use of two electrodes with identical cross
sections to the sample, as shown in Figure 1. The electrical resistivity of the sample (ρ) can
be calculated using the following equation:

ρ = (A/L)R = (πr2/h)R, (1)

where A is the cross-sectional area of the sample, L is the length of sample, and R is the
measured electrical resistance. A/L is commonly referred to as the geometric factor for the
electrode configuration, and is used to convert the measured electrical resistance to the
inherent electrical resistivity. However, the electrical resistivity measurement according to
the ASTM standard cannot be used simultaneously with loading tests such as the uniaxial
compressive strength test, as both bases of the cylindrical sample are placed on the loading
plates. Electrical interference between base electrodes and the metal loading plate can cause
inaccurate measurements of both electrical resistivity and uniaxial compressive strength.

Figure 1. Schematic of electrical resistivity estimation for a specimen with a uniform cross-section
(ASTM G187).
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2.2. Electrical Resistivity Measurement with Two Perimeter Electrodes

The perimeter of the sample remains accessible during the uniaxial compressive
strength test. The proposed method uses two cylindrical electrodes installed at diametri-
cally opposite locations on the perimeter of a cylindrical sample, as shown in Figure 2a.
The cylindrical electrodes have a height equal to the height of the sample (h) and a radius re.
The electrical resistivity can be determined by the equipotential surface area, which varies
with the electrode geometry and sample dimensions [12]. The equipotential surface area of
the core sample measured on the perimeter is lh (Figure 2b). The arc length l is expressed
as follows:

l = 2s sin−1

(√
1−

( s
2r

)2
)

, (2)

where s is the distance from the electrode center to an arbitrary point and r is the radius of
the sample. The detailed derivation of l is explained in Appendix A. Note that the assumed
equipotential surface line between the two perimeter electrodes is circular and evenly
distributed with respect to the distance from the electrodes.

The electrical resistance (Rp) between the cylindrical electrodes on the sample perime-
ter is expressed as follows:

Rp =
∫

ρ
1

A(s)
ds =

ρ

2h

∫ 2r−re

re

1

s · sin−1
(√

1−
( s

2r
)2
)ds = − ρ

2h

∫ cos−1 (1− re
2r )

cos−1 ( re
2r )

tan θ

θ
dθ, (3)

where ρ is the electrical resistivity of the rock sample, A(s) is the equipotential surface area
in terms of s, re is radius of the electrodes, and θ is defined as cos−1(s/2r). The electrical
resistance (Rp) and geometric factor (αp) between the cylindrical electrodes on the sample
perimeter is expressed as follows:

αp = − −2h∫ cos−1 (1− re
2r )

cos−1 ( re
2r )

tan θ
θ dθ

, (4)

The negative signs of the electrical resistance and geometric factor will be eliminated
as the inverse cosine function exhibits a lower value near unity. General mathematics
software such as MATLAB is required to solve Equations (3) and (4), as the indefinite
integral tan(x)/x is difficult to be expressed in an intrinsic form.

Figure 2. Electrical resistivity estimation of rock sample using perimeter electrodes: (a) schematic of
the setup; (b) definitions of variables (re = radius of the electrodes, r = radius of the rock core sample,
h = height of the rock core sample, s = distance from the electrode center to an arbitrary point, and
l = equipotential surface length).
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3. Numerical Simulation
3.1. Simulation Setup

COMSOL MultiPhysics® is an increasingly popular finite element method that has
been widely adopted to investigate various electromagnetic phenomena [15–17]. COMSOL
solves partial differential equations such as Laplace’s equation using finite element theory.
In this study, the inherent AC/DC module and auto meshing function are utilized for
numerical simulations. An NX-size granite sample with a diameter of 0.076 m and a height
of 0.150 m was prepared for the simulation. The auto meshing function in COMSOL
was used to create ‘normal’-sized tetrahedral physics-controlled meshes. The electrical
resistivity of the sample was input as 10,000 Ω·m, which is representative of granite
specimens [18].

3.2. Verification of the Numerical Simulation Tool with ASTM G187

The ASTM G187 standard method was simulated to verify the accuracy of the numer-
ical simulation tool, as shown in Figure 3. Two stainless steel disk electrodes (SUS304L)
of 0.001 m thickness and the same cross section as the sample were modelled and placed
on the top and bottom bases of the sample. An electric signal of 1 V was applied at one
electrode and the resultant current was measured at the other electrode. The electrical
resistance between the two electrodes was calculated by dividing the applied voltage by the
resultant current. The electrical resistance between the two disk electrodes was obtained
by changing the electrical resistivity, radius, and height of the sample to 1000–100,000 Ω·m,
0.01–0.05 m, and 0.002–0.300 m, respectively. A comparison between the electrical resistivity
obtained from the theoretical equation and numerical simulations for different specimen
geometries is displayed in Figure 4. The geometric factor derived from the numerical
simulation is similar to that of the ASTM G187 standard obtained from Equation (1) for
various values of electrical resistivity, specimen radius, and specimen height.

Figure 3. COMSOL Simulation of the ASTM G187 standard using the numerical simulation tool:
(a) geometry employed for the simulation; (b) the resulting electric potential.
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Figure 4. Verification of COMSOL finite element analysis using ASTM G187 simulations for different
(a) electrical resistivity; (b) radius; (c) height of the rock specimen.

3.3. Verification of the Proposed Method

The same NX-size granite sample was adopted for verification of the proposed method.
Two stainless steel cylindrical electrodes (SUS304L) with identical height as the sample were
modelled on diametrically opposite positions on the sample perimeter. Circular grooves
with a radius equal to the radius of the electrodes re were modelled on the sample perime-
ter, such that the cylindrical electrodes were in full contact with the sample. The electri-
cal resistivity of the rock sample and re were used to verify the theoretical equation de-
rived for the cylindrical perimeter electrode setup, as displayed in Figure 5. The electri-
cal resistance between the two perimeter electrodes was obtained by changing the elec-
trical resistivity of the sample and radius of the electrodes re to 1000–100,000 Ω·m and
0.001–0.01 m, respectively. The electrical resistance derived in Equation (3) exhibits a similar
trend to the electrode radius and the electrical resistivity of the rock sample, as shown in
Figure 6. However, large underestimation of the theoretical electrical resistance is observed for
smaller electrode radii and larger electrical resistivity. Maximum errors in electrical resistance
up to 51.7% for electrical resistivity of the sample and 44.7% for re were noted.

Figure 5. COMSOL simulation of electrical resistivity for two cylindrical perimeter electrodes:
(a) geometry employed for the simulation; (b) the resulting electric potential.
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Figure 6. Verification of the proposed electrical resistivity estimation method using numerical
simulations: (a) electrical resistance according to electrode radius; (b) electrical resistance according
to electrical resistivity of the rock sample.

4. Discussion
4.1. Distortion of the Equipotential Surface

The underestimation of the theoretical electrical resistance can be owed to the assump-
tion that the equipotential surface line is evenly distributed with respect to the distance
from the electrodes. The limitation of this equidistance assumption and the resulting dis-
tortion of the equipotential surface are displayed in Figure 7. The theoretical equipotential
surface displays a curved equipotential surface centered at (0, l) when s =

√
2r. However,

the equipotential surface obtained from the numerical analysis displays an equivalent flat
equipotential surface of length leq = 2r for the given condition.

Figure 7. Distortion of the equipotential surface: (a) length of the theoretical equipotential surface l
and length of the equivalent flat equipotential surface leq for s =

√
2r; (b) change in curvature of the

equipotential surface observed in numerical simulations.

Previous studies on electrical impedance tomography (EIT) have noted changes in the
electrical field and equipotential surface for different electrode configurations around the
perimeter of a circular cross-section [19–21]. However, such previous studies are primarily
focused on the tomographic results, and the changes in the shape of the equipotential
surface have not been adequately modelled. For mathematical simplicity, this study
assumed that the equipotential surface follows a circular shape. This assumption allows
the longest equipotential length and the most electrical current flow between two electrodes,
resulting in reduced electrical resistance. Hence, the theoretical equation introduces a lower
bound for the electrical resistivity of the cylindrical sample, and the change in curvature of
the equipotential surface needs to be corrected for accurate measurements.
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A distortion factor is applied to compensate the equipotential surface distortion.
The distortion factor can be quantified with the shape of the equipotential surface formed
by the potential difference between the two electrodes. Formal inversion was used to find
the best fitting distortion factor. For the given geometric condition where the cylindrical
electrodes are installed on the perimeter of the cylindrical sample, a distortion factor of
1.5 is applied to fit the theoretical electrical resistance to the numerical simulation results.
The multiplication of the distortion factor results in a near exact fit between the electrical
resistances obtained from the theoretical equation and numerical simulation, as shown
in Figure 8. The nature of the distortion factor is yet unclear and further studies on the
equipotential surface distortion depending on the position of the perimeter electrodes,
as well as their respective distortion factors, need to be investigated.

Figure 8. Comparison of the numerical simulation results and factorized equation: (a) electrical resistance
according to electrode radius; (b) electrical resistance according to electrical resistivity of the rock sample.

4.2. Effect of Electrode Length

The cylindrical electrodes installed on the perimeter of the cylindrical sample can affect
the uniaxial compressive strength measurements, as the stiffness of the metal electrodes
is generally greater than that of the rock sample. Numerical studies were conducted for
different electrode heights with references to the height of the sample to evaluate the effects
of electrode length. The resultant electrical resistance increases as the electrode length
(h) decreases, owing to the reduced contact area between the electrode and the sample.
The reference electrode height was set as 0.15 m, identical to the sample height, and the
reference resistance is the electrical resistance measured using the reference electrodes
(Figure 9a). When the length of the electrode is shortened by 5%, the measured electrical
resistance increases by 1.5%, as shown in Figure 9b. For uniaxial compressive tests where
the maximum strain of the sample is generally less than 5%, the use of electrodes shorter
than 5% of the sample height can be adopted with minor errors in the measured resistance.

Figure 9. Effect of electrode height on measured electrical resistance: (a) geometry employed for the
simulation; (b) change in normalized resistance with normalized electrode height.
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4.3. Equivalent Strap Electrode

The proposed test method is limited by the installation methods required for the cylin-
drical perimeter electrodes. For realistic experimentation, two grooves should be carved on
the perimeter of the sample for the placement of cylindrical electrodes. This direct method
requires additional work on the sample and has the potential for sample disturbance and the
creation of microcracks, which affect the contact area between the electrode and the sample as
well as the overall integrity of the sample. Hence, an equivalent electrode was investigated
and employed for the simplification of the proposed equation and experimental convenience.

Strap-shaped electrodes can be easily installed on the sample surface using non-
conductive adhesives placed on top of the electrodes, and the concise contact surface area
can be obtained. The contact area of the cylindrical electrode is proportional to the arc
length of the electrodes as the height is fixed (Figure 10). The contact arc length of the
equivalent strap electrode (lo) can be expressed using Equation (5):

lo = 2re sin−1

(√
1−

( re

2r

)2
)

, (5)

Figure 10. Equivalent strap electrode.

An equivalent strap electrode is modelled using COMSOL and the electrical resistance
from the cylindrical electrodes and equivalent strap electrodes are compared for various
electrode radii in Figure 11. The results indicate that the measured electrical resistance for
the cylindrical and equivalent strap electrodes are similar for small electrode radii, with
the difference in measured electrical resistance increasing for increasing electrode radius.
The numerical simulation results indicate that the equivalent strap electrodes can be used
to replace the small diameter cylindrical electrodes for small electrode radii.

Figure 11. COMSOL simulation of electrical resistivity for two equivalent strap perimeter electrodes:
(a) geometry employed for the simulation; (b) electrical resistance of cylindrical electrodes and
equivalent strap electrodes.
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5. Conclusions

In this study, an alternative method for the estimation of electrical resistivity was
proposed for cylindrical rock samples under confined conditions. The theoretical equation
for the cylindrical electrodes on the perimeter of the rock sample was obtained from the
equipotential surface area depending on the rock core geometry. Finite element simulations
were conducted with COMSOL MultiPhysics® to verify the derived theoretical equation,
and the ASTM G187 standard testing method was used to validate the numerical simula-
tion tool. The estimated electrical resistance using the proposed theoretical equation for
the two cylindrical electrodes on the sample perimeter was compared with the electrical
resistance obtained from numerical simulation. The numerical simulation results displayed
a larger electrical resistance compared to the theoretical value for smaller electrode radius
and larger electrical resistivity. The underestimation of the theoretical electrical resistance
can be owed to the assumption that the equipotential surface is evenly distributed with
respect to the distance from the electrodes. This assumption computes a longer theoretical
equipotential length compared to the phenomenological results, resulting in more electrical
current flow between two electrodes and reduced electrical resistance. Hence, the theoreti-
cal equation introduces a lower bound for the electrical resistivity of the cylindrical sample.
The application of a phenomenological distortion factor to correct the assumed equidistant
equipotential surface resulted in a near exact fit between the numerical simulation results
and the theoretical equation. The effects of the electrode length and equivalent strap elec-
trodes were investigated to assess the applicability of the suggested method for laboratory
testing. The results indicated that a 5% decrease in electrode height results in small error
for the measured electrical resistance with minimal effects on the measurement of uniaxial
compressive strength. In addition, equivalent strap electrodes can also be used to replace
small diameter cylindrical electrodes for small electrode radii. The main result of this study
highlights a method for computing the theoretical lower bound electrical resistance of a
cylindrical rock sample. The results of this study can be used as an effective alternative
method for electrical resistivity estimation of confined cylindrical rock core sample when
the installation of base electrodes is infeasible.
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Nomenclature

αp Geometric factor between the cylindrical electrodes on the sample circumference
θ cos−1(s/2r)
ρ Electrical resistivity of the rock sample
h Height of the sample
l Arc length of the curvature (derived in Appendix A.)
r Radius of the sample
re Radius of the electrodes
Rp Electrical resistance between the cylindrical electrodes on the sample circumference
s Distance from the electrode center to an arbitrary point on the sample circumference

Appendix A. Derivation of l

Let us assume two circles are placed in the same 2D Cartesian coordinate centered at
(0, 0) and (0, r), as shown in Figure A1. The intersections between two circles, denoted as P
and Q, can be represented in terms of the radii of two circles, r and s. The x and y values of
the intersection, x1, x2, and y1, are:

x1 = −s
√

1−
( s

2r
)2

x2 = s
√

1−
( s

2r
)2

y1 = r− s2

2r

, (A1)

Figure A1. Definitions of variables to evaluate l (sectional view). Two cylindrical electrodes whose
radius is re and height is h are placed with distance 2r, which is the diameter of the rock core sample.
The dotted line indicates the equipotential surface from a perimeter electrode.

Then, the arc length of the curvature can be determined using the following equation
because the integral is an even function:

l =
∫ x2

x1

√
1 +

(
dy
dx

)2
dx = 2

∫ x2

0

√
s2

s2 − x2 dx = 2s sin−1

(√
1−

( s
2r

)2
)

, (A2)

where dy/dx = x/(r − y).

References
1. Zhou, X.Y.; Sun, D.; Tan, Y.; Zhou, A. Canister spacing in high-level radioactive nuclear waste repository. Ann. Nucl. Energy 2020,

141, 107335. [CrossRef]
2. Yoon, S.; Jeon, J.S.; Kim, G.Y.; Seong, J.H.; Baik, M.H. Specific heat capacity model for compacted bentonite buffer materials. Ann.

Nucl. Energy 2019, 125, 18–25. [CrossRef]

http://doi.org/10.1016/j.anucene.2020.107335
http://doi.org/10.1016/j.anucene.2018.10.045


Energies 2021, 14, 4382 11 of 11

3. Kim, A.R.; Kim, H.S.; Cho, G.C.; Lee, J. Estimation of model parameters and properties for numerical simulation on geomechanical
stability of gas hydrate production in the Ulleung Basin, East Sea, Korea. Quat. Int. 2017, 459, 55–68. [CrossRef]

4. Davarpanah, A.; Mirshekari, B.; Behbahani, T.J.; Hemmati, M. Integrated production logging tools approach for convenient
experimental individual layer permeability measurements in a multi-layered fractured reservoir. J. Pet. Explor. Prod. Technol. 2018,
8, 743–751. [CrossRef]

5. Brace, W.F.; Walsh, J.B.; Frangos, W.T. Permeability of Granite under High Pressure. J. Geophys. Res. 1968, 73, 2225–2236.
[CrossRef]

6. Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T. Evaluation and application of the transient-pulse technique for determining the
hydraulic properties of low-permeability rocks—Part 1: Theoretical evaluation. Geotech. Test. J. 2000, 23, 83–90.

7. Glover, P.W.J. A generalized Archie’s law for n phases. Geophysics 2010, 75, E247–E265. [CrossRef]
8. Byun, Y.H.; Hong, W.T.; Yoon, H.K. Characterization of cementation factor of unconsolidated granular materials through TDR

with variable saturated conditions. Materials 2019, 12, 1340. [CrossRef] [PubMed]
9. Griffiths, D.H. Application of electrical resistivity measurements for the determination of porosity and permeability in sand-stones.

Geoexploration 1976, 14, 207–213. [CrossRef]
10. Kirkby, A.; Heinson, G.; Krieger, L. Relating permeability and electrical resistivity in fractures using random resistor network

models. J. Geophys. Res. Solid Earth 2016, 121, 1546–1564. [CrossRef]
11. Hong, C.H.; Chong, S.H.; Cho, G.C. Theoretical study on geometries of electrodes in laboratory electrical resistivity measurement.

Appl. Sci. 2019, 9, 4167. [CrossRef]
12. Rekapalli, R.; Sarma, V.S.; Phukon, P. Direct resistivity measurements of core sample using a portable in-situ DC resistivity meter

in comparison with HERT data. J. Geol. Soc. India 2015, 86, 211–214. [CrossRef]
13. Du Plooy, R.; Lopes, S.P.; Villain, G.; Dérobert, X. Development of a multi-ring resistivity cell and multi-electrode resistivity probe

for investigation of cover concrete condition. NDT E Int. 2013, 54, 27–36. [CrossRef]
14. ASTM Standard G187. Standard Test Method for Measurement of Soil Resistivity Using the Two-Electrode Soil Box Method; ASTM

International: West Conshohocken, PA, USA, 2018.
15. COMSOL Multiphysics® v. 5.5. COMSOL AB, Stockholm, Sweden. Available online: www.comsol.com (accessed on

11 February 2021).
16. Clement, R.; Bergeron, M.; Moreau, S. COMSOL Multiphysics modelling for measurement device of electrical resistivity in

laboratory test cell. In Proceedings of the 2011 COMSOL Conference, Stuttgart, Germany, 13 October 2011.
17. Butler, S.L.; Sinha, G. Forward modeling of applied geophysics methods using Comsol and comparison with analytical and

laboratory analog models. Comput. Geosci. 2012, 42, 168–176. [CrossRef]
18. Carmichael, R.S. Practical Handbook of Physical Properties of Rocks and Minerals; CRC Press: Boca Raton, FL, USA, 1988.
19. Yan, W.; Hong, S.; Chaoshi, R. Optimum design of electrode structure and parameters in electrical impedance tomography.

Physiol. Meas. 2006, 27, 291. [CrossRef] [PubMed]
20. Malmivuo, J.; Plonsey, R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University

Press: New York, NY, USA, 1995.
21. Bera, T.K.; Chowdhury, A.; Mandai, H.; Kar, K.; Haider, A.; Nagaraju, J. Thin domain wide electrode (TDWE) phantoms for

Electrical Impedance Tomography (EIT). In Proceedings of the 2015 Third International Conference on Computer, Communication,
Control and Information Technology (C3IT), Hooghly, India, 7–8 February 2015.

http://doi.org/10.1016/j.quaint.2017.09.028
http://doi.org/10.1007/s13202-017-0422-3
http://doi.org/10.1029/JB073i006p02225
http://doi.org/10.1190/1.3509781
http://doi.org/10.3390/ma12081340
http://www.ncbi.nlm.nih.gov/pubmed/31022970
http://doi.org/10.1016/0016-7142(76)90014-4
http://doi.org/10.1002/2015JB012541
http://doi.org/10.3390/app9194167
http://doi.org/10.1007/s12594-015-0300-x
http://doi.org/10.1016/j.ndteint.2012.11.007
www.comsol.com
http://doi.org/10.1016/j.cageo.2011.08.022
http://doi.org/10.1088/0967-3334/27/3/007
http://www.ncbi.nlm.nih.gov/pubmed/16462015

	Introduction 
	Governing Equations for Electrical Resistivity of Cylindrical Samples 
	ASTM Standard for Electrical Resistivity (ASTM G187) 
	Electrical Resistivity Measurement with Two Perimeter Electrodes 

	Numerical Simulation 
	Simulation Setup 
	Verification of the Numerical Simulation Tool with ASTM G187 
	Verification of the Proposed Method 

	Discussion 
	Distortion of the Equipotential Surface 
	Effect of Electrode Length 
	Equivalent Strap Electrode 

	Conclusions 
	Derivation of l 
	References

