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Abstract: The present study experimentally and numerically investigates the effect of channel height
on the flow and heat transfer characteristics of a channel impingement cooling configuration for
various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets
with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel
heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured
by maintaining a temperature difference between the jet exit and the target surface in the range of
15–17 ◦C for each channel height. The experimental results show the average heat transfer coefficient
at the target surface increases with the jet Reynolds number and decreases with the channel height.
An average Nusselt number correlation is developed based on 85 experimentally measured data
points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts
the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the
flow structure and its effect on the local heat transfer characteristics. The present study advances
the primary understanding of the flow and heat transfer characteristics of the channel impingement
cooling configuration with liquid jets.

Keywords: jet impingement; confined array jets; heat transfer coefficient; computational fluid dy-
namics

1. Introduction

High power density devices such as computer chips, power inverters, X-ray systems,
and microwave weapons have been undergoing size miniaturization in the past decade,
leading to increased demand for high heat flux removal from a small surface area. For
the safe operation of the high-power density devices, maintaining constant and uniform
temperature is an important task. Hence, different convection cooling schemes, includ-
ing microchannel heat sink [1–4], spray cooling [5,6], and jet impingement [7–10], were
developed to deal with the high heat flux.

Jet impingement cooling, ejecting high-velocity coolant from a nozzle or an orifice
plate perpendicular to the target surface, yields a highly concentrated heat removal rate
at the impact zone, which effectively cools a small area dissipating high heat flux. By
utilizing both air and liquid as coolant, jet impingement cooling was studied in a variety
of fields demanding dissipation of highly concentrated heat; cooling of blades in a gas
turbine engine [11–20], quenching process in steel industries [21], and avionics cooling [22].
Jet impingement cooling is classified into three different configurations [23]: free jet when
the jet is injected into less dense ambient fluid, submerged jet when the jet is injected into
the same ambient fluid, and confined jet when the jet is injected into a confined space
between the orifice plate and the target surface filled with the same fluid. In the confined
jet configuration, the confined space forms a passage to guide the spent fluid towards the
outlet, making it easier to extract the spent flow. When a jet impinges on the target surface,
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two different flow regions develop near the surface, such as the stagnation and wall jet
regions. In the stagnation region, the impinging flow changes its trajectory into radially
accelerating outward flow due to pressure gradient, causing a high heat transfer rate
because of boundary layer thinning. On the other hand, the radial flow decelerates at the
wall jet region, and the heat transfer rate decreases along the radial direction. One drawback
of jet impingement cooling is a high cooling rate difference between the stagnation and the
wall jet regions, making a single jet inadequate for cooling a large surface area. However,
this drawback can be overcome by using an array of jets to cover a large surface area,
resulting in uniform temperature on the target surface. In the array configuration, the
spent fluid ejected from the upstream jet forms a crossflow. The crossflow deflects the
trajectories of the downstream jets, which impinges on the target surface at an angle.
Several studies [24–26] reported that the crossflow has a detrimental effect on the heat
transfer rate at the target surface.

Numerous studies were conducted to reduce the effect of crossflow in an array jet
configuration. A hybrid impingement/effusion cooling scheme has been implemented
for turbine blade cooling [12–15]. In the hybrid impingement/effusion cooling scheme,
the spent fluid is extracted to effusion holes on the target surface or jet orifice plate,
significantly reducing crossflow. Hollworth et al. [12] investigated the heat transfer of an
array jet impingement cooling with effusion holes at the target surface. They compared
their results with the cases without effusion holes and found that the array jet with effusion
holes had a 20–30% higher heat transfer rate. Huber and Viskanta [13] investigated an
array jet impingement cooling scheme in which both jet holes and effusion holes were on
the orifice plate. They found that the existence of effusion holes reduces crossflow and
interference between jets, greatly enhancing heat transfer rate. Zhang et al. [15] compared
the cooling performance of the hybrid impingement/effusion cooling and effusion cooling
of a multi swirler combustor. They also concluded that the hybrid impingement/effusion
cooling method was highly effective. A similar concept of extracting spent fluids was
widely investigated in electronics cooling [7–10]. Natarazan and Bezama [7] experimentally
examined a micro-jet array cooler manufactured with multilayer ceramic technology for
thermal management of high-power dissipating electronic chips, which includes an array
of spent fluid extraction holes between jet holes. They achieved more than 250 W/cm2

of heat dissipation with a pressure drop of less than 70 kPa. Wu et al. [10] investigated
an array jet impingement cooling for a simulated chip using an additively manufactured
manifold design that encloses the chip with working fluid. They fabricated an array of
extraction holes between adjacent jet holes to prevent the crossflow formation and jet
interference between neighboring jets in their design. In summary, extracting spent flow
improves heat transfer performance in array jet cooling. The main drawbacks are the
complicated plenum design and difficulties in fabrication.

On the contrary, several studies have utilized crossflow to enhance the heat transfer
by using a narrow channel configuration. Channel impingement cooling scheme was
investigated for cooling turbine blade leading edge [16–19]. In this configuration, single or
double rows of jets impinge on the target surface, and the crossflow is guided along the
channel formed by the target surface, sidewall, and jet plate. Jet impingement at the target
surface and crossflow inside the channel both contribute to heat transfer. The primary
geometric parameters in this cooling scheme are jet hole diameter (Djet), channel height
(Hch), channel width (Wch), jet hole pitch (Xjet), and the number of jets (Njet). Ricklick
et al. [16] experimentally investigated the overall heat transfer of the channel impingement
cooling scheme with a single row of jets at Hch/Djet = 1, 3, 5. They reported that significant
heat transfer occurs at the sidewall of the channel, and it increases for smaller Hch due
to a higher crossflow rate. They also concluded that the channel impingement cooling
scheme is an effective method with respect to coolant usage. Fechter et al. [17] performed
an experimental and numerical study on a narrow channel consisting of a single row of jet
holes with an inline and staggering arrangement. They reported overall heat transfer rate
by both experiment and numerical prediction. Moreover, they found that mass flow rate



Energies 2021, 14, 4327 3 of 16

variation occurs between jet holes due to channel pressure drop. The numerical prediction
was calculated using the Shear Stress Transport (SST) k-ω turbulence model, which agreed
well with experimental results. Terzis et al. [18] experimentally investigated local heat
transfer on the target plate, sidewalls, and jet plate for various Xjet, Wch, Hch, and jet offset
conditions using transient liquid crystal technique. They developed a local heat transfer
correlation at the target plate, sidewalls, and jet plate as a function of jet velocity, channel
crossflow rate, and geometric parameters.

The channel impingement cooling concept can dissipate high heat flux from a small
surface area using a liquid jet and a mini/micro-channel. By taking advantage of both micro-
channel and jet impingement, a hybrid micro-channel/micro-circular-jet-impingement
cooling method using dielectric fluid HFE-7100 was proposed by Sung and Mudawar [26].
They investigated the effect of micro-channel dimensions on the overall heat transfer
characteristics of the hybrid cooling method. They showed that this cooling scheme com-
bines the heat transfer characteristics of both micro-channel and jet impingement, and
the effect of jet impingement cooling increased with increasing mass flow rate. Sung
and Mudawar [27] studied the effect of jet patterns on the hybrid cooling method both
experimentally and numerically. They also found that the contribution of jet impingement
cooling on overall heat transfer increased with increasing mass flow rate. Further, they de-
veloped a single heat transfer coefficient correlation using the superpositioning technique,
in which heat transfer at each portion of the heat transfer surface was assigned as jet im-
pingement or channel cooling. Barrau et al. [28] experimentally investigated the hybrid jet
impingement/micro-channel cooling scheme using water. Later, Barrau et al. [29] studied
the hybrid jet impingement/micro-channel cooling scheme numerically and found that the
SST k-ω turbulence model can effectively predict overall heat transfer characteristics. The
channel impingement cooling scheme with liquid has the ability to dissipate high heat flux
from a small surface; for example, Sung and Mudawar [30] were able to dissipate more
than 300 W/cm2 without phase change.

The local heat transfer at the target surface and the sidewalls were extensively studied
in the channel impingement cooling scheme with air. However, most of the research in the
channel impingement cooling scheme with liquid focuses primarily on the overall heat
transfer [26–30]. Hence, it is essential to investigate the heat transfer at each surface in the
channel impingement cooling scheme with liquid to understand the complex heat transfer
mechanism comprehensively. For the channel impingement cooling with liquid to become
a viable thermal management scheme, it is crucial to attaining an effective design tool,
such as a heat transfer coefficient correlation at each surface [18] and a valid numerical
model [17,29].

The objective of the present study is to investigate the heat transfer characteristics
at the target surface and flow characteristics of channel impingement cooling with water
as a working fluid at different channel heights. Eleven equally-spaced (Xjet/Djet = 6) jet
holes with Djet = 0.8 mm supply deionized water to a narrow channel (Wch/Djet = 2.5)
at four different channel heights (Hch = 3, 4, 5, and 6 mm) and the spent water exits
through both ends of the channel. The average heat transfer coefficients at the target
surface are experimentally measured for jet Reynolds numbers (Rejet) ranging from 2000
to 8600. A new correlation is developed for predicting the average Nusselt number at the
target surface. Moreover, numerical simulations are performed to analyze the observed
experimental trends and investigate the internal flow structure and heat transfer in the
channel impingement configuration.

2. Experimental Method
2.1. Flow Loop

Figure 1 shows the closed circulation flow loop for supplying deionized water to a test
module containing the channel impingement cooling configuration. An insertion heater in
the water reservoir provides water at the desired temperature (30 ◦C) to the flow loop. A
magnetic gear pump (DGS series, Tuthill, Burr Ridge, IL, USA) connected to an inverter is
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used to pump water through the loop. The water is passed through a 45 µm inline filter
before entering the test section. The total flow rate is monitored by a Coriolis mass flow
meter (ALTI mass, Oval Corp., Tokyo, Japan) and is adjusted to obtain the desired value by
controlling the needle valve. The spent water leaves the test module through two outlets.
A rotameter is installed at one of the outlets to ensure equal flow rates at each outlet. The
spent water rejects heat to an external water loop via a water-to-water heat exchanger and
returns to the water reservoir. T-type thermocouples and pressure transducers (PX-409,
Omega engineering, Norwalk, CT, USA) are connected to a data acquisition system to
measure the flow conditions at the inlet and outlets of the test module.
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Figure 1. Schematic of flow loop.

2.2. Test Module

Figure 2 presents the exploded and sectional views of the test module. The test module
has a layered structure composed of inlet housing, jet plate, channel plate, outlet housing,
insulation housing, and copper heating block inserted with three cartridge heaters. The
inlet housing is made of transparent polycarbonate to observe the water level in the inner
inlet plenum. Thermocouples and pressure transducers are installed at the inlet plenum
and both the outlets. Water supplied to the inlet plenum passes through orifice-type
jet holes and impinges on the top surface of the heating block, which is flush-mounted
into the middle of the outlet housing. The channel plate is machined to form a channel
in the middle, which guides impinged water to the outlet plenum at both sides of the
outlet housing. The channel plates are made of polycarbonate, which has low thermal
conductivity (ks = 0.2 W/m-K) to reduce heat transfer from the channel sidewalls and
observe possible air bubbles inside the channel. Room-temperature-vulcanizing (RTV)
silicone is applied at the contact region between the outlet housing and the copper heating
block to prevent water leakage. The copper heating block is fabricated in a flange shape
and held between the outlet housing and the insulation housing. Three holes are formed at
the bottom of the heating block for cartridge heaters insertion. To prevent water leakage,
Viton O-rings (Chemours, Wilmington, DE, USA) are inserted between each layer of the
test module. To ensure O-rings are compressed evenly, the test module is compressed
between 20 mm thick top and bottom stainless steel support frames.
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Figure 2. Exploded and sectional views of test module.

Figure 3 shows the schematic of the side and front views of the test section region
(region marked by a red dashed line in Figure 2). A total of 11 jet holes with a diameter
(Djet) equal to 0.8 mm are drilled on the jet plate along the channel length. The thickness
of the extruded part of the copper heating block (tcopper) is larger than the channel width
(Wch), and the wetted area is smaller than the target surface area. The heat flux (q′′) through
the heating block is calculated using Fourier’s law.

q′′ = kcopper
Ttc.2 − Ttc.1

Htc.2
(1)

where Ttc.1 and Ttc.2 are the average temperatures, and Htc,2 is the vertical distance between
the locations of the thermocouples. Ttc.1 and Ttc.2 are given as,

Ttc.1 =
Ttc.L1 + Ttc.M1 + Ttc.R1

3
(2)

Ttc.2 =
Ttc.L2 + Ttc.M2 + Ttc.R2

3
(3)
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Mean target surface temperature (Ts) is calculated by assuming a linear temperature
profile in the upward direction using Equation (4).

Ts = Ttc.1 +
Htc,1q′′

kcopper
(4)

Since Wch is smaller than tcopper, considering an energy balance between the wetted area
and the target surface area, the area-averaged heat transfer coefficient at the target surface
(havg) is calculated as follows:

havg =
q′′

Ts − Tin

tcopper

Wch
(5)

where Tin is the jet exit temperature. The detailed geometric dimensions of the test section
are given in Table 1.

Table 1. Test section dimensions.

Djet
(mm)

Xjet
(mm)

Ljet
(mm) Njet

Wch
(mm)

Hch
(mm)

Lch
(mm)

tcopper
(mm)

Htc,1
(mm)

Htc,2
(mm)

0.8 4.8 3 11 2 3, 4, 5,
6 56 4 8 22

2.3. Operating Procedure

Prior to the experiments, the pump was operated for a few hours to remove air that
might be trapped inside the test module and the flow loop. More than 20 cases were
tested for each channel height. The operating conditions are summarized in Table 2. The
temperature difference between Tin and Ts was maintained between 15–17 ◦C throughout
the experiments to exclude the natural convection effect. The steady-state was determined
when temperature changes at the heating block and inlet plenum were smaller than 0.2 ◦C
for over three minutes. Data including temperature, mass flow rate, and pressure were
recorded for 5 min after the steady-state was achieved at each operating condition. The
experiments were conducted in the order of highest average jet velocity (Vjet) to the lowest
Vjet for each channel height (Hch). After recording the data for each Vjet, the mass flow rate
was adjusted to reduce Vjet by 0.2–0.3 m/s, and power input was reduced by 1–3 W. The
same procedures are repeated until Vjet reached around 2 m/s.

Table 2. Experimental operating conditions.

Hch (mm) Vjet (m/s) Rejet q′′ (W/cm2) Number of Cases

3 2.00–8.27 2044–8475 13.2–35.4 22

4 1.98–8.35 2031–8552 14.7–30.5 21

5 2.00–8.31 2044–8509 13.9–29.7 21

6 2.00–8.28 2047–8478 12.2–26.4 21

2.4. Measurement Uncertainty

Maximum uncertainties in measuring absolute pressure and volume flow rate are
0.3% and 0.1%, respectively. T-type thermocouples used in the experiments are calibrated
with an RTD sensor (PT 100 RTD, Omega engineering, Norwalk, CT, USA) which has
±0.1 ◦C uncertainty. Considering a conservative uncertainty of 2% in length measurement,
maximum uncertainty in heat flux measurement is determined to 2.82% at minimum
heat flux condition. The resultant maximum uncertainty in the heat transfer coefficient is
determined as 9.32%.
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3. Numerical Model
3.1. Model Description

Only one-quarter of the channel impingement cooling configuration was modeled
considering the symmetry at X = 0 and Z = 0 planes, as shown in Figure 4a. Figure 4b
illustrates the schematic of the numerical domain consisting of the extruded part of the
copper heating block and the fluid region, including the inlet plenum. Mass flow inlet
condition was specified at the inlet plenum, which provides distributed flow to each jet
hole. To ensure that the backflow from the exit does not affect the heat transfer result, the
fluid domain at the exit was extended. A constant wall heat flux condition was applied
at the bottom of the heating block. Boundaries directly in contact with the polycarbonate
channel plate were assumed as an adiabatic wall because the heat transfer from the poly-
carbonate channel plate to the fluid was calculated to be less than 3% of total heat input
by numerical simulation, which included the polycarbonate material domain. Figure 4c
shows the numerical grid generated in ICEM 19.1 (ANSYS Inc., Canonsburg, PA, USA)
meshing module using a multi-block strategy. The numerical domain was discretized into
hexahedral elements for the accuracy of numerical solutions. The first cell from the wall is
located close to the wall to achieve a dimensionless wall distance (y+) value less than 1 for
using the Shear Stress Transport (SST) k-ω turbulence model [31].
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3.2. Numerical Method

The commercial computational fluid dynamics software, Ansys Fluent 20.1 [31], was
used for the three-dimensional steady-state calculations. The Reynolds-averaged Navier–
Stokes (RANS) approach using Menter’s SST k-ω turbulence model was used to model the
turbulent flow [32,33]. The SST k-ω model is a hybrid model that uses the k-ε turbulence
model in the freestream and the k-ω turbulence model near the wall, where the blending
function determines the smooth transition between the free stream and the flow near the
wall. It was reported in previous studies that the SST k-ω turbulence model is suitable for
turbulence modeling in jet impingement flows [17,34,35]. The governing equations are
expressed as follows:

Continuity equation:
∂
(
ρUj

)
∂xi

= 0 (6)
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Momentum equation:

∂
(
ρUiUj

)
∂xi

= − ∂P
∂xi

+
∂

∂xj

[
(µ + µt)

(
∂Ui
∂xj

+
∂Uj

∂xi

)]
+ ρgi (7)

Energy equation:

∂
(
ρUjcpT

)
∂xj

=
∂

∂xj

[(
λ+

cpµt

Prt

)
∂T
∂xj

]
(8)

The convergence was determined by checking both the residuals and the average heat
transfer coefficient. When the residuals of continuity, momentum, and energy equations are
less than 10−5, and the average heat transfer coefficient at the target surface fluctuated less
than 1%, the simulation was assumed to be converged, and the calculation was stopped.
The SIMPLEC algorithm [36] was used for pressure–velocity coupling, and the second-
order upwind scheme was used to discretize the flow variables. The numerical simulations
were performed by a high-performance computer (16 processors, 112 parallel threads), and
each of the numerical simulation cases took about 8 h.

3.3. Validation of Numerical Model

A grid independence test was conducted for five different grid systems for Hch = 4 mm
and Vjet = 9 m/s case, and the results are summarized in Table 3. The average heat transfer
coefficients at the target surface were compared for each grid system, and the discrepancy
was less than the experimental measurement error, 4%. Hence, the grid system with around
4.62 million elements was used for all the simulations.

Table 3. Grid independence test.

Number of Elements
(×106)

Average Heat Transfer Coefficient
(kW/m2-K)

4.62 46.96
6.78 45.18
7.94 46.27

10.25 46.58
12.34 46.45

Experimentally measured and numerically calculated area-averaged Nusselt number
(Nuavg) values at Vjet = 2, 4, 6, 8 m/s for each channel height were compared to validate the
numerical model. The heat flux and the mass flow rate measured in the experiments were
applied as boundary conditions of the numerical domain. Figure 5 shows a comparison
between numerically predicted Nuavg and experimental measured Nuavg. All the values are
within a 10% error line, demonstrating that the numerical model can effectively simulate
the channel impingement cooling configuration.
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4. Results and Discussion
4.1. Experimental Results

Figure 6a shows experimentally measured Nuavg at the target surface for Hch = 3, 4, 5,
and 6 mm and Rejet values ranging from 2000 to 8600. Nuavg increases with Rejet, indicating
a power-law distribution. However, Nuavg decreases with increasing Hch. The detailed
analysis of the Hch and Rejet effects on the flow structure and local heat transfer distribution
is numerically investigated, and it will be discussed in detail in the following section. Data
are correlated as a function of Rejet, dimensionless channel height (Hch/Djet), and fluid prop-
erties evaluated at the jet exit temperature (k f = 0.6194 W/m-K, µ f = 7.773× 10−4 kg/m-s,
ρ f = 995 kg/m3, Pr f = 5.108).

Nuavg =
havgLch

k f
= 17.4 Rejet

0.56(
Hch
Djet

)
−0.59

Pr f
0.33 (9)
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Figure 6b compares the experimental and correlated Nuavg. A total of 85 data points
fall within the ±10% error lines with a mean absolute error of 4.31%.



Energies 2021, 14, 4327 10 of 16

4.2. Numerical Results

Numerical simulations are performed for different Hch, Vjet, and q” conditions listed
in Table 4 to analyze the effects of channel height and mass flow rate on the flow field and
heat transfer.

Table 4. Hch, Vjet, and heat flux conditions for numerical analysis.

Hch (mm) Vjet (m/s) q′′ (W/cm2)

3, 4, 5, 6 1 10
3, 4, 5, 6 5 18
3, 4, 5, 6 9 30

4.2.1. Jet Exit Velocity Variation

Considering uniform inlet plenum pressure and constant orifice hole discharge coef-
ficient, repetitive fluid injections along the channel causes momentum acceleration and
pressure drop, resulting in jet exit velocity variation [16,17]. Figure 7a shows the variation
of jet exit mass velocity along the channel at different Hch, where Gj is the jet exit mass
velocity, and Gj is the averaged jet exit mass velocity. For Hch = 3 mm and 6 mm, the
difference between the minimum and maximum, Gj/Gj, is 20.6% and 9.1%, respectively,
because higher acceleration pressure drop occurs in the smaller channel due to higher
crossflow velocity. Figure 7b depicts the streamwise Gj/Gj variation at Hch = 6 mm for
different Vjet. Although the effect of Vjet is relatively small than the effect of Hch, the differ-
ence between the minimum and the maximum of Gj/Gj increases with Vjet. Similar trends
are also identified for all the other Hch conditions. Hence, the jet exit velocity variation is
influenced by both Hch and Vjet. However, the effect of Hch is significant.
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4.2.2. Flow Field and Heat Transfer Coefficient

Figure 8 displays the velocity contours at the middle of the channel (Z = 0 plane) and
wall heat transfer coefficient at the target surface for Vjet = 1 m/s and different Hch. The
jet located at the center of the channel (X/D = 0) impinges on the target surface without
deflection, yielding a local maximum heat transfer coefficient at the stagnation region. All
the other jets get deflected by the crossflow. At all Hch, the jet potential cores deflect in
the streamwise direction. The farther the jet is from the center, the larger the deflections
are due to accumulated crossflow. Deflected jets reach the target surface farther away
from the jet hole position in the streamwise direction, which corresponds to the stagnation
region and local high heat transfer regions in the heat transfer coefficient contours. The
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deflected jets travel a longer distance to reach the target surface while interacting with
crossflow. The jet travel distance to the target surface increases with the deflection. As a
result, the deflected jets lose y-direction momentum, complicating the penetration of the
thermal boundary layer formed on the target surface. Hence, the stagnation region heat
transfer coefficient decreases at the downstream jet holes, except for the jet 2 stagnation
heat transfer coefficient at Hch = 3 mm (Figure 8a). For Hch = 3 mm, the stagnation point
heat transfer coefficient of jet 2 is higher than that of jet 1 due to the larger Vjet at jet 2, as
shown in Figure 7a. As Hch increases, the jet momentum loss increases, and the overall
heat transfer coefficient decreases.
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(a) Hch = 3 mm; (b) Hch = 4 mm; (c) Hch = 5 mm; (d) Hch = 6 mm.

For Vjet = 5 m/s and 9 m/s, Figures 9 and 10 exhibit similar trends in both flow
structure and heat transfer. Both Figures 9 and 10 demonstrate shifted stagnation points
by jet deflection, degradation of heat transfer rate at the downstream jet, and lower heat
transfer rate at higher Hch, which are observed in Figure 8. For Hch = 3 mm and 4 mm,
Figures 9a,b and 10a,b shows that the heat transfer coefficient at the intervals between
the stagnation regions increases with Vjet while maintaining local peaks at the stagnation
regions. At high Vjet, when deflected jet impinges on the target surface, strong wall jet flow
in streamwise direction covers the rear region of the stagnation points without detaching,
which enhances heat transfer. For Hch = 5 mm, Figures 9c and 10c show heat transfer
enhancement at the intervals between the stagnation regions. However, heat transfer at
the downstream stagnation region becomes weak because strong crossflow attached to the
target surface hinders jet penetration, which is more evident at higher Vjet (See Figures 9c
and 10c). For Hch = 6 mm, velocity contours in Figures 9d and 10d evidence that the wall
attached crossflow prevents the jet potential core from reaching the target surface, which
causes the local peaks of the heat transfer coefficient at the stagnation regions to fade away.
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Figure 11 shows the velocity streamlines for Hch = 4 mm and 6 mm at Vjet = 1 m/s
and 9 m/s. For Vjet = 1 m/s and 9 m/s at Hch = 4 mm, Figure 11a,b show similar flow
structure resulting in similar heat transfer characteristics. For Vjet = 1 m/s at Hch = 6 mm,
Figure 11c shows that all the jets impinge on the target surface. However, for Vjet = 9 m/s
at Hch = 6 mm, Figure 11d evidences the inability of the jet to penetrate the crossflow since
the thickness of the wall attached crossflow increases in the downstream direction. Velocity
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vector distributions at both Hch = 4 mm and 6 mm show a U-shaped clockwise rotating
flow structure generated by the upstream jet and wall attached crossflow. The U-shaped
clockwise rotating flow structure induces upward (+Y direction) flow near the downstream
jet, which causes a detrimental effect on the downstream jet velocity evolution due to shear
interaction. With increasing jet velocity, the strength of the rotating flow structure and the
shear interaction increases regardless of Hch, causing higher momentum loss.
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Figure 12 shows the spanwise (Z direction) averaged heat transfer coefficient along
the streamwise direction (+X/D direction) for Vjet = 1, 5, and 9 m/s for each channel
height at the target surface. The peaks at the location of stagnation regions decrease in the
streamwise direction due to the jet momentum loss by the crossflow. The distinct peak
regions are jet impingement flow dominant, and the region where the peaks flatten are
channel flow dominant. Moreover, as previously discussed, the heat transfer coefficient
decreases with an increase in Hch.
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5. Conclusions

The heat transfer and flow characteristics of channel impingement cooling with a
single array of water jets were investigated experimentally and numerically. First, heat
transfer coefficients at the target surface were measured for four different channel heights
(Hch = 3, 4, 5, and 6 mm) at jet Reynolds numbers within a range of 2000–8600. Then,
numerical simulations were validated with the experimental results. Finally, the numerical
results were analyzed for a deeper understanding of the flow field and its effect on local
heat transfer characteristics. The key findings from the present study are as follows:

(1) Experimental results showed that the average Nusselt number (Nuavg) at the target
surface increases with the jet Reynolds number (Rejet) and decreases with the channel
height (Hch);

(2) Experimentally measured Nuavg was correlated as a function of Rejet, dimensionless
channel height (Hch/Djet), and fluid properties. The correlated Nuavg agreed well
within a mean absolute error of 4.31%;

(3) The numerical simulation using the SST k-ω turbulence model can effectively predict
experimentally measured overall heat transfer rate of the channel impingement
configuration within a 10% error;

(4) Numerical results showed that a jet exit velocity variation occurs along the channel.
The jet exit velocity variation was significantly affected by Hch and moderately affected
by the average jet velocity (Vjet);

(5) The crossflow inside the channel deflects the jet potential core in the streamwise
direction, and the stagnation regions occurred at the downstream location. The jet
deflection reduced the stagnation region heat transfer, evident at the downstream
located jets. The stagnation region heat transfer coefficient decreased with increasing
channel height because the jet loses momentum traveling a long distance to the target
surface;

(6) At high Vjet, a stronger wall jet covers the rear section of the stagnation region and the
heat transfer at the intervals between stagnation regions increase. However, at high
Hch, the jet was unable to penetrate the wall attached crossflow at the downstream
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location, and peaks in the heat transfer coefficient at the stagnation region faded
away;

(7) U-shaped rotating flow structures formed by the wall attached crossflow and up-
stream jet were observed regardless of Hch and Vjet. Shear interaction between the
U-shaped flow structures and the downstream jet caused a detrimental effect on the
velocity evolution and induced jet momentum loss.
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