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Abstract: Non-intrusive load monitoring (NILM) is an approach that helps residents obtain detailed
information about household electricity consumption and has gradually become a research focus
in recent years. Most of the existing algorithms on NILM build energy disaggregation models
independently for an individual appliance while neglecting the relation among them. For this
situation, this article proposes a multi-chain disaggregation method for NILM (MC-NILM). MC-
NILM integrates the models generated by existing algorithms and considers the relation among these
models to improve the performance of energy disaggregation. Given the high time complexity of
searching for the optimal MC-NILM structure, this article proposes two methods to reduce the time
complexity, the k-length chain method and the graph-based chain generation method. Finally, we
use the Dataport and UK-DALE datasets to evaluate the feasibility, effectiveness, and generality of
the MC-NILM.

Keywords: non-intrusive load monitoring (NILM); energy disaggregation; multi-chain disaggrega-
tion; machine learning

1. Introduction

Energy is the material basis for the progress and development of human society.
Electricity is a very convenient way to transfer energy, and it has been adapted to a huge
and growing number of uses. Nowadays, global electricity consumption is increasing
year by year, and people are facing an increasingly severe energy shortage problem. The
management and optimization of energy usage can effectively reduce energy consumption.
Knowing the detailed usage of energy can effectively help residents optimize electric energy
management. Some research [1] pointed out that disaggregated information can help
householders to reduce energy consumption by 15%. Therefore, household electrical energy
consumption analysis has gradually become a research field that attracts much attention.

In terms of household energy management, load monitoring is an approach that helps
residents save energy. The purpose of load monitoring is to obtain power data of various
appliances in the entire house. Power companies can use load monitoring approach to get
information about the users’ energy consumption composition and strengthen load-side
management. Such energy consumption information can guide the users to schedule the
usage of the high-power non-emergency load to adjust the peak-to-valley difference and
reduce network losses. Currently, researchers divide load monitoring into two categories:
intrusive and non-intrusive [2]. Intrusive load monitoring uses sensors installed on each
line to collect data for each appliance’s status and power. The result of this scheme is
relatively accurate, but it needs to install a large number of sensors in residents’ houses
with the high cost and low feasibility. Non-intrusive load monitoring (NILM) is also called
energy disaggregation, which does not need to install sensors on all lines. The sensors
only need to monitor the voltage, current, and other signals at the entrance of the power
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system, which significantly reduces the hardware cost and installation complexity. NILM
can be used for home energy management systems (HEMS) and ambient assisted living
(AAL) [3–5].

Hart first proposed the concept of NILM and its solutions in the 1990s [6]. Many
researchers have proposed various solutions ever since. Ways to solve the NILM problem
can be divided into low-frequency approaches and high-frequency approaches accord-
ing to the sampling rate of the input signals. Low-frequency approaches use data (i.e.,
features) produced at rates lower than the alternating current (AC) base frequency, and
high-frequency approaches use data sampled at rates higher than the AC base frequency [7].
Although more information can be extracted from high-frequency data [8], the required
data acquisition equipment is more expensive. Therefore, this article studies the low-
frequency approaches.

The main stages in NILM are: data collection, event detection, feature extraction,
and load identification [9]. Ruzzelli et al. [10] proposed a method for NILM using the
steady-state voltage information (i.e., peak value, average value, and standard devia-
tion) and its waveform characteristics. Hassan et al. [11] used voltage-current traces for
NILM and pointed out that using the combination of voltage and current traces is more
straightforward to distinguish among different appliances than using voltage waveforms
or current waveforms individually. Figueiredo et al. [12] proposed a non-negative tensor
disaggregation method to extract features. They used the extracted features to perform
energy disaggregation. Batra et al. [13] regarded NILM as a combinatorial optimization
problem and proposed an algorithm to solve this problem. Some researchers are inspired
by speech recognition and used hidden Markov models and their variants to solve this
problem [14,15]. Some researchers [16,17] have also proposed event-based disaggregation
methods. They first extracted the rising/falling edge characteristics. They then used differ-
ent classification methods to classify the features to infer the appliances’ power, including
support vector machines (SVM), fuzzy logic (FL), Naive Bayesian (NB), K-means, and
decision tree (DT).

In recent years, with the continuous breakthroughs in computer vision, speech recog-
nition, natural language processing, and other fields using deep learning, many scholars
have also begun to use deep learning methods to solve the NILM problem. In 2015,
Kelly et al. [18] used long short-term memory (LSTM), denoising autoencoder (DAE), and
other deep neural networks to solve the NILM problem with low-frequency signals. Nasci-
mento [19] used convolutional neural network (CNN) and recurrent neural network (RNN)
for energy disaggregation. Kim et al. [20] applied gated recurrent unit (GRU) to NILM.
Zhang et al. [21] proposed a sequence-to-point (Seq2point) method, which used mains
data to generate the model’s input through a sliding window. The model’s output is the
estimated power of the target appliance corresponding to the input data at the middle
of the time. Pan et al. [22] applied generative adversarial network (GAN) to NILM and
proposed a sequence-to-subsequence (Seq2subseq) method based on conditional GAN
(cGAN). Puente et al. [23] proposed an unsupervised disaggregation method, which can
identify the behavior of each appliance from mains power data through soft computing
technology. The method proposed in this work establishes a box model composed of a
sequence of rectangles of different heights (powers) and widths (times) to detect power
changes. Piccialli et al. [24] combined the power and status information of the appliance
and used a deep neural network that combines a regression sub-network with a classifica-
tion sub-network to solve the NILM problem. The deep neural network used regression
sub-network to infer the appliance’s power and classification sub-network to infer the state
of the appliance. This work also added the attention mechanism to the deep neural network
to improve the generalization ability of the neural network. Lee et al. [25] proposed an
auto-encoder compression model based on the frequency selection method for NILM in
the Internet of Things (IoT) environment, which can improve the reconstruction quality
while maintaining the compression ratio (CR).
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All of the above methods regard the models used to infer different appliances as inde-
pendent models, and there is no correlation between the models. Jia et al. [26] proposed
a tree structure model (treeCNN) for NILM, which considers the relation of models for
different target appliances. TreeCNN placed different models as sub-models in the tree
structure nodes to generate an overall model, which maintained the relative independence
of each sub-model and established a connection between them. Although this method is
called a tree structure method, the sub-models in treeCNN are all in a chain. Therefore,
in this article, we call this disaggregation method the single-chain disaggregation method
for NILM (SC-NILM). In [26], a brute-force method and a greedy method are proposed to
obtain the single-chain. For the convenience of description, in this article, we will call them
Opt-SC and Gre-SC, respectively. Batra et al. [27] developed a non-intrusive load monitor-
ing toolkit (NILMTK) to facilitate researchers to use existing public datasets and quickly
implement their ideas. At present, the toolkit integrates a total of 12 NILM algorithms.

When performing energy disaggregation, most researchers input mains data into
a specific model, and the model outputs the inferred value of the power of the target
appliance. In other words, inferring the power of multiple target appliances requires
many independent models. In this article, we use the existing model for individual target
appliances as a sub-model. Furthermore, multiple sub-models constitute multiple chains.
The output of the end node of each chain is an inferred value of the power of the different
appliances. The chains constitute an overall model, which we call the MC-NILM. Due to
the high time cost of using the brute-force method to obtain the MC-NILM with the best
performance, this article proposes two solutions to reduce complexity. The first approach
is to reduce the total number of MC-NILM by limiting the maximum length of chains.
This solution can reduce the search space when using the brute-force method to search for
the best-performing MC-NILM. The second approach is to evaluate the relative position
of each pair of sub-models in a chain for a target appliance and use this information to
guide the searching of chain structure with a graph-based algorithm (GBA). We tested
MC-NILM on two public datasets, Dataport and UK-DALE, and used different metrics
to evaluate performance. Experimental results show that our MC-NILM is better than
several baselines, including Opt-SC and Gre-SC. The performance gap between our chain
searching methods and the exhaustive search is close.

The main contributions of this paper are as follows:

(1) We proposed a multi-chain energy disaggregation method that considers the relation-
ship between appliances for energy disaggregation and constructs a separate energy
disaggregation chain for each appliance;

(2) We proposed two methods to reduce the complexity of the search for MC-NILM
structure;

(3) Our experimental results demonstrated that the MC-NILM method is a general
framework to leverage the existing NILM algorithms as sub-models and improve the
overall performance of the original algorithms.

This article is organized as follows. Section 2 describes the NILM problem. Section 3
presents our MC-NILM framework and two methods to reduce the complexity of obtaining
MC-NILM. Section 4 describes the process of the experiment and the results obtained.
Finally, Section 5 concludes this article.

2. NILM Problem Statement

NILM is a computational technique for estimating the power of individual appliances
from the data obtained from a single meter that measures total power consumption [18,28].

Use Y to represent the household’s observed mains power from time 1 to T, and Y
can be represented as follows:

Y =
{

y(t)|y(t) ∈ R∗, 1 ≤ t ≤ T, t ∈ N+
}

. (1)

The set of N appliances that need to infer power is defined as A,
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A =
{

Ai|1 ≤ i ≤ N, i ∈ N+
}

. (2)

The power of the appliance Ai can be expressed as

Xi =
{

xi(t)|xi(t) ∈ R∗, 1 ≤ i ≤ N, i ∈ N+, 1 ≤ t ≤ T, t ∈ N+
}

. (3)

In addition, the mains also includes some appliances that do not need to infer power.
The power of these appliances is added together as a whole as an unconcerned appliance U,

U =
{

u(t)|u(t) ∈ R∗, 1 ≤ t ≤ T, t ∈ N+
}

. (4)

In addition, the mains data also contains noise, and ε(t) is used to represent the
noise in the mains at time t. The relationship between mains and its components can be
expressed as

y(t) =
N

∑
i=1

xi(t) + u(t) + ε(t). (5)

The purpose of NILM is to reconstruct the Xi from Y.

3. MC-NILM
3.1. Overview

This article proposes the MC-NILM based on the following idea. When inferring
the power of the target appliance Ai, the data of other appliances in the mains acts as
interference. If the data of other appliances are removed from the input data as much
as possible, the power of Ai can be inferred from mains more easily. This article uses
an iterative method with a chain structure to remove the power of non-target appliances
from the mains gradually. The function of nodes in the chain except the end node is to
infer the power of other appliances except Ai. We subtract the inferred power from the
input data of the node as the input data of the subsequent node. The output of the end
node is the inferred power of the target appliance Ai. This method simplifies the input
data of the end node and improves the ability of the end node to infer the power of Ai.
The permutation of other appliances in the chain affects the inferred output about Ai.
Since each appliance has its unique characteristics and energy consumption pattern, the
optimal chains for different target appliances are also different. Therefore, we need to use
multiple chains to infer the power of multiple target appliances, which is called MC-NILM.
At present, the most similar to our idea is treeCNN [26]. However, the treeCNN uses a
single chain for all target appliances (SC-NILM). As will be shown later, our proposed
MC-NILM method can achieve better performance. Figure 1 shows a schematic diagram of
the three disaggregation schemes. They are (a) the independent method adopted by most
researchers, (b) the SC-NILM proposed in [26], (c) the MC-NILM proposed in this article.
Figure 1 uses the five appliances studied in [26] to illustrate the three schemes.
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Figure 1. Schematic diagram of three energy disaggregation methods. (a) Independent method;
(b) SC-NILM; (c) MC-NILM. (AC: Air conditioner, FR: Fridge freezer, WD: Wash dryer, DW: Dish
washer, MW: Microwave)
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Figure 1. Schematic diagram of three energy disaggregation methods. (a) Independent method;
(b) SC-NILM; (c) MC-NILM. (AC: Air conditioner, FR: Fridge freezer, WD: Wash dryer, DW: Dish
washer, MW: Microwave).

In MC-NILM, each appliance has its disaggregation chain. The set of multiple chains
is denoted by M = {Mchain(i)|1 ≤ i ≤ N, i ∈ N+}, where Mchain(i) denotes the disag-
gregation chain for Ai. Mchain(i) is an ordered list of sub-models. Furthermore, we use
Msub(Z\A

′
, i) to represent a sub-model used to infer the power of Ai from the power of

the corresponding components in Z\A
′
, where Z is a collection of all mains components

including target appliances, unconcerned appliances and noise, A
′

is a subset of A, Z\A
′

represents the set Z subtract the power of appliances in set A
′
, i is the index of the appliance.

In particular, when A
′

is an empty set, Z\A
′

is abbreviated as Z, and Z\Aj represents the
set formed by taking out the appliance Aj from the set Z. In addition, this article uses
P(Z, i) to represent the performance of Msub(Z, i).

The overall process of MC-NILM to infer the power of the target appliances is
as follows:

• We divide the whole dataset into three parts: sub-model training dataset Dtrain, multi-
chain structure search dataset Dsearch, and performance testing dataset Dtest;

• We use Dtrain to train multiple sub-models, which can be used to form disaggrega-
tion chains;

• We use Dsearch to search for the optimal multi-chain model for the target appliances,
which is denoted by Mopt as a whole;

• We evaluate the performance of Mopt on Dtest.

Next, we will introduce the details of the MC-NILM.

3.2. Sub-Model Training

The MC-NILM proposed in this article consists of sub-models that can be created by
any existing NILM method. As mentioned in the previous subsection, the first step in
creating an MC-NILM is to train sub-models. For ease of description, we use the red node
of an air conditioner (AC) in Figure 1c to illustrate the training process of the sub-model.
In the training stage of the sub-model, the feature is ground truth power data obtained by
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subtracting the fridge freezer (FR) and microwave (MW) power data from the mains data.
The label is the ground truth power data of the AC. In the sub-model’s inference stage,
the sub-model’s input is the data obtained by gradually subtracting the output value of
the node before the sub-model from the mains. The input of the sub-model is the inferred
value of the power of the FR and the MW, and the output is the inferred value of the power
of AC. This approach can reduce the complexity of the input data of the sub-model and
reduce the difficulty of the sub-model training process.

3.3. Energy Disaggregation in a Chain

Figure 1c illustrates an example of the MC-NILM. When inferring the power of the
target appliances, the MC-NILM uses different chains to infer the power of different target
appliances. The input for all chains is the mains power. Along a particular chain, the
powers of several other appliances except for the target one are inferred with sub-models
and extracted from the mains power iteratively. The output at the end of the chain is then
the inferred power of the target appliance. In this way, due to its multi-chain structure,
the MC-NILM can obtain power inference data for each target appliance through mains.
Algorithm 1 describes the details of the MC-NILM.

Algorithm 1: Process of inferring power of appliance by MC-NILM
Input: The model of MC-NILM, M; mains data, Y
Output: The collection of inferred values of power of the target appliances, X

′

1 X
′ ← ∅;

2 for each Mchain(i) in M do
3 input← Y;
4 for each Msub in Mchain(i) do
5 output← Msub(input);
6 input← input− output;

7 X
′ ← X

′ ∪ output;

8 return X
′

3.4. Complexity Analysis

Here we analyze the complexity of the brute-force method to search for the optimal
MC-NILM model. Let us calculate the number of models generated by the MC-NILM
method and the number of sub-models that need to be trained. We consider the case where
the number of target appliances that need to infer power is N. For a particular chain of
Ai, during the training process, the target output of the sub-model in the end node of this
chain remains unchanged, but its input has many possibilities, and the length of the chain
varies from 1 to N. When the chain length is L(1 ≤ L ≤ N), this method needs to select
L− 1 appliances from N − 1 appliances as the predecessors of the end node, which results
in a total of PL−1

N−1 different chains. Because of 1 ≤ L ≤ N, there are a total of ∑N
L=1 PL−1

N−1
kinds of chains for Ai. When inferring the power of N appliance, we need to evaluate

the performance of
(

∑N
L=1 PL−1

N−1

)N
models and select the MC-NILM model with the best

performance. For these whole models, we need to train N ×∑N
L=1 CL−1

N−1 sub-models.
For example, the construction of all the MC-NILM models for 5 types of target appli-

ances requires training 80 sub-models. The greater the number of sub-models, the more
time and space are required to create the sub-models. The MC-NILM can use a variety of
NILM methods to create sub-models. When using deep learning methods, model training is
exceptionally time-consuming. Therefore, we need to reduce the complexity of MC-NILM.

3.5. Complexity Reduction

From the previous analysis, obtaining an MC-NILM with the best performance
through the brute-force method requires creating a large number of sub-models, and
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the complexity and time cost are too high. Therefore, we propose two solutions to reduce
the complexity of MC-NILM.

3.5.1. K-Length Chain

We can reduce the total number of models by limiting the maximum length of the
chains. When we limit the maximum length of the chains to k(k ∈ N+, k ≤ N), the MC-

NILM method requires N ×∑k
L=1 CL−1

N−1 different sub-models to generate
(

∑k
L=1 PL−1

N−1

)N

different models. Reducing k can reduce the number of MC-NILM and reduce the number
of sub-models required. Meanwhile, limiting k may affect the performance of the MC-
NILM. In the extreme case, when k = 1, the MC-NILM converts to the existing independent
model with low complexity and poor performance. Therefore, there is a trade-off between
complexity and performance.

3.5.2. Graph-Based Chain Generation

In addition, we proposes a graph-based chain generation algorithm (GBA) for obtain-
ing MC-NILM. This solution generates an MC-NILM based on the relationship between the
two appliances. First, we train the sub-model Msub(Z, i) for all N target appliances and ob-
tain P(Z, i). The sub-model uses the same metrics as the MC-NILM, so the performance of
the MC-NILM is optimized through the performance data of the sub-model. Subsequently,
for each target appliance Ai, we use the remaining appliance Aj as its previous appliance
training sub-model Msub

(
Z\Aj, i

)
, and then combine Msub(Z, j) and Msub

(
Z\Aj, i

)
into

a chain and then obtain P
(
Z\Aj, i

)
. Comparing P(Z, i) and P

(
Z\Aj, i

)
, if P

(
Z\Aj, i

)
is

better than P(Z, i), it means that when inferring the power of Ai, it is better to extract Aj
before Ai than to extract Ai directly. To obtain the MC-NILM, we convert the information
about the relationship of these paired appliances into a graph structure.

We regard each appliance as a vertex of the graph. The weight w(j, i) of the directed
edge e(j, i) connecting the vertex j (Vj) and the i (Vi) is the degree of optimization of
P
(
Z\Aj, i

)
compared to P(Z, i). A negative value of w(j, i) means that the performance of

Msub
(
Z\Aj, i

)
is better than Msub(Z, i). The specific calculation method is related to the

selection of metrics. Although there are many different chains in MC-NILM, the input of
all chains is the same data. To obtain NILM, We add a special vertex (V0) to the graph,
whose outgoing edges with zero weight point to all other vertices. The structure of the
MC-NILM is obtained by finding the paths from the V0 to all other vertices, as shown in
Algorithm 2. The paths have two properties:

(1) Because an appliance cannot exist more than once in a chain, these paths should be
simple paths with non-cyclic.

(2) These paths should be the shortest paths from the V0 to the Vi of the target appliances
Ai to ensure that the performance obtained by inferring the power of the target
appliance through the paths is the best.

It can be seen from Algorithm 2 that in the process of using GBA to obtain MC-NILM,
first, we need to train N × (N − 1) sub-models for graph construction for N appliances
(line 7 to 9). Then, after the shortest paths (chains) for appliances are determined, we
need to train the remaining missing sub-models within these paths (line 15 to 22), and the
number of trained sub-models here may vary between 0 and N× (N − 2). Compared with
the exhaustive method, this method can significantly reduce the number of sub-models
that need to be trained.
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Algorithm 2: Graph-based algorithm (GBA) for chain generation.
Input: The power data of mains, Y; The ground truth of power of target appliance

Ai, Xi; The total number of target appliance, N
Output: The MC-NILM, M

1 G[i][j] = INF, 0 ≤ i ≤ N, 0 ≤ j ≤ N;
// Init G, G is an matrix represents the graph for appliance

relation.
2 for i = 1; i ≤ N; i ++ do
3 G[0][i]← 0;

4 for i = 1; i ≤ N; i ++ do
5 use Y and Xi to train Msub(Z, i) and get P(Z, i);
6 for j = 1; j ≤ N; j ++ do
7 if j 6= i then
8 use Y, Xi and Xj to train Msub

(
Z\Aj, i

)
and get P

(
Z\Aj, i

)
;

9 G[j][i]← di f f erence between P
(
Z\Aj, i

)
and P(Z, i);

10 R← ∅;
// R is the collection of shortest simple paths which from the V0

to each vertex.
11 for i = 1; i ≤ N; i ++ do
12 get Ri based based on depth-first search (DFS);

// Obtain the shortest simple path from the V0 to Vi.
13 R← R ∪ Ri;

14 M← ∅;
15 for i = 1; i ≤ N; i ++ do
16 A

′ ← ∅, Mchain(i)← [];
17 for each a in Ri do
18 if Msub

(
Z\A

′
, a
)

not exist then

19 train Msub

(
Z\A

′
, a
)

;

20 A
′ ← A

′ ∪ a;

21 Mchain(i).append
(

Msub

(
Z\A

′
, a
))

;

22 M← M ∪Mchain(i);

23 return M

4. Experiment

In our experiment, we first studied the trade-off between the maximum length of the
chains and the performance of the MC-NILM. Next, we compared the results of the five
methods and proved the feasibility and effectiveness of the MC-NILM. Finally, we used
some algorithms provided by NILMTK to create sub-models of the MC-NILM to verify the
generality of the MC-NILM.

We used the Tensorflow and PyTorch framework for deep learning, and the specifica-
tion of our workstation for training the proposed model is as follows:

• CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz (8 cores);
• GPU: GeForce RTX 2080 Ti (×1);
• RAM: 16 GB;
• OS: Ubuntu 16.04.7 LTS;
• TenserFlow: 1.14.0;
• PyTorch 1.3.1.

4.1. Datasets

We used two datasets in the experiment: Dataport [29] and UK-DALE [30].
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• Dataport: Dataport is the largest public residential home energy dataset. It contains
power readings logged at minute intervals from hundreds of homes in the United
States. We used 112 days of data from 68 homes from mid-June onwards in the year
2015. We divided the data of 68 families into Dtrain, Dsearch and Dtest datasets, with
dataset size ratio of 60%, 20% and 20%, respectively.

• UK-DALE (UK Domestic Appliance-Level Electricity): This dataset contains power
readings logged at 6 seconds intervals of more than ten types of appliances in five
households in the UK. We chose 5 appliances: kettle, microwave, dishwasher, fridge
freeze, and washer dryer as our target appliance. These 5 appliances have different
energy consumption modes, which can verify the performance of the models in almost
all aspects. In the experiment, we used the data from April 2013 to October 2013 as
Dtrain, the data from October 2013 to April 2014 as Dsearch, and the data from April
2014 to October 2014 as Dtest.

4.2. Experimental Settings
4.2.1. Baseline

To evaluate the effect of our proposed complexity reduction methods, we used the
brute-force method and the greedy algorithm in [26] as the baselines for comparison. To
illustrate that our MC-NILM as a general framework can improve the performance of the
existing NILM methods, we selected the edge detection [31], combinatorial optimization
(CO) [32], exact factorial hidden Markov model (Exact FHMM) [33], denoising autoencoder
(DAE) [18] and online GRU [34] as the sub-models.

4.2.2. Metric

We used three metrics to measure the performance of the model during the experiment:
mean absolute error (MAE), signal aggregate error (SAE), and F1. Denote xi(t) as the
ground truth of the power of Ai at time t and x

′
i(t) as the corresponding inferred value.

When we are interested in the error in power at every time point, we use the mean
absolute error (MAE)

MAEi =
1
T

T

∑
t=1
|xi(t)− x

′
i(t)|. (6)

MAE provides a measure of errors that is less affected by outliers, i.e., isolated predictions
that are particularly inaccurate.

When we are interested in the total error in energy over a period, we use the nor-
malised signal aggregate error (SAE)

SAEi =
|r′i − ri|

ri
. (7)

where r
′
i and ri denote the inferred and ground truth total energy consumption of an

appliance, that is r
′
i = ∑T

t=1 x
′
i(t) and ri = ∑T

t=1 xi(t). This metric is useful because a
method could be accurate enough for reports of daily power usage even if its per-timestep
prediction is less accurate.

NILM can also be regarded as a classification task. The appliance’s state can be divided
into on and off. We set the power-on threshold for each appliance and judge its status based
on comparing the power and power-on threshold. Table 1 shows the power-on threshold
of appliances.

Table 1. Power-on threshold for each appliance.

Appliance Kettle Microwave Dish Washer Fridge Freezer Wash Dryer Air Conditioner

Threshold 2000 200 10 50 20 1000

We used state-based precision, recall, and F1 measure metrics, which are defined as:
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precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

F1 = 2× precision× recall
precision + recall

(10)

where TP, FP, and FN refer to the total number of true positives, false positives, and false
negatives in the data, respectively.

4.3. Experiment Results
4.3.1. Evaluation of Complexity Reduction Algorithms

We first evaluated the influence of the maximum length of chains on the performance
of MC-NILM. In Figure 2, the performance of the optimal MC-NILM using the brute-force
method (Opt-MC), the average performance of all MC-NILM (Avg-MC), the performance
of the model obtained by GBA (GBA-MC), and the optimal performance of the model
obtained through brute-force method of the SC-NILM (Opt-SC) are compared. We used
different methods to create sub-models and experimented on different datasets. For
Dataport, we used the CNN network architecture proposed in [26], and for UK-DALE, we
used the Seq2point method proposed in [21]. The chain length of the Opt-SC is fixed with
the number of target appliances. As shown in Figure 2, although the data in Figure 2a,b
are different due to the different datasets and the methods of creating sub-models, the
two figures show similar information. For a given maximum length of the chains, the
performance of GBA-MC is always better than Avg-MC but slightly worse than the Opt-MC.
As the maximum length of the chains increases, the performances of Avg-MC, GBA-MC,
and Opt-MC have different improvements. In addition, when the length of the chains is
short (i.e., less than 3), the performances of all MC-NILM methods are not as good as the
Opt-SC. Besides, as the maximum length of the chains increases, the marginal performance
improvement of all MC-NILM models all decreases. Obviously, there exists a trade-off
between model performance and complexity.

The GBA-MC reduces the time complexity of creating an MC-NILM by reducing the
number of sub-models that need to be trained. In the above experiments, we used two
methods of brute-force and GBA to obtain MC-NILM with chains of different maximum
lengths. We have counted the number of required sub-models for the two methods, as
shown in Table 2. It can be seen from this table that the number of sub-models required
by the GBA-MC is no more than that of the Opt-MC, and as the maximum length of the
chains increases, the GBA-MC saves more sub-models.
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Figure 2. The influence of the maximum chain length on the performance of the MC-NILM. (a)
Results of experiments using the Dataport; (b) Results of experiments using the UK-DALE.

4.3.2. MC-NILM vs. SC-NILM368

To verify our proposed MC-NILM and GBA feasibility, we used five methods, two369

sub-model creation methods, two datasets, and three metrics for experiments. The five370

methods are:371

1) The brute-force method to obtain the optimal SC-NILM (Opt-SC).372

2) The greedy method to obtain the SC-NILM (Gre-SC) [26].373

3) The brute-force method to obtain the optimal MC-NILM (Opt-MC).374

4) Calculate the average performance of all MC-NILM (Ave-MC).375

5) GBA to obtain the MC-NILM (GBA-MC).376

Figure 2. The influence of the maximum chain length on the performance of the MC-NILM. (a)
Results of experiments using the Dataport; (b) Results of experiments using the UK-DALE.

Table 2. Numbers of sub-models required for the the Opt-MC and GBA-MC.

Max Length 1 2 3 4 5

Opt-MC 5 25 55 75 80
GBA-MC 5 25 30 34 37

4.3.2. MC-NILM vs. SC-NILM

To verify our proposed MC-NILM and GBA feasibility, we used five methods, two
sub-model creation methods, two datasets, and three metrics for experiments. The five
methods are:

(1) The brute-force method to obtain the optimal SC-NILM (Opt-SC).
(2) The greedy method to obtain the SC-NILM (Gre-SC) [26].
(3) The brute-force method to obtain the optimal MC-NILM (Opt-MC).
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(4) Calculate the average performance of all MC-NILM (Ave-MC).
(5) GBA to obtain the MC-NILM (GBA-MC).

Among them, both Opt-SC and Gre-SC use single-chain structure. The difference lies
in the method of obtaining the single-chain structure. Opt-MC, Ave-MC, and GBA-MC
are multi-chain structures. To obtain better model performance, we set the maximum
length of the chains to the total number of appliances, which is 5. The two sub-model
creation methods are still the network architecture used in the [21,26]. The two datasets are
Dataport and UK-DALE. The three metrics are MAE, SAE, and F1.

Table 3 shows the experimental results. For different datasets and sub-model creation
methods, the best overall model is the Opt-MC. The performance of GBA-MC is slightly
worse than that of the Opt-MC, but it is always better than the performance of the Opt-SC
and the performance of the Gre-SC. Thus, the MC-NILM scheme outperforms the SC-
NILM. It is worth noting that the Avg-MC is sometimes lower than the Opt-SC. In many
MC-NILM structures, the sub-models are inappropriate positions, which leads to poor
overall performance. Therefore, the careful design of chain structure is necessary.

Table 3. Performance of different methods on different datasets.

Dataset Metrics Opt-SC Gre-SC Ave-MC Opt-MC GBA-MC

Dataport
MAE 42.763 43.819 42.359 41.561 41.982
SAE 0.402 0.426 0.356 0.310 0.326
F1 0.424 0.402 0.459 0.497 0.462

UK-DALE
MAE 13.372 13.938 13.171 12.801 12.972
SAE 0.112 0.125 0.114 0.090 0.099
F1 0.563 0.538 0.581 0.633 0.620

4.3.3. Generality of MC-NILM

To verify the generality of the MC-NILM, we used a variety of existing NILM methods
as sub-models to form an MC-NILM and compare the performance of the original method
with the performance of the MC-NILM. In this experiment, we use five methods in NILMTK
as sub-models. i.e., edge detection, CO, and Exact FHMM, DAE, and online GRU. We use
the UK-DALE dataset and the MAE metric. Since it is time-consuming to obtain the best
MC-NILM through the brute-force method, the experiment in this subsection uses GBA to
get the MC-NILM with the maximum length of the chain equal to the number of target
appliances, which is set to 5. The results in Table 4 show that no matter what underlying
model we use as a sub-model, the MC-NILM outperforms the original method. Besides, the
framework provides greater performance improvement for deep learning based methods
(i.e., DAE and Online GRU) than the other non deep learning based methods (i.e., edge
detection, CO and Exact FHMM). The potential reason is that in the process of multi-
chain disaggregation, the input of the latter sub-model is the output from the predecessor
sub-model. Therefore, the MC-NILM requires the output of sub-models to be as close to
the ground truth as possible. The performance of the non deep learning based methods
used in this subsection is worse than that of the deep learning based methods, resulting
in poor accuracy of the output of the predecessor sub-models, which affects the overall
performance of the MC-NILM.

Table 4. Improvements of GBA-NILM over the original model in terms of the MAE metric.

Method Edge Detection CO Exact FHMM DAE Online GRU

Original method 68.673 61.379 53.744 18.423 11.469
GBA-NILM 65.903 57.800 49.909 16.902 10.389

Improvement (%) 4.034 5.831 7.136 8.256 9.417
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5. Conclusions

Based on the existing independent NILM algorithm for each appliance, this article
designs an MC-NILM framework to use these existing models as sub-models to form the
overall model. The MC-NILM connects sub-models into different chains for appliances
and extracts appliances’ power data from mains iteratively, which improves the overall
performance of the energy disaggregation task. When acquiring an MC-NILM, because of
the high complexity of obtaining the MC-NILM with the best performance by brute-force
methods, two solutions are proposed to solve this problem from a different aspect. The
k-length chain method reduces the total number of models generated by the multi-chain
scheme by limiting the maximum length of the chain, and we can select a model from
all models by brute force or GBA. GBA uses the relative position of each pair of sub-
models in a chain for a target appliance to generate multi-chain and only generates one
model. The k-length method reduces the time consuming to obtain MC-NILM by adding
constraints, while the GBA discovers and uses additional knowledge. The two ways do
not conflict and complement each other. The characteristic of k-length methods is that it
cannot use the relationship between appliances but is easy to implement, while the GBA
method is the opposite. Finally, we conducted experiments on two datasets to verify the
feasibility, effectiveness, and generality of the MC-NILM scheme. We will further study
better ways to find MC-NILM structures with higher performance and lower complexity
in our future work.
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