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Abstract: The detrimental effects of the catalyst degradation on the overall envisaged lifetime of
low-temperature proton-exchange membrane fuel cells (LT-PEMFCs) represent a significant challenge
towards further lowering platinum loadings and simultaneously achieving a long cycle life. The
elaborated physically based modeling of the degradation processes is thus an invaluable step in
elucidating causal interaction between fuel cell design, its operating conditions, and degradation
phenomena. However, many parameters need to be determined based on experimental data to ensure
plausible simulation results of the catalyst degradation models, which proves to be challenging with
the in situ measurements. To fill this knowledge gap, this paper demonstrates the application of a
mechanistically based PEMFC modeling framework, comprising real-time capable fuel cell perfor-
mance, and platinum and carbon support degradation models, to model transient CO2 release rates
in the LT-PEMFCs with the consistent calibration of reaction rate parameters under multiple different
accelerated stress tests at once. The results confirm the credibility of the physical and chemical
modeling basis of the proposed modeling framework, as well as its prediction and extrapolation
capabilities. This is confirmed by an increase of only 29% of root mean square deviations values
when using a model calibrated on all three data sets at once in comparison to a model calibrated on
only one data set. Furthermore, the unique identifiability and interconnection of individual model
calibration parameters are determined via Fisher information matrix analysis. This analysis enables
optimal reduction of the set of calibration parameters, which results in the speed up of both the
calibration process and the general simulation time while retaining the full extrapolation capabilities
of the framework.

Keywords: proton-exchange membrane fuel cell; platinum degradation; mechanistically based;
transient real-time modeling; accelerated stress test

1. Introduction

Low-temperature proton-exchange membrane fuel cells (LT-PEMFCs) are emerging as
a feasible zero-emission tank-to-wheel energy conversion technology for use in transport
applications. In the past five years, the fuel cell industry has had a moderate 20% year-
on-year growth in megawatts shipped [1]. New and revised environmental and climate
policies in the EU, North America, Asia, and other regions, together with corresponding
financial instruments, are boosting fuel cell (FC) research and development, which will
likely lead to even faster FC industry growth in the next decade. The achievement of these
goals is inherently interlinked with the simultaneous reduction in production costs and the
prolongation of service life. Tackling these challenges calls for the application of conjoint
predictive FC performance and degradation modeling tools. This is reasoned by the fact
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that fuel cells degrade via several intertwined degradation mechanisms, which feature
different characteristic times under transient operating conditions and different rates
that depend on the local values of specific operational parameters (temperature, species
concentrations, and electric potential field evolutions). Studies [2–4] showed that the local
rates of Pt dissolution, redeposition, migration, and agglomeration strongly depend on the
local values of these specific operational parameters and thus on the operating conditions
of the FC. Due to the simultaneous action of different intertwined mechanisms featuring
different dependencies on the local values of specific operational parameters, lumped
degradation models cannot adequately simulate FC degradation. This is reasoned by the
fact that the whole chain of individual degradation mechanisms in the empirical modeling
approach used in lumped degradation models [5–7] does not consider the spatial and
temporal resolution of these specific operational parameters.

To enrich the suite of modeling tools for the development of LT-PEMFCs, a real-
time capable system-level modeling framework of PEMFC operation [8] and degradation
was recently developed and presented in [9]. The framework is based on an intertwined
mechanistically, spatially, and temporarily resolved FC operation and degradation model,
comprising several cathode platinum degradation mechanisms, such as carbon and plat-
inum oxidation phenomena, platinum dissolution, redeposition, detachment, and ag-
glomeration. This novel modeling framework, which was validated on high-temperature
proton-exchange membrane fuel cell (HT-PEMFC) data, enables the consistent modeling
of particle size redistribution and the loss of electrochemical surface area in the transient
operating regime of the fuel cell. Sufficient computation speed, required for a system-
level modeling framework, is ensured by meticulously adjusting the complexity of the
model, which must cover all relevant phenomena and reach the desired accuracy. The
computational fastness of a framework is extremely important not only during the first
stages of fuel cell development, when fast exploration of the design space is needed, or for
hardware-in-the-loop applications but also during the parametrization procedure.

The latter is unavoidable even in elaborate physically based computation models,
such as the one presented in this paper, as many parameters need to be determined based
on experimental data for the model to properly describe the observed degradation of the
catalyst. Easier and faster parametrization can be achieved if the calibration parameters
used during parametrization can be uniquely determined, thus enabling fast convergence
of the optimization problem to the global minima. Obtaining a proper set of calibration
parameters of the modeling framework using optimization methods is considered espe-
cially important in the case of the submodel of the electrochemical oxidation of Pt and
carbon surfaces, which is the precursor for the subsequent growth of Pt particles, either by
the dissolution and redeposition of Pt ions or by particle detachment and agglomeration
due to the corrosion of carbon support. The most reliable experimental method for the
identification of electrochemical degradation processes in the catalyst layer of PEMFCs is
the real-time in situ measurement of CO2 release rates. As explained later in the paper, the
CO2 release rate is affected not only by the electrochemical reactions on the carbon surface
but also by the electrochemical reaction dynamics on the Pt particle surface, interacting
with carbon via the spillover mechanism of surface oxide groups.

The individual degradation processes in the PEMFC catalyst layer have been studied
in detail over the years, and models addressing them have already reached significant
maturity. Carbon corrosion, which influences the isolation and detachment of Pt particles
and promotes the flooding of the electrodes [10], was modeled by simple electrochemical
models in 1D [11] and 2D [12] by considering both carbon and Pt surface groups [2,13] or
by even more complex microscopic models [14,15]. Platinum oxidation is rarely modeled
alone [16]. It is more often analyzed along with other electrochemical reactions. As recog-
nized by Pandy [2], carbon corrosion cannot be properly described by a simple one-step
Butler–Volmer electrochemical process. The accelerated stress test (AST) experiments on
fuel cell catalysts revealed that CO2 emissions are substantially increased during voltage
cycling and are affected by both the voltage window size and residence rates at specific volt-
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ages [13,17]. Several models capable of addressing these phenomena have been proposed,
for example by Pandy [2] and Macauley [13], featuring complex interaction between the
formation of oxide groups and the accumulation on carbon and Pt surfaces. These models
are capable of very precise prediction of temporally resolved CO2 emissions, consistent
with experimental data [13]. However, due to the large number of reactions and calibration
parameters, their applicability is limited in the context of system modeling, where high
computation speed and the simple calibration of parameters are of paramount importance.

To predict changes in fuel cell performance, these models need to be further expanded
to accommodate electrochemical reactions that lead to Pt dissolution [3,18–20], redeposi-
tion [4], and migration in the membrane [4,19]. Additionally, the effects of Pt detachment,
agglomeration [21], and Ostwald ripening [20,22] on changes in the Pt particle size dis-
tribution in the catalyst layer and the consequent loss of active surface [23,24] have to be
addressed as well. Both of the previously mentioned mechanisms influence the growth
of Pt particles in size, which makes it difficult to distinguish the individual contributions
based solely on the measurement of Pt particle size growth [25].

A fully conjoint model of fuel cell operation and catalyst degradation containing all
the aforementioned processes has recently been proposed and tested by our group for use
in HT-PEMFC systems [9]. In this model, the complexity of oxide group interactions was
reduced to the simplest possible level, which still properly describes the voltage cycling
effect. On the other hand, an important aspect, the shift in surface energy due to its
curvature, has been implemented via the Kelvin formula [3,9,19]. This is often overlooked
in modeling carbon corrosion [2,13], but it is crucial in the catalyst environment where
electrochemical reactions on the surface of nanoscopic Pt particles take place. This size
dependence, causing the decrease in equilibrium electric potential for Pt surface group
formations on small particles and highly influencing the surface coverage dynamics, was
described in [9] by tracking the oxidation dynamics for Pt particles of different sizes. In the
present paper, the model was further adapted for use in LT-PEMFCs and improved with
a more physically consistent model of carbon corrosion. It includes the separate tracking
of carbon corrosion around the Pt particles and on the carbon support surface, which is
not affected by any interaction with Pt. This modeling approach results in more physically
appropriate modeling of the spillover of hydroxy groups and thus the oxidation dynamics.

The literature overview shows that this novel contribution assesses the applicability of
a mechanistically based PEMFC modeling framework on the LT-PEMFCs by performing a
proper calibration of reaction rate parameters for transient CO2 release rates under multiple
different ASTs at once. The results confirm the credibility of the physical and chemical
modeling basis of the proposed framework, as well as its prediction and extrapolation
capabilities. Furthermore, the importance, identifiability, and interconnection of individual
model calibration parameters are determined via Fisher information matrix (FIM) analysis,
which shows that the parameters describing dissolution phenomena are not uniquely
determinable on the given data set. This is due to the negligible effects of the dissolution
in experiments of the given duration. Based on the results, a significant reduction of
the calibration parameter set is proposed, which will enable a speed up of not only the
calibration process but also of the general simulation time for the experiments of the given
duration while retaining the full extrapolation capabilities of the framework.

2. Materials and Methods
2.1. Modeling Framework

The conjoint fuel cell operation and degradation models, used in the presented anal-
ysis, were already extensively presented in [9,26] for high-temperature PEMFC system
modeling purposes. Even though some degradation phenomena are significantly different
in LT-PEMFCs, such as membrane degradation because of the difference between mem-
brane materials utilized [27], the carbon support and catalyst materials used in LT-PEMFCs
are similar, and thus, a similar mechanism comprising the most significant reaction path-
ways can be applied here as well [2]. Therefore, the proposed modeling framework can
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also be utilized for this kind of fuel cell system, provided that the proper calibration
of temperature-dependent parameters, i.e., reaction rate parameters, takes place. Fur-
thermore, equilibrium potentials (E0), which are dependent on the number of electrons
transferred (n), elementary charge (e), and the changed Gibbs potential between reactants
and products [28]:

neE0 = ∆G = ∆H − T∆S, (1)

and reaction rates, which are affected by the changed enthalpies of transition states
∆H++ [28]. One of the most prevalent differences between LT and HT-PEMFCs is the origin
of water and protons participating in reactions. In the HT-PEMFCs, the latter originate
from phosphoric acid, which is used as the membrane ionic conductor. Hence, their con-
centration is directly related to the pH values of the acid. Additionally, water concentration
is more directly related to feed gas properties, as in the case of LT-PEMFCs, where the
concentration of water and protons strongly depends on the membrane humidity.

Therefore, tackling such complex intertwined processes calls for the application of
a mechanistically, spatially, and temporarily resolved FC operation model. In the con-
joint model, the FC operation model calculates the local conditions in the catalyst layer,
namely the local electric potential, temperature, humidity, and the aforementioned con-
centration of protons, using an advanced hybrid analytical–numerical (HAN) modeling
approach [8,29–31]. Its hybrid nature enables high computational efficiency by combining
a one-dimensional (1D) numerical and a two-dimensional (2D) analytical solution. In the
HAN approach, a fuel cell with straight parallel channels is numerically discretized in the
direction of the channels. This 1D numerical discretization yields shallow 2D slices consist-
ing of a cathode feed, a membrane electrode assembly (MEA), and an anode feed, where
each feed part is divided into one channel and two gas diffusion layer (GDL) domains
(under the channel and under the rib), yielding seven domains. The species transport in
each of the feed domains is calculated with an analytical solution of a 2D diffusion equation.
The resulting gas concentrations at the catalyst are then used to determine the relationship
between the voltage and the current generation based on the Butler–Volmer equation and
the voltage drop across the membrane.

The local conditions in the catalyst layer, calculated by the HAN model, are then used
as the inputs for the catalyst degradation model [26]. The main initiator of the catalyst
degradation is the process of electrochemical surface oxidation of Pt and carbon support.
The electrochemical surface oxidation process is affected by temperature, voltage, and
humidity encountered during fuel cell operation. In this work, we use a modified version
of the models proposed by the authors in [13,17], with the complexity of oxide group
interactions being reduced to the simplest possible level while still properly describing the
voltage cycling effect.

Our model of the oxidation of Pt and carbon surfaces is described by a two-step process.
First, the hydroxy group (OH) is formed from water on a suitable surface defect (Pt∗, C∗)
under sufficiently high electric potential, described by equilibrium reactions [2,3,9,13,19]:

C1 : C∗ + H2O 
 C–OH + H+ + e−; EC1 = 0.20 V RHE, (2)

Pt1 : Pt∗ + H2O 
 Pt–OH + H+ + e−; EPt1 = 0.80 V RHE. (3)

The spillover of hydroxy groups from the Pt particle surface to the adjacent carbon
support causes a reaction between the two, resulting in the corrosion of carbon [2,9,13]:

PtC : Pt–OH + C−OH → C∗ + Pt∗ + CO2 + 2H+; EPtC = 0.65 V RHE, (4)

Carbon corrosion can also occur in the absence of spillover hydroxy groups by the
interaction between C–OH groups and water via reaction [2,9,13]:

CC : C–OH + H2O→ C∗ + CO2 + 3H+ + 3e−; ECC = 0.95 V RHE, (5)
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However, not all surface hydroxy groups contribute to carbon corrosion. The reactions
PtC and CC compete with two other electrochemical reactions, transforming reactive OH
groups into a passive oxide film at a high electric potential. These reactions are modeled as
surface oxide groups Pt = O and C = O on Pt and the carbon surface [2,3,9,13,19]:

C2 : C–OH 
 C = O + H+ + e−; EC2 = 0.80 V RHE, (6)

Pt2 : Pt–OH 
 Pt = O + H+ + e−; EPt2 = 0.98 V RHE. (7)

The reaction rates of all six electrochemical reactions are modeled using Butler–Volmer
formulas [2,3,19]:

rC1(r) = kC1

[
aH2OΘC(r)eαC1(Ucat−EC1)/b − aH+ΘC–OH(r)e−(1−αC1)(Ucat−EC1)/b

]
, (8)

rC2(r) = kC2

[
ΘC–OH(r)eαC2(Ucat−EC2)/b − aH+ΘC=O(r)e−(1−αC2)(Ucat−EC2)/b

]
(9)

rPt1(r) = kPt1

[
aH2OΘPt(r)e

αPt1(Ucat−EPt1(r)−rOxΘOx)
b − krevaH+ΘPt–OH(r)e−(1−αPt1)(Ucat−EPt1(r))/b

]
(10)

rPt2(r) = kPt2

[
ΘPt−OH(r)eαPt2(Ucat−EPt2(r)−rOxΘOx)/b − krevaH+ΘPt=O(r)e−(1−αPt2)(Ucat−EPt2(r))/b

]
(11)

rPtC(r) = kPtCΘC–OH(r)ΘPt–OH(r)e2αPtC(Ucat−EPtC)/b (12)

rCC(r) = kCCaH2OΘC–OH(r)e3αCC(Ucat−ECC)/b (13)

The reaction rates are determined by the concentrations of relevant surface groups,
expressed as a percentage of available sites being free of oxides (ΘC, ΘPt) or occupied by a
specific oxide group (ΘC–OH, ΘPt–OH, ΘC=O, ΘPt=O). This enables the separate tracking of
carbon corrosion around the Pt particles and on the carbon support surface, which is not
affected by the interaction with Pt. Fuel cell operating conditions affect the reaction rates
via water (aH2O) and proton (aH+ ) activity, the local electric potential difference between the
catalyst material and the adjacent ionomer (Ucat), and temperature (T). This is expressed
as a Tafel slope b = RT/F, where R denotes the general gas constant, and F the Faraday
constant. The specifics of each reaction dynamics are described by its reaction rate constant
ki, charge transfer coefficient αi, equilibrium potential Ei, and in the case of Pt oxidation,
the irreversibility coefficient krev.

An important aspect in modeling carbon corrosion in the catalyst environment is the
shift in surface energy due to its curvature. This is especially pronounced when modeling
the electrochemical reactions on the surface of nanoscopic Pt particles. The potential shift,
described by the Kelvin formula, causes the decrease in equilibrium electric potential for
Pt surface group formations, calculated for a particle of size r. as [3,19]:

EPt1(r) = EPt1 +
1

2Fr

(
σPt–OHMPt–OH

ρPt–OH
− σPtMPt

ρPt

)
(14)

EPt2(r) = EPt2 +
1

2Fr

(
σPt=OMPt=O

ρPt=O
− σPt–OHMPt–OH

ρPt–OH

)
(15)

where σ, M, and ρ denote the surface tension, molar mass, and density, respectively, of
Pt and Pt surface hydroxy and oxide groups. This shift causes the formation of surface
groups on Pt particles to occur at lower voltages than in the case of a plain Pt surface, thus
an important improvement over the dynamic proposed in [2].

Based on the reaction rates in Equations (8)–(13), the surface oxide coverages are
dynamically calculated as follows [2,3,9,13,19]:

dΘPt(r)
dt

=
F

ΓPt
[−rPt1(r) + rPtC(r)] (16)
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dΘPt−OH(r)
dt

=
F

ΓPt
[rPt1(r)− rPt2(r)− rPtC(r)] (17)

dΘPt=O(r)
dt

=
F

ΓPt
rPt2(r) (18)

dΘC(r)
dt

=
F

ΓC
[−rC1(r) + rCC(r) + rPtC(r)], (19)

dΘC−OH(r)
dt

=
F

ΓC
[rC1(r)− rC2(r)− rCC(r)− rPtC(r)] (20)

dΘC=O(r)
dt

=
F

ΓC
rC2(r), (21)

where ΓPt and ΓC denote the surface density of the defect sites on the Pt and carbon
surface [4,32,33], suitable for the formation of the oxide groups, expressed as surface charge
density As/m2. Note that the coverage dynamics depend on particle size r, which is not
the same for all Pt particles in the catalyst. Their sizes are distributed according to some
distribution with a mean particle size r and standard deviation σr. To properly cover this
effect while retaining low computational load the coverages were calculated for particles
of 5 different sizes, r = r, r± σr, r± 2σr.

One also needs to consider that not all of the carbon surface is affected by the spillover
of hydroxy groups, and the oxidation dynamics of the carbon surface is therefore different.
This is addressed in the model by separately calculating oxidation reaction rates on the
“plain” (subscript P) carbon surface, unaffected by Pt particles, from the surface coverages
of “plain” carbon surfaces, denoted as ΘC,P, ΘC−OH,P, ΘC=O,P:

rC1,P = kC1

[
aH2OΘC,PeαC1(Ucat−EC1)/b − aH+ΘC–OH,Pe−(1−αC1)(Ucat−EC1)/b

]
, (22)

rC2,P = kC2

[
ΘC–OH,PeαC2(Ucat−EC2)/b − aH+ΘC=O,Pe−(1−αC2)(Ucat−EC2)/b

]
(23)

rCC,P = kCCaH2OΘC–OH,Pe3αCC(Ucat−ECC)/b (24)

The surface coverages of this part on ΘC,P, ΘC−OH,P, ΘC=O,P “plain” carbon surfaces [2,9]

dΘC,P

dt
=

F
ΓC

[−rC1,P + rCC,P + rPtC,P] (25)

dΘC–OH,P

dt
=

F
ΓC

[rC1,P − rC2,P − rPtC,P] (26)

dΘC=O,P

dt
=

F
ΓC

rC2,P (27)

The CO2 production rate due to corrosion is calculated by summing up the contribu-
tions to corrosion around particles of all sizes and of a plain carbon surface. It is assumed
that the hydroxide spillover affects the vicinity of Pt particle surface approximately equal
to the half of particle surface, i.e., SPtC(r) = 2πr2. The total CO2 emission rate is therefore
expressed as mass flow:

φm,CO2(t) = MC SCrCC,P(t) + ∑
r

MC SPtC(r)[rPtC(r, t) + rCC(r, t)]N(r) , (28)

where the number of particles of a specific size N(r) is determined from an assumed
Gaussian distribution and the total number of particles in a catalyst, and the total carbon
surface SC is determined from the specific surface area of carbon support used in the
catalyst. Resulting from carbon oxidation, the detachment of Pt particles from carbon
support leads to their eventual agglomeration and therefore a loss of catalyst active area [9].
However, as the experiments were of a relatively short duration, which inherently means
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that the model was utilized with short simulation times, this effect is negligible and will
thus not be analyzed in detail in the scope of this paper.

The proposed scheme, featuring only two types of surface groups on Pt and carbon, is
sufficient to describe the peaks in CO2 emissions during voltage cycling. When the catalyst
voltage is held between 0.2 and 0.8 V, the hydroxy groups are accumulated on the carbon
surface via reaction C1 in Equation (2) [2], but they do not cause corrosion, as the voltage is
too low for either the formation of Pt–OH groups via reaction Pt1 with which the C–OH
groups could react or for corrosion via reaction CC. When the voltage is increased, the
accumulated C–OH groups readily react with the newly formed Pt–OH groups via reaction
PtC at Ucat > 0.8 V or with water via reaction CC at Ucat > 0.95 V [2]. In both cases, the
amount of corroded carbon can be significantly higher than it would be in the case of a
constant high voltage.

Modeling Transport Phenomena in Connecting Pipes

Conjoint models interact in a way that the degradation modeling framework behaves
as one dedicated zero-dimensional (0D) reactor for each respective computational domain
of the FC operation model and is thus defined by the resolution of the FC operation model.
Consequently, the generated flux of CO2, a direct result of carbon support corrosion, first
propagates through the GDL and then into the cathode channel. The effect of transport
phenomena is the smearing of the concentration peaks, which are consequently reduced
in height and broadened in width. The smearing of the concentration peaks is further
intensified with the introduction of connecting pipes, which are a necessary part of the
experimental setup and connect the fuel cell outlet and the gaseous exhaust analyzer. To
accommodate this additional smearing effect due to transport phenomena in a pipeline, a
convection–diffusion equation in 1D is employed:

dC(x, t)
dt

= D
d2C(x, t)

dx2 − v
dC(x, t)

dx
+ R(0, t), (29)

where C is concentration, D is effective diffusivity, v is velocity, R is the source of CO2, and
x is the 1D direction in which the given differential equation was numerically solved.

2.2. Experimental
2.2.1. Fuel Cell Setup

For the experiments, a 25 cm2 polymer electrolyte membrane fuel cell with a triple
serpentine flow field design was used. The implemented catalyst coated membrane (CCM)
consisted of a Chemours NafionTM NR-212 of Chemours Delaware, USA membrane and a
carbon-supported Pt catalyst with the carbon support and catalyst consisting of Vulcan
carbon black and HiSpec 5000 Pt catalyst of Johnson Matthey Fuel Cells, London, UK,
respectively. This catalyst was sprayed by a spray coater (SONOTEK ExactaCoat OP3 of
Sono-Tek Corporation, 12547, Milton, NY, USA) onto the membrane, resulting in catalyst
loadings of 0.05 mg/cm2 (20 wt.% Pt) on the anode side and 0.25 mg/cm2 (50 wt.% Pt) on
the cathode side. For the gas diffusion layers, Sigracet® 39BC of the company SGL Carbon,
Wiesbaden, Germany was used.

The whole fuel cell test bench configuration is presented in Figure 1.

2.2.2. ASTs Measurements

The ASTs were conducted by cycling the voltage twenty times between a lower
potential limit at 0.6 V and an upper potential limit at 0.95 V with different hold times
ranging from 0.5 min to 5 min (see Table 1) using a Zahner electrochemical workstation
(PP 240) of ZAHNER-elektrik GmbH & Co., Kronach, Germany. During the experiment,
the fuel cell temperature was kept at 80 ◦C, and the mass flow of hydrogen, as well as
synthetic air, was held constant at 225 mL min−1 and 645 mL min−1 (stoichiometry of 1.25
and 1.5 at 20 A), respectively, with a relative humidity of 100% on both sides.
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Table 1. Upper and lower potential limit (Uupper, Ulower), as well as hold times (tupper, tlower), of the conducted ASTs.

AST No. Uupper (V) Ulower (V) tupper (min) tlower (min) Number of Cycles

1

0.95 0.6

0.5 0.5 20

2 5 5 20

3 5 0.5 20

As seen in Table 1, the lower and upper potential limits for ASTs were chosen to study
carbon corrosion, as in the US Department of Energy Protocol. Different holding times
were used to investigate the effect of Pt–OH (0.95 V) and C–OH (0.6 V) accumulation on
the carbon support deterioration. High humidity favored the corrosion of carbon, synthetic
air was utilized to study the degradation of the membrane.

CO2 concentrations of the exhaust gas on the cathode side were analyzed with an Uras
14 detector of an ABB Advance Optima AO2020, of ABB, Mannheim, Germany continuous
gas analyzer. In order to get fast responses, nitrogen with a mass flow of 520 mL min−1

was introduced into the exhaust gas, and the water was removed in a condenser inside the
gas analyzer before CO2 concentrations were measured.

Based on [34], the assembled fuel cell was conditioned for three hours before the actual
AST by ramping the voltage between three voltage plateaus (0.6 V, 0.5 V, and 0.4 V) and
holding the voltage constant for one minute every time.

2.3. Optimization Procedure

The model of PEMFC operation has been extensively validated [8,29,30,35,36] with
spatially resolved results generated by a validated 3D Multiphase, Multiphysics CFD
tool [36,37], and experimental data [8,36]. Hence, this contribution focuses only on the
calibration and validation of the degradation model and the potential reductions of the set
of calibration parameters of the model and consequentially of the modeling expression.

To determine a set of calibration parameters, firstly, inputs based on operational
conditions and known physical constants were inserted. These inputs include molar
masses and general constants easily acquired in the literature. This is a general but
instrumental step to ensuring both the high generality and good prediction capability of
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the parametrized model while still avoiding overfitting. On the other hand, the detailed
material properties of the catalyst components, reaction rates, and other temperature-
dependent parameters are much more difficult to determine. Therefore, they were selected
to form a set of calibration parameters. These parameters are reaction rate constants of
electrochemical reactions: kPt1, kPt2, kPtDis , kC1, kC2, kPtC, kCC; charge transfer coefficients:
αPt1, αPt2, αPtDis , αC1, αC2, αPtC, αCC; and initial Pt and carbon surface group concentrations:
ΘPtinit , ΘPt−OHinit , ΘCinit , ΘC−OHinit .

The determined set of calibration parameters presents a basis for the calibration pro-
cedure, which is based on the process of minimization of the penalty function value. As
a result, the model output is fitted to the experimental data, with physically plausible
constraints introduced on the calibration parameters, which, as a result, have physically
plausible values. Based on the fact that the optimization problem has a significantly vast
variation space consisting of 18 calibration parameters and the fact that the problem is
highly nonlinear, differential evolution [38], a global optimization algorithm, was applied
in the first step of optimization, which was parallelized with the aim of reducing compu-
tational time. Differential evolution is an evolutionary algorithm that does not need the
optimization to be differentiable, which inherently means that it is less prone to getting
stuck in local minima. After 300 generations with a population size of 148, differential
evolution was swapped with the computationally less-demanding Nelder–Mead algorithm
(“fminsearch” [39]), which is a much faster local optimization algorithm using a gradient de-
scent approach with which the final values of the calibration parameters were determined.

2.4. Calibration Parameter Sensitivity and Intercorrelation

Each experimental data set offers a limited amount of information about the individual
calibration parameters of the model. Parameter sensitivity is invaluable in successfully
assessing which parameters can be uniquely determined without intercorrelation to others
and to what degree of certainty the individual parameter values can be determined. It can
be performed with various methods, i.e., with the high-dimensional model representations
(HDMRs) [40] or with the Fourier Amplitude Sensitivity Test [41]. In this paper, it was
performed using Fisher information [42], which offers not only insight into individual
calibration parameter sensitivity to the given experimental data and consequential identi-
fiability of the calibration parameter [43] but also into the intercorrelation of calibration
parameters with the analysis of diagonal and nondiagonal elements of the FIM, respectively.
Based on the latter, the reduction of the set of calibration parameters can be proposed
without affecting generality and the extrapolation capabilities of the model, thus reducing
the necessary computational time needed for a successful calibration procedure, as shown
in [44].

3. Results and Discussion
3.1. Degradation Model Calibration and Validation

Calibration and validation are performed via a comparison of modeled and measured
transient CO2 release rates under three different ASTs on a single-cell LT-PEMFC, using
potential levels from the standardized DOE AST protocol (0.6–0.95 V) [45] with different
residence times at low and high voltage. This difference in residence times leads to changed
temporal CO2 emission dynamics. Prolonged holds at low potential contribute to the
formation of C–OH and its accumulation on the carbon surface, while prolonged holds at a
high potential contribute to the formation of Pt–OH and OH radicals. Interplay between
them leads to a pronounced spike of CO2 formation when an increase and decrease in
potential occurs, as presented in Equation (4). When the potential is increased, the C–OH
is exposed to the Pt–OH and OH radicals that form at high potentials, which leads to the
reaction presented by Equation (4). This reaction produces CO2, which is then continuously
produced at a high potential in smaller quantities when C–OH reacts with water (see
Equation (5)). On the other hand, when the potential is suddenly decreased, the Pt–OH and
OH radicals that accumulated during high potentials are exposed to the newly forming
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C–OH, which leads to a second characteristic spike in the CO2 emissions. The effects of the
described phenomena on CO2 emissions can be seen in all three plots presented in Figure 2.
The highest amplitudes of CO2 concentrations are observed in AST No. 2, whereas the
lowest on average are observed in AST No. 3. In AST No. 3 prolonged holds at a high
potential influence the concentration ratio between the formed Pt–OH and C–OH, with the
latter’s concentration being smaller. This ratio influences CO2 emissions not only due to
the C–OH reaction with Pt–OH but also the C–OH reaction with water at a high potential.
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The results of the calibrated system-level modeling framework show good agreement
between the model and experimental data for both the single-experiment calibration and
the multiple-experiment calibration at once, which can be seen in Figure 2. Additionally,
the results are analyzed by a detailed study of the root mean square deviations (RMSDs) of
the output of the framework for values of the calibration parameters obtained by single
and multiple experiments, as presented in Table 2. The results show that the increase in
RMSD values in the case of multiple experiments is marginal for the first two ASTs and
noticeable but not major for the third AST, demonstrating good extrapolation capabilities
of the modeling framework. The reasoning behind the larger increase in RMSD values in
the case of the third AST is a nonmatching duration of the hold for high and low potential
values. A prolonged hold at a high potential results in the continuous production of CO2
via the reaction path presented with Equation (5), which shifts the “background level” of
emissions. The latter are in the case of the shorter holds with matching durations defined
mainly by initial Pt and carbon surface group concentrations, which are, when calibrating
on all three ASTs at once, defined to better suit two out of three tests and as a direct
consequence result in higher RMSD for the third AST. However, the obtained values of
the most suitable set of calibration parameters, resulting in the best agreement between
experimental and model results for all three ASTs simultaneously, have physically plausible
values (Appendix A, Table A2) and are in line with literature values. The results thus prove
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the credibility of the physical and chemical modeling basis of the proposed system-level
modeling framework on LT-PEMFCs.

Table 2. RMSD values obtained with calibration performed on a single data set and all three data
sets at once.

AST No. RMSD1 RMSD3

1 0.3587 0.3959
2 0.4028 0.4541
3 0.7075 2.1347

3.2. Calibration Parameter Sensitivity and Intercorrelation

The quality of the obtained fit is one of the most important results of the model;
however, the same fit quality can be obtained in cases of an ill-determined set of calibration
parameters with a much higher number of parameters in comparison to the smallest
possible set of uniquely determinable calibration parameters. Even though the output of
the model is the same in both cases, the fast convergence to the global minima is achieved
only in the case of the smallest possible set of uniquely determinable calibration parameters.

To test this aspect of the developed model, an FIM was calculated, and its eigenvalue
decomposition was carried out and subsequently analyzed. The FIM obtained with the
calibrated model is presented in Figure 3. Each individual element in this matrix carries
information about the parameters and their interdependence. Diagonal elements represent
the certainty of the determination of the calibration parameter, i.e., the inverse of the error
in calibration parameter value; therefore, a higher value here means a lower error. Thus,
the parameters used for modeling the effects of platinum dissolution, namely (3-kPtDis and
10-αPtDis), cannot be uniquely determined on the given data set. This numerical result
fully supports the physical depiction of platinum dissolution process behavior, which
does not significantly contribute to the degradation of the platinum catalyst during a few
hours of measuring. Therefore, it does not affect the CO2 emission rates. On the other
hand, the results show that for the majority of calibration parameters pairs k, α, α can
be determined with much higher certainty. However, this is not the case for kCC and
αCC, which describe carbon corrosion in the absence of spillover hydroxy groups by the
interaction between C–OH groups and water (Equation (5)), where both CC parameters are
exceptionally well determined. The obtained result is expected, as the CC reaction is one of
the more detrimental reactions for carbon support longevity. Furthermore, its product, CO2,
is directly observed, whereas other reactions affect the CO2 release codependently, thus the
amount of information about CC parameters is the highest out of all model parameters.

Nondiagonal elements represent the correlation between individual parameters. High
values here mean that there is a high possibility that little separation between both parame-
ters exists and that they are highly dependent on each other and consequentially cannot be
well defined separately using this data set. However, when the diagonal values are not
high for all calibration parameters, it could also mean that this is just an effect of the higher
diagonal value of the parameter with which the mixed second-order partial derivative is
formed. This can also be explained with an n-dimensional space parabola, where n is the
number of calibration parameters. The FIM represents the derivative of the curvature of
the n-dimensional surface. This means that if there is a significant gradient in the direction
of one calibration parameter, there is a significant likelihood that this will affect gradients
in the adjoining directions if the n-dimensional curve is continuous and twice continuously
differentiable. Therefore, these nondiagonal elements only hint towards the independence
or the intertwining of the parameters. This is confirmed or rebutted via the FIM’s eigen-
value decomposition. The latter shows strong interconnectivity only between the worst
defined calibration parameters describing platinum dissolution phenomena. The observed
interconnectivity can be addressed in one of two ways, by devising an optimal data set
based on the model-based design of experiments (DoE) methodology as proposed in [43]
or by performing a reduction of the set of calibration parameters of the model.
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Proposed Reduction of the Set of Calibration Parameters of the Model

The results of the parameter sensitivity analysis show that the calibration parameters
describing platinum dissolution phenomena are not determined with high certainty; fur-
thermore, they are not uniquely determinable on the given data set and exhibit significant
interconnectivity, which means that based on the functional dependency of the two:

rPtDis(r) = kPtDis ΘPt

e
αPtDiss

(Ucat−EPtDiss
)

bPtDiss −
CPt2+

CPt2+ ,re f
e
−(1−αPtDiss

)(Ucat−EPtDiss
)

bPtDiss

 (30)

They could be lumped together by using a Tafel approximation of Equation (30) and
linearizing the remaining exponent. Consequentially only one joint calibration parameter
kαPtDis

could be calibrated from the obtained expression:

rPtDis(r) = kαPtDis
ΘPtαPtDiss

(
Ucat − EPtDis

)
/bPtDiss (31)

The other option is to omit αPtDiss and kPtDis from the optimization procedure and
adopt their values from the literature, which would result in a reduction of the optimiza-
tion time by at least 11% without affecting the predictability of the modeling framework
during simulation campaigns that last several hours, where the effects of dissolution for
overall catalyst degradation are at least an order of magnitude smaller than most prevalent
degradation mechanisms. The third option would be setting rPtDis to zero, which would
enable the speed up of not only the calibration process but also general simulation time
for experiments of the given duration, while retaining full extrapolation capabilities of the
framework during short simulation campaigns.

Even without the proposed model reductions, the results confirm the credibility of
the physical and chemical modeling basis of the proposed frameworks, deeming the
effects of the dissolution in experiments of the given duration negligible, which is fully in
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line with the experimental data presented in [41]. On the other hand, the identifiability
of the remaining calibration parameters is high, and they are uniquely determinable.
Furthermore, the proposed modeling framework exhibits good extrapolation capabilities.
These capabilities enable not only an in-depth understanding of the cause-and-effect chain
from FC operation to its degradation but also its use in the common V-development
process. Where the modeling framework can be used in the system-level development
phases covering the early development stages for the exploration of design space and
for designing the system in model-in-the-loop (MiL) applications, as well as the later
validation and calibration phases aimed at hardware-in-the-loop (HiL) applications and
the development of control functionalities and strategies.

4. Conclusions

The paper presents a mechanistically based PEMFC performance and degradation
modeling framework. It was calibrated on the LT-PEMFCs by performing a proper cali-
bration of reaction rate parameters for transient CO2 release rates under three different
ASTs at once. The main differentiators between them were the holding times at 0.95 V
and 0.6 V, which were used to investigate the effect of Pt–OH and C–OH accumulation
on carbon support deterioration. The results confirm the credibility of the physical and
chemical modeling basis of the proposed frameworks by achieving relatively low RMSD
values for both single and multiple time traces utilized in the calibration procedure. This
ability to adequately simulate multiple experiments with the same values of the calibration
parameters substantiates the claim of good prediction and extrapolation capabilities of the
modeling framework and validates its mechanistic basis. Furthermore, the identifiability
and interconnection of individual model calibration parameters are assessed via Fisher
information matrix analysis, which shows that the parameters describing dissolution phe-
nomena are not uniquely determinable on the given data set. This numerical result fully
supports the physical depiction of platinum dissolution process behavior, which does not
significantly contribute to the degradation of the platinum catalyst during a few hours of
measuring. Based on the results, a reduction of the calibration parameter set is proposed,
enabling the speed up of not only the calibration process but also of the general simulation
time, while retaining full extrapolation capabilities of the framework.

The proposed modeling framework, therefore, represents significant progress in the
area of system-level models aimed at combined performance and lifetime modeling and
optimization. This confirms the modeling framework as a suitable candidate for crossing
the system-level part of the V-development process and efficiently contributing to the
model-supported development of advanced clean energy conversion technologies.

Author Contributions: Conceptualization, A.K. (Andraž Kravos), A.K. (Ambrož Kregar), K.M., V.H.
and T.K.; Methodology, A.K. (Andraž Kravos), A.K. (Ambrož Kregar) and K.M.; Software, A.K. (An-
draž Kravos) and A.K. (Ambrož Kregar); Validation, A.K. (Andraž Kravos), A.K. (Ambrož Kregar)
and K.M.; Formal Analysis, A.K. (Andraž Kravos); Investigation, A.K. (Andraž Kravos), A.K. (Am-
brož Kregar) and K.M.; Resources, K.M.; Data Curation, K.M.; Writing—Original Draft Preparation,
A.K. (Andraž Kravos), A.K. (Ambrož Kregar) and K.M.; Writing—Review and Editing, A.K. (Andraž
Kravos), A.K. (Ambrož Kregar), K.M., V.H. and T.K.; Visualization, A.K. (Andraž Kravos) and K.M.;
Supervision, V.H. and T.K.; Project Administration, V.H. and T.K.; Funding Acquisition, V.H. and T.K.
All authors have read and agreed to the published version of the manuscript.

Funding: The research is partially funded by the Slovenian Research Agency (Research Core Funding
No. P2-0401), by the CD Laboratory for Innovative Control and Monitoring of Automotive Powertrain
Systems and by the Austrian Research Promotion Agency (Research Project No. 854867: SoH4PEM;
Research Project No. 871541: HyPE-FC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Energies 2021, 14, 4380 14 of 16

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Model Parameters

The values of the material parameters used in the model, such as material densities,
surface tensions, and molar masses, obtained from the literature, are listed in Table A1,
alongside the source from which the value was taken.

The calibration parameter values obtained in the optimization procedure for all three
experiments at once are provided in Table A2, alongside their units and short descriptions.

Table A1. List of model parameters obtained from the literature.

Parameter Value Units Description Source

ρPt 21,090 kg m−3 Pt density Ref. [46]
ρPt–OH 14,170 kg m−3 Pt–OH density Calc. from Ref. [46]
ρPt=O 14,100 kg m−3 Pt=O density Ref. [46]

ρC 2000 kg m−3 Carbon support density -
σPt 2.73 J m−2 Pt surface tension Ref. [46]

σPt–OH 1.34 J m−2 Pt–OH surface tension Calc. from Ref. [46]
σPt=O 1 J m−2 Pt=O surface tension Ref. [46]
MPt 0.195 kg mol−1 Pt molar mass Ref. [46]

MPt–OH 0.212 kg mol−1 Pt–OH molar mass Calc. from Ref. [46]
MPt=O 0.211 kg mol−1 Pt=O molar mass Ref. [46]

MC 0.012 kg mol−1 Carbon molar mass -
MH2O 0.018 kg mol−1 Water molar mass -

rOx 30,000 J mol−1 Pt oxide interaction Ref. [46]
krev 0.3 - Pt oxidation reversibility Ref. [20]
ΓPt 2.15 As m−2 Pt surface site density Ref. [46]
ΓC 4.6 As m−2 Carbon surface site density Refs. [4,32]

cPt2+ ,ref 1000 mol m−3 Reference Pt2+ concentration Ref. [46]

Table A2. List of model calibration parameters and their calibrated values.

Parameter Value Units Description

kPt1 2.4744 nmol m−2s−1 Pt→Pt–OH reaction rate
kPt2 28,351 nmol m−2s−1 Pt–OH→Pt=O reaction rate
kPtDis 3.9306 nmol m−2s−1 Pt→Pt2+ reaction rate
kC1 156.71 nmol m−2s−1 C→C–OH reaction rate
kC2 392.56 nmol m−2s−1 C–OH→CO reaction rate
kPtC 12,422 nmol m−2s−1 CO2 production reaction rate
kCC 0.1786 nmol m−2s−1 C–OH→CO2 reaction rate
αPt1 0.3910 - Pt→Pt–OH transfer coefficient
αPt2 0.5080 - Pt–OH→Pt=O transfer coefficient
αPtDis 0.4792 - Pt→Pt2+ transfer coefficient
αC1 0.5290 - C→C–OH transfer coefficient
αC2 0.5031 - C–OH→CO transfer coefficient
αPtC 0.5201 - CO2 production transfer coefficient
αCC 0.5498 - C–OH→CO2 transfer coefficient

ΘPtinit 0.1985 - Initial free Pt surface
ΘPt–OHinit 0.4181 - Initial surface covered with OH

ΘCinit 0.2068 - Initial free C surface
ΘC–OHinit 0.1929 - itial surface covered with OH
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