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Abstract: In 2020, residential sector loads reached 25% of the overall electrical consumption in
Europe and it is foreseen to stabilise at 29% by 2050. However, this relatively small increase demands,
among others, changes in the energy consuming behaviour of households. To achieve this, Demand
Response (DR) has been identified as a promising tool for unlocking the hidden flexibility potential
of residential consumption. In this work, a holistic incentive-based DR framework aiming towards
load shifting is proposed for residential applications. The proposed framework is characterised
by several innovative features, mainly the formulation of the optimisation problem, which models
user satisfaction and the economic operation of a distributed household portfolio, the customised
load forecasting algorithm, which employs an adjusted Gradient Boosting Tree methodology with
enhanced feature extraction and, finally, a disaggregation tool, which considers electrical features
and time of use information. The DR framework is first validated through simulation to assess the
business potential and is then deployed experimentally in real houses in Northern Greece. Results
demonstrate that a mean 1.48% relative profit can be achieved via only load shifting of a maximum
of three residential appliances, while the experimental application proves the effectiveness of the
proposed algorithms in successfully managing the load curves of real houses with several residents.
Correlations between market prices and the success of incentive-based load shifting DR programs
show how wholesale pricing should be adjusted to ensure the viability of such DR schemes.

Keywords: demand-response; load management; incentive-based; optimisation

1. Introduction

During the past two decades, Demand-Response (DR) has attracted incremental
interest of both the research community and industry, so that new ways of maintaining the
supply–demand balance are created via shifting part of this obligation from generation to
demand. The creation of DR programs was motivated by a plethora of reasons related to
both environmental and societal sustainability, and economics. DR is considered to be a
vital building block of Smart Grids (SG) that exploit fully the potential Renewable Energy
Sources (RES) [1], energy storage systems (ESS) [2] and electric vehicles (EVs) [3]. Due to
this fact, the energy markets realised that new business models had to be created so that
the aggregated potential of DR could be used towards flattening the load curves [4].

Until recently, DR programs were focused on large industrial customers that held
contracts for load shedding and shifting. Commercial and residential consumers have
been lately identified as an untapped source with enormous potential, amounting to 40%
of the total energy consumption, and are responsible for one third of the greenhouse gas
emissions globally [5]. There are significant challenges though in the coordination of a high
volume of end consumers, featuring high diversity in electricity consumption patterns. To
overcome these issues, a large number of customers could be aggregated and represented
by one entity that participates in the energy markets [6], that is, an aggregator.
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The implementation of DR programs guarantees multiple benefits on many different
levels for all the involved stakeholders [7]. Aggregators can take advantage of DR finan-
cially, since they are able to reduce demand during peak hours and optimally plan for a
higher penetration of RES in the grid. The aggregators may also successfully handle grid
congestions and deal with frequency regulation issues. As a result, the grid’s reliability
is increased, eliminating the risk of grid failure. Customers can also benefit by taking
advantage of the financial incentives that are provided for their participation in such DR
programs. DR programs also enable the matching of electrical supply and demand, fa-
cilitating the use of environmentally friendly generation units, which results in reduced
CO2 emissions.

DR schemes can be generally classified into two main categories (see Figure 1):
incentive-based and price-based schemes [8]. In incentive-based schemes, the residential
customer is under a contractual agreement with the program administrator (e.g., an ag-
gregator, service provider etc.) which may be allowed to conduct some control actions
aiming towards reducing electricity costs. In this category, the following DR programs
are usually available: (a) Direct-Load Control (DLC), (b) Interruptible tariffs, (c) Demand-
bidding programs, and (d) Emergency programs [9]. The DLC approach is considered
invasive because it interrupts the customer’s privacy. In DLC, the administrator is able to
control the operation of the customer’s equipment, while the customer receives the agreed
payment. Interruptible tariffs are offered to both industrial and residential customers and
they essentially offer different price levels, upon agreement between the energy provider
and the customer. Load interruption does not reduce the amount of used energy, but it
shifts load operation to off-peak periods [10]. Demand-bidding allows the customers to
participate in electricity trading by offering to make changes to their consumption patterns,
by rescheduling their loads or reducing their consumption. Emergency programs are
used at periods of high demand or when the grid is affected by unplanned events. The
participants in these programs reduce their consumption to lessen the stress on the grid
in emergency situations and as a reward they receive payments, which are usually based
on the requested level of load reduction [11]. In price-based schemes, the electricity price
varies at pre-set times or dynamically during the day. The customers are encouraged
to manage their loads by shifting their consumption to non-peak hours [9]. Price-based
schemes implement the following programs: (a) Time of Use (ToU), (b) Critical Peak
Price (CPP) and (c) Real-Time Price (RTP). ToU rates give the residential customers the
opportunity to shift their load consumption from peak periods to mid-peak and off-peak
periods, giving the opportunity to the grid operator to avoid the use of more expensive
infrastructure for power generation [12]. CPP increases electricity prices to punitive levels
at peak hours on critical days announced beforehand [13]. Finally, RTP systems take into
consideration the locational marginal price of electricity, responding to situations such as a
generator outage or distribution system capacity limiting [14].

Figure 1. Classification of DR schemes.
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Much effort has been put into finding the most enticing method for engaging res-
idential customers in DR schemes but the vast majority of published work is based on
simulation-based evaluations only. For instance, in [15], the authors validate, in a simu-
lation, a promising load shifting scheme under ToU for ten commonly used household
appliances using an artificial bee colony algorithm. In another recently published work [16],
simulations of a dynamic energy management framework operating under a multi time-
varying electricity price scheme are presented in order to prove the optimal scheduling
of selected controllable appliances and one electric vehicle. Another approach, based on
appliance grouping, is presented in [17]. The residential appliances are initially grouped
into three different categories, that is, deferrable, thermostatically controlled and non-
controllable loads, and then a demand aggregation model, based on queuing theory, is
used to facilitate the scheduling of the controllable ones. Similarly, in [18], the authors use
the same categories of appliances in a multi-objective optimisation model that takes into
consideration not only the power consumption cost but also residence comfort require-
ments. Such grouping approaches are further enhanced in [19], where the authors utilise
simulated residential load aggregators as agents, generating the optimal operation strategy
of appliances based on residents’ preferences. In the same work, the optimisation strategy is
formulated as a mixed-integer quadratic (MIPQ) problem and the DR program participants
are given financial rewards proportionally to their contribution. In [20], the design of a
home energy management system (HEMS) is described, where controllable loads are opti-
mally scheduled via a mixed-integer linear programming algorithm to serve load-shaping
DR signals, while in [21] a logical shifting algorithm is proposed for peak-load shifting
by scheduling the high-power operation modes of washing machines and dishwashers in
proper time slots. All the aforementioned works have validated the proposed algorithms
in simulation environments only. Moving one step closer to reality, in [22], the authors
used a real-time digital simulator equipped with the generation and consumption profiles
of a Portuguese household with a photovoltaic system for demonstrating the operation of
an HEMS under load shifting DR programs.

The majority of the aforementioned implementations that comprise incentive-based
DR signals, when applied to reality, are realised by an automated HEMS that requires the
installation of very costly equipment. Such schemes are essentially implementing DLC DR.
The cost is not limited only to the automation system but also includes the installation of
intelligent (“smart”) household appliances that are able to both broadcast their operation
status and receive control set-points. Nevertheless, now that the DR signals are gaining
ground in residential applications, most households are not equipped with intelligent
appliances. Consequently, it is prudent to mobilise customers to participate actively in
DR schemes. One way of achieving this is to dispatch proper messages which include
suggestions for operating specific devices during proper time slots. Despite the potential
of load shifting in residential customers, a key factor for the success of a DR event is the
responsiveness of customers to different kinds of incentives [23,24].

In this paper, an Optimal Demand Response holistic framework for Residential appli-
cations (ODRes) is proposed for scheduling the household appliances of small customers
that are part of an aggregated portfolio, respecting at the same time each individual cus-
tomer’s comfort preferences. The ODRes framework aims to offer an alternative, realistic
way of implementing incentive-based DR for load shifting in small residential customers
without performing DLC and, thus, eliminating the high installation costs that would be
covered by either the customers or the aggregator. The day-ahead optimal schedule is
forwarded as suggestions for specific appliances’ operation to the customers via a mobile
application, while at the end of the day during the liquidation phase, the proposed schedule
is compared with the actual disaggregated load consumption to determine the degree of
success of the signal. The first key innovation of this work is comprised of the formulation
of the multi-objective optimisation problem, which models the user satisfaction and the
economic operation of an aggregator’s portfolio at the same time, which is an improved
version of [25]. The second innovation corresponds to the load forecasting, the load disag-
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gregation algorithms and the fact that the feature extraction process for both is expanded
to include time-related information. The final and most important key innovation of this
work lies in the fact that the validation of the proposed DR framework has been performed
in both simulations and real-life conditions, via its deployment in households in the wider
area of Thessaloniki in Northern Greece, in the context of the H2020 inteGRIDy project.
This latter fact renders this work a rare incentive-based DR program validation in the real
world, without using any kind of direct load control techniques.

The remainder of this paper is organised as follows: in Section 2, the proposed
methodology is presented, describing in detail the system architecture and the functionality
of each individual component of the system. The results and their analysis that demonstrate
the performance of the ODRes system are given in Section 3. Section 4 is devoted to
discussing future work and presenting the conclusions of the paper.

2. Methodology
2.1. System Architecture

As shown in Figure 2, the proposed ODRes system is composed of several differ-
ent modules, which operate sequentially and automatically. Briefly, the basic system
modules are:

• The multi-objective DR optimisation engine (DR-MOO), which produces the load-
shifting suggestion plan daily, which gets dispatched to the selected households from
an aggregator’s portfolio;

• The Load Forecasting Engine (LFE), which is responsible for defining the day-ahead
consumption forecast of each household of a portfolio;

• The User Profiling (UP), which defines the shiftable electrical devices in each house-
hold, based on the residents’ preferences and the actual measurements collected daily.

Apart from these core components, the ODRes system is complemented by (a) a simple
gamification engine which is responsible for implementing a point-based competition game
among the participating users; (b) a mobile application which communicates the suggested
optimal appliance usage plan to the users; (c) a scheduler that coordinates the operation
of the aforementioned modules so that the overall ODRes system operates in a fully
automated manner without human interference; and (d) a web-based user-interface (UI)
which is used by the actor, that is, the aggregator, in order to provide an overview of the
system’s operation and its economic evaluation. Given the fact that these complementary
modules do not contain any significant innovation and they assist in the application and
evaluation of the ODRes system, they are briefly discussed. In the following paragraphs, a
detailed description of the core system components is given.
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Figure 2. ODRes System Architecture .

2.2. Optimal DR Dispatch

The aim of the proposed DR strategy is to reduce the overall 24-h electricity cost
by providing the end-user with suggestions in order to schedule some of their shiftable
appliances’ operation in specific periods within a day. Dynamic pricing is utilised, since
the actor is the energy retailer, that is, the aggregator. One of the auxiliary modules that is
quite significant for the optimal DR strategy is the user’s DR activity/engagement profiling
which reflects every consumer’s preferences and activities affecting home habits, for exam-
ple, cooking and washing, and information with respect to their infrastructures. Aiming
to create a realistic optimal scheduler for this scenario, the multi-objective optimisation
engine must take into consideration a series of factors:

• The specific characteristics and preferences of each particular consumer;
• The day-ahead System Marginal Price (SMP), that is, the electricity wholesale hourly

price produced by relevant national bodies such as energy market operators;
• The day-ahead load forecast for each particular household;
• The appliances’ usage preferences of the household residents;
• The appliances’ consumption signatures (timeseries).

The multi-objective optimisation problem is formulated using Mixed-Integer Linear
Programming (MILP). The optimised scheduler can redistribute only the most deferrable
appliances in each household, that is, dishwasher, laundry machine, water boiler and
so forth. Based on the day-ahead load forecast, it detects the time intervals in which a
high energy-consuming appliance is on and attempts to reschedule it to a less costly time
slot, producing a variety of different options. As soon as all the possible schedules have
been retrieved for each individual consumer, aggregated optimisation is applied for the
whole portfolio, using the DR activity/engagement profiling, based on past records of the
consumers on previous DR engagement and current DR participation. The final output of
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DR-MOO is the group of consumers that have been selected to participate in the day-ahead
DR scheduling, including the individual suggested plans for each household.

The mathematical formulation of the DR-MOO problem is given in Equation (1).
The objective function is composed of two terms that are both minimised. The first term,
µ1(O), corresponds to the total cost of the daily consumption of a household within the
aggregator’s portfolio, while the second term, µ2(O), models the total dissatisfaction of
the household residents deriving from the suggested load shifts. The objective function is
subjected to three constraints: (a) by the first one, the overall household consumption is
barred by a maximum limit, which essentially corresponds to the household’s contracted
power if it was absorbed continuously during one hour (Lmax, in kWh); (b) given the fact
that load shifting is pursued, the total daily energy consumption must remain the same;
and, finally, (c) each appliance can be shifted only once and to time slots that are within the
users’ preferences. The symbol � corresponds to the Hadamard (or element-wise) product
of the matrices.

min
O

µ1(O), µ2(O)

where µ1(O) = (Lsh �O · −→J N·PN +
−→
Lb)

ᵀ · −→C

µ2(O) = O�D · −→J N·PN ·
−→
J T

s.t.
−→
Lsh

ᵀ ·O +
−→
Lb

ᵀ ≤ −−→Lmax
ᵀ

cnδ

∑
c=1

∑T
t=1 ot,c

‖max(l∗,c)‖
= 1 ∀δ ∈ [1, N],

(1)

where

• O =


on=1

t,c=(1,1) . . . on=1
t,c=(1,cn1 )

on=2
t,c=(1,1) . . . on=2

t,c=(1,cn2 )
on=N

t,c=(1,1) . . . on=N
t,c=(1,cnN )

...
. . .

...
...

. . .
...

...
. . .

...
on=1

t,c=(T,1) . . . on=1
t,c=(T,cn1 )

on=2
t,c=(T,1) . . . on=2

t,c=(T,cn2 )
on=N

t,c=(T,1) . . . on=N
t,c=(T,cnN )


contains the optimisation variables; it is a T × N · PN-sized matrix with binary ele-
ments, where N is the number of shiftable appliances in a household, T is the number
of total time slots of the optimisation horizon (e.g., 24, 96 with hourly, quarterly res-
olution etc.) and PN is the number of total possible permutations of all devices; the
dashed separators of the table signify the cn columns corresponding to appliance n
and the total number of possibilities in which it can appear; oi,j is equal to 1 if the
device is selected to be operating, otherwise it is 0; the indices t,c correspond to time
slot and the permutation of appliance n;

• Lsh =


ln=1
t,c=(1,1) . . . ln=1

t,c=(1,cn1 )
ln=2
t,c=(1,1) . . . ln=2

t,c=(1,cn2 )
ln=N
t,c=(1,1) . . . ln=N

t,c=(1,cnN )

...
. . .

...
...

. . .
...

...
. . .

...
ln=1
t,c=(T,1) . . . ln=1

t,c=(T,cn1 )
ln=2
t,c=(T,1) . . . ln=2

t,c=(T,cn2 )
ln=N
t,c=(T,1) . . . ln=N

t,c=(T,cnN )


is a T × N · PN-sized matrix corresponding to each appliance’s consumption signa-
ture (in kWh), that is, the energy that is consumed every hour of operation by each
shiftable appliance calculated according to the collected measurements; following the
same structure as for O, each column corresponds to the n-th appliance consumption
signature starting and ending at different time slots;

• D =


dn=1

t,c=(1,1) . . . dn=1
t,c=(1,cn1 )

dn=2
t,c=(1,1) . . . dn=2

t,c=(1,cn2 )
dn=N

t,c=(1,1) . . . dn=N
t,c=(1,cnN )

...
. . .

...
...

. . .
...

...
. . .

...
dn=1

t,c=(T,1) . . . dn=1
t,c=(T,cn1 )

dn=2
t,c=(T,1) . . . dn=2

t,c=(T,cn2 )
dn=N

t,c=(T,1) . . . dn=N
t,c=(T,cnN )


is the T×N · PN-sized matrix which contains the preferences of a household’s residents
regarding the operation of the available shiftable N appliances and all their possible
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permutations cnN within one day with a total of T time slots. The preferences of the
users are modelled as integers;

•
−→
Lb =


Lb1

...
LbT

 is a T-sized vector corresponding to the baseline (non-shiftable) daily

consumption (in kWh) of a household;

•
−→
C =


C1
...

CT

 is a T-sized vector containing the varying energy price of the day; given the

fact that the actor of the proposed ODRes is the Aggregator, then this price corresponds
to the SMP, based on which the actor buys energy;

•
−→
J T ,
−→
J N·PN are unitary vectors, sized T and N · PN , respectively.

The optimisation problem described above is solved for every household in the
portfolio. For each household, a Pareto front is extracted as the result of the optimisation,
which contains the set of optimal solutions which correspond to different combinations of
cost and overall user satisfaction. In order to select one optimal solution for each household,
a heuristic logic is followed: for each household user, an engagement index is assigned,
which is an integer indicating how responsive they are to DR participation. For example, if
the household user has been actively, moderately or minimally engaged, they are assigned
a value of three, two or one, respectively. Additionally, another index is considered that
represents the most recent participation of the household. For example, the value three is
assigned if the household participated in yesterday’s DR, two for the day before and one
for any previous day prior. The product value of these two indices is named the Schedule
Selector Index (SSI), and is considered in the optimisation process. This process is depicted
with the help of Table 1. It is noted that the cells coloured in the darkest grey lead to
maximised profit for the aggregator, the white cells offer minimised user dissatisfaction
and the cell in the middle is the compromise between the two objectives.

Table 1. Schedule Selector Index Look-up Table.

Last Participated

3 (Today-1) 2 (Today-2) 1 (Today-3)
ine

Resident’s Engagement Index

1 3 2 1

2 6 4 2
3 9 6 3

2.3. User Profiling

The user profiling module (UP) is the main component for extracting all the meaning-
ful information about electrical appliances in each household. Home appliance information
is based on residents’ preferences and the analysis of daily electrical measurements. The
user profiling module consists of three sub-modules, namely the UP-once, the UP-dd and
the UP-update sub-modules. Each one of these performs the necessary functions required
to obtain the maximum information related to the operation of electrical appliances.

2.3.1. UP-Once

This sub-module is initiated in order to process and store the initial preferences for
each participating household. In particular, preferences were obtained in the form of
an online structured questionnaire, which registers information regarding the electrical
appliances’ usage, prior to the implementation of the proposed technique. In addition,
the consumer can state the intervals in order of priority regarding the use of the electrical
appliance. More specifically, preferences are classified into three categories, namely low,
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medium and high order of priority. The questions are formulated in such a way that gives
the opportunity to the aggregator to have an initial estimate of the energy consumption
of each household before the installation of the smart meters. Additional demographic
questions are included, to identify whether the residents are a working couple, a student,
a retired couple or a multi-generational family, as the daily routines and the schedule
of each type differs significantly within the day, having a direct impact on their energy
consumption. The residents are also required to answer a series of questions regarding the
appliances that they wish to register as shiftable, along with some general questions that
help UP-once better identify each appliance’s signature (e.g., age, size etc.). The users are
then asked to fill in the time intervals in which they prefer to use their electrical appliances
within a working and a weekend day. After completing the questionnaire, an automated
parsing and transcoding of the respective answers is conducted in order to be used as input
to the optimisation engine.

2.3.2. UP-DD

This sub-module is executed on a daily basis and is in charge of the detection of the
time intervals in which each device has been operational. In particular, a non-intrusive load
monitoring (NILM) algorithm was developed, which disaggregates the total household
power consumption into individual appliances’ consumption [26]. In the context of the cur-
rent work, a total of four appliances were selected for disaggregation: (1) Oven, (2) Washing
machine, (3) Dishwasher and (4) Dryer. Smart plugs were installed to those appliances
of the participating households in order to gather baseline data which are necessary for
the training of the supervised disaggregation models. The data gathering period lasted
approximately one month. Data consistency and completeness were thoroughly checked,
as missing values may create a loss of temporal sequence in time-series data and valuable
information may be lost. Consequently, only the days with more than 90% of available data
were kept, while the missing values were linearly interpolated. The total consumption is
given from smart meters installed on the main panel of each household. The active power
(P) and reactive power (Q) are utilised as input features for the disaggregation problem. Re-
active power is an informative feature for the four selected appliances, since their electrical
behaviour is non-ohmic, so the reactive component of power is critical for distinguishing
the appliance’s signature from the whole household’s consumption. The temporal changes
of total P and Q also play a crucial role in the recognition of an appliance’s pattern. Thus,
a configurable number of historical timestamps is defined for each appliance model and
those instances are used as additional features. The number of historical timestamps is
different for each appliance model and it depends on the appliance’s operational cycle. The
temporal features are described mathematically by the following equations:

Pdi f f ,i = Pt−i, i = 1, . . . , H (2)

Qdi f f ,i = Qt−i, i = 1, . . . , H, (3)

where Pdi f f ,i and Qdi f f ,i are the active and reactive power, respectively, at timestamp i and
H is the number of historical timestamps that are used as features.

Apart from the electrical features, it was also attempted to extract information from
the hourly and daily patterns of usage. An encoding process was followed in order to
model those features which are related to the periodical use of the appliances. They were
first transformed cyclically into sines and cosines representations and were then mapped
onto a circle in order to preserve the proper relationships between them.

hour_sin = sin(2π · hour/23), 0 ≤ hour ≤ 23 (4)

hour_cos = cos(2π · hour/23), 0 ≤ hour ≤ 23 (5)

day_sin = sin(2π · day/364), 0 ≤ day ≤ 364 (6)

day_cos = cos(2π · day/364), 0 ≤ day ≤ 364 (7)
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A supervised regression model approach was utilised for the estimation of the exact
consumption value of the appliances that were being disaggregated. A tree-based technique
was selected, having as a criterion high accuracy combined with low computational cost.
More specifically, the Extreme Gradient Boosting (EGB) algorithm was used, which is
analysed in detail in Section 2.4.

2.3.3. UP-Update

This is the final sub-module of the UP component and it is executed on a monthly basis
updating the base load value, the maximum consumption and the preferences regarding
the electrical appliances of each household. The base load is defined as the minimum
amount of energy needed by each household, in other words, it corresponds to all the
inflexible appliances of a house (e.g., fridge, TV etc.). Both base load and maximum
consumption are estimated by conducting a statistical analysis of the actual measurements
received by the smart meters. Hence, as the goal of the DR strategy is load shifting, the
base load and the maximum consumption are two important factors in determining which
time slots are suitable for shifting device operation. In addition, as mentioned above,
energy consumption is generated by the use of devices through a set of “practices”, which
can be interpreted as a series of actions governed by different motives and intentions of
residents [27]. These practices correspond to the daily routine activities and are likely to
change over time. Thus, the initial residents’ preferences that are based on the routine
activities may be incorrect. Therefore, a statistical analysis was conducted on the results of
the UP-dd module and new preferences were extracted and stored to the database.

2.4. Load Forecast

Day-ahead load forecast is considered a multi-step time series forecasting problem,
and as the name implies, the prediction of multiple steps ahead is required. In general,
two methods are the main approaches for multiple time series forecasting [28], namely
the recursive and the direct multi-step forecast strategy. The recursive multi-step forecast
utilises the forecasted value of the prior time step as the input for the next forecast. The
main disadvantage of this approach is that the use of forecasted values as new observations
leads to performance degradation due to the accumulation of the forecast’s errors as the
forecast horizon increases. The direct strategy, which is adopted by the day-ahead load
forecast tool of ODRes, creates a separate model for each horizon step, respectively. Having
one model for each horizon step adds computational cost, but the accuracy trade-off makes
this method a fitting approach.

In terms of input features, as with any forecasting model, the historical values of the
forecasted variable have the greatest impact on the model performance. Additionally, other
external features that significantly influence the outcome, that is, the time and weather
features, are integrated into the model. The time features, the so-called cyclical features,
are important in order to capture the seasonality included within load consumption time
series (time, day of week, month, etc.) and are encoded according to Equations (4)–(7)
before being used as input features. As for the weather features, after a correlation analysis
that was conducted, it was concluded that the outdoor temperature is the most influential
among all the other weather variables and this was included in the model as well. Contrary
to other methods that utilise historical values for the time and temperature features, the
current work made use of the forecasted temperature and the time features that coincide
with each model’s horizon step. The structure of the proposed framework regarding the
input features is illustrated in Figure 3. As the training of the models was based on the
direct strategy, a separate model for each time slot t was developed, while the number of
the models was equal to the total time slots of the optimisation horizon T. Furthermore,
the training of all the models was carried out using the same number m of past load
measurements and more specifically the load measurements of the previous day (24 past
measurements). Finally, the day-ahead load forecast was constructed by the total set of the
individual forecasts.
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Figure 3. Framework for direct multi-step day-ahead load forecasting.

The training and the development of the multiple forecast models was conducted by
utilising the XGBoost library [29], which is based on the gradient boosting framework, as it
has the best performance in terms of accuracy and execution time. The gradient-boosting-
based model produces predictions as ensembles of multiple predictions generated by weak
learners, which in this case were the decision trees. The training of the weak learners is
conducted in an additive manner, each one correcting the errors made by its predecessor.
The goal is the minimisation of an objective function that combines a convex loss function
and a penalty term for model complexity. The final forecast is the combination of the
forecast of new trees that are adjusted to the residuals of errors of prior trees and is added
to the forecast of the previous tree. The simplified form of the objective function for the
new tree fz of the i-th instance at the z-th iteration is:

n

∑
i=1

[gi fz(xi) +
1
2

hi f 2
z (xi)] + Ω( fz), (8)

where gi and hi are the first and second order gradient statistics of the loss function, which
are defined as follows:

gi = ∂ŷi
(z−1) l(yi, ŷi

(z−1)), (9)

hi = ∂2
ŷi

(z−1) l(yi, ŷi
(z−1)). (10)

The second term of the objective function Ω( fz) represents a regularisation term in charge
of seeking the appropriate final weights to avoid over-fitting.

2.5. Auxiliary Modules

To support the functionalities of the aforementioned core components of ODRes
framework, a proper backend system with some auxiliary modules is needed (see Figure 2).
The scheduler is the main management tool and is responsible for executing all other tools
in the right sequence in predefined time slots. The scheduler ensures the proper operation
of all ODRes modules and it is enriched with a detailed logging system along with a real-
time notification system which informs the system administrator in case errors occur. The
scheduler is implemented in Python 3.7. In addition, there are also two modules responsible
for collecting forecasts from on-line RESTful APIs provided by 3rd party service providers.
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These are the Weather Forecast and the Day-Ahead Electricity Price modules. The first one
retrieves the predicted temperature and humidity values for the upcoming 24 h, with an
hourly resolution, from the openweatherAPI platform, https://darksky.net/dev (accessed
15 June 2021), while the later retrieves the hourly wholesale electricity prices for the next
day from the market operator’s online platform. The whole back-end system is supported
by two complementary databases for storing timeseries and static data, that is, an influxDB
and a MySQL, respectively.

In order to create a suitable interaction environment for the ODRes framework, two
front-end interfaces were developed: first, a web-based dashboard, accessible by all regis-
tered users, was designed in order to provide a full overview of the expected and imple-
mented DR application through user-friendly and informative visual analytics. Statistical
analysis of historical data, past DR application and real-time measurements were also in-
cluded in the dashboard. Furthermore, a separate view of the dashboard for the aggregator
was constructed in order to provide access to the whole portfolio, obtaining information in
a more aggregated manner with fewer details about each user. On the other hand, a mobile
Android-based application was developed so that the DR schedules were sent to the users.
Google’s Firebase platform was used for signing in users and keeping them informed with
Firebase Cloud Messaging (FCM), https://firebase.google.com/ (accessed 15 June 2021).
Targeted messages were produced per user and sent to each registered device in the form
of Android notifications, presenting an optimal schedule for the selected user’s home appli-
ances. This procedure was executed by using Firebase’s real time database as the back-end
for storing registered users and an API for the connection with the ODRes framework. The
produced optimal schedule per user was stored in the ODRes MySQL database and was
visualised on a graphical dashboard within the mobile application. Finally, the users could
view real-time and historical measurements along with statistics regarding appliance usage
deriving from the smart meters. In Figures 4 and 5, screenshots of the mobile application
and the web-based dashboard are shown.

Figure 4. ODRes Mobile Application for Android .

https://darksky.net/dev
https://firebase.google.com/
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Figure 5. ODRes web-based dashboards.

3. Validation
3.1. Simulation Results

In order to validate the theoretical background of the proposed incentive-based DR
scheme, simulations were performed. The size of the simulated portfolio is selected
appropriately so that it is aligned also with the pilot size indicated by the H2020 inteGRIDy
research project, details of which are listed in Table 2. The consumption time-series for each
household was formulated using the open-source algorithm LoadProfileGenerator, available
online: https://www.loadprofilegenerator.de (accessed 15 June 2021) [30]. Essentially,
each load curve was constructed via the summation of real measurements from various
appliances, scheduled appropriately as defined by each house profile. Regarding the
pricing, the SMP was utilised, which was acquired from the Hellenic Energy Exchange.
https://www.enexgroup.gr (accessed 15 June 2021). The simulations were carried out for
a nine-month period between 1 September 2020 and 31 May 2021.

The objectives of the simulations are:

• To demonstrate the maximum theoretically achievable profit from such a DR scheme;
• To explore correlations between price fluctuations and their exploitable potential in

residential incentive-based load shifting;
• To assess whether user discomfort is augmented in the case where daily profits

increase.

In Figure 6, the scatter plot aims to define the correlation between daily price fluctu-
ations, relative daily profits and average daily dissatisfaction. Each dot corresponds to
each household participating in the DR scheme in one day of the simulation horizon. The
continuous lines depicted in the figure are essentially the least-square trend lines. As can
be observed, days characterised by high fluctuations in the SMP offer significantly larger
profit margins, without however compromising user comfort, which remains relatively
stable regardless of price fluctuations. This outcome is backed up not only visually from
the scatter plots, but also by the calculated Pearson Correlation Coefficients, which reflect
whether two variables are linearly correlated (−1 and +1 correspond to inversely propor-
tional and proportional variables, respectively, whereas 0 implies that the variance of one
variable is completely irrelevant to the variance of the other). The Pearson Coefficient
between price fluctuations and relative profits is equal to +0.42, therefore a definite positive
correlation between these variables is evident. On the other hand, the Pearson Coefficient

https://www.loadprofilegenerator.de
https://www.enexgroup.gr
https://www.enexgroup.gr
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between relative profits and user dissatisfaction is equal to +0.19, a fact that highlights
that these two variables have practically no correlation. This finding can be considered ini-
tially as counter-intuitive, because one would assume that higher price fluctuations, which
directly lead to larger profit margins from a portfolio, imply greater user dissatisfaction.
However, as can be seen, this is not the case: the interpretation of this somewhat interesting
phenomenon is that wholesale prices and the preferred usage timing of residential shiftable
appliances are independent variables. This latter outcome is considered an asset of the
proposed DR optimisation engine and, more importantly, how the comfort level of the
residents (i.e., respecting their preferences) is integrated within it.

Table 2. Simulated Houses Portfolio.

Profile

Attributes

Houses
Residents

Appliances
(Incl. Light

Bulbs)

Average
Daily Con-
sumption

Shiftable
Appliances

Student/Single resident 1 49 4.52 kWh 5 4
Working couple 2 65 8.55 kWh 7 26
Family-1 child 3 66 9.18 kWh 5 22
Family-3 children 5 66 14.67 kWh 6 12
Multi-generational 6 79 21.01 kWh 7 9

Figure 6. Correlation between price fluctuations and relative savings/average user dissatisfaction.

Over the simulated nine-month period, the mean daily relative profit is equal to 1.48%,
with a 3.45% variance. The 0.5-Quantile (0.5Q), that is, the median of the observations, is
equal to 1.14%, which is lower than the mean value, a fact that indicates that the trend
is to usually achieve daily profits of less that 1.48%. The 0.75-Quantile (0.75Q) is equal
to 2.19%, meaning that 25% of the observations are characterised as a considerable profit
margin. The 0.25-Quantile (0.25Q) is equal to 0.3%, which in fact can be attributed as
an alarming factor, since the same amount of observations (25%) can have a negligible
profit. As seen in Figure 6, the days characterised by high price fluctuations are scarce,
and this fact is responsible for these conservative statistical results. It is noted that a large
price fluctuation does not imply in any case low or high prices; it only means that the
difference between maximum and minimum price should be high enough so that the
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load shifting of low-power home appliances can have a positive effect on an aggregator.
Though theoretically published works [6,7] advocate in favour of the unlocked potential of
residential load flexibility, it becomes evident that without a proper pricing scheme, DR
programmes focused on residential users will have limited business potential.

In order to explore further the effect of price to profit margins, in Figure 7, the boxplots
of three variables (SMP, daily profit, portfolio usage) are given, throughout the nine
simulation months. As can be observed, in December 2020, the largest price fluctuations
occurred and as a result, the largest profits were achieved, without however utilising the
available portfolio at its fullest. For comparison, in the months of October 2020 and similarly
in April and May 2021, the reader can observe that, due to the low price fluctuations,
very limited profits can be extracted even though almost the entire household portfolio
is exploited.

Figure 7. Boxplots of three key variables throughout the simulation horizon.

3.2. Experimental Setup

Within the context of the H2020 inteGRIDy project, the deployment of the ODRes
framework took place in selected residencies in Thessaloniki, the second largest city in
Greece. To do so, customised smart meter installations had to be connected to each home’s
main electrical panel. These smart meter installations were composed of: (a) a smart meter
to collect the appropriate measurements (active/reactive power, energy consumption); (b) a
Raspberry Zero to dispatch the aforementioned measurements to the central ODres server;
and (c) a Din Rail DC power supply with an integrated safety automatic relay to power up
and protect the Raspberry Zero. The single-phase houses were equipped with an Carlo
Gavazzi EM111 smart meter, while the three-phase houses were equipped with a Carlo
Gavazzi EM340 smart meter. The Raspberry Pi Zero W was directly connected to the smart
meter and it collected all necessary measurements every minute through a Modbus RTU
via the RS485 CAN HAT board. The enclosure of the device was a custom-made Din Rail
case, that was created with Fused Deposition Modelling (FDM) 3D printing technology on
the CERTH premises. In Figures 8 and 9, the design and electrical layout of the developed
solution are shown.
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Figure 8. ODRes Remote Metering Solution : (a) the design of the 3D-printed custom casing; (b) the Raspberry Zero
installation of ODRes within the casing; (c–d) the automatic relay (left), the ODRes Raspberry Zero (centre), the Carlo
Gavazzi Smart Meter (right); (e) the final integrated ODRes remote metering solution in a house fuse box.

Figure 9. Custom Energy Meter Integrated Solution Schema.

In addition to the previous setup, some residences were equipped with supplementary
smart plugs that were attached to specific appliances in order to provide the ground truth
for the UP-dd sub-module. The energy consumption measurements of these smart plugs
were retrieved via a dedicated gateway and were then sent to the ODRes server via
RESTful services.

Finally, with regards to the ODRes server, all modules described in Section 2, along
with the web-based User Interfaces, were set up in a Linux-based machine, powered by an
Uninterruptible Power Supply, the specifications of which are as follows: CPU intel cpu
i7-10700k, RAM 16 GB DDR4, hard drive SSD 256GB.

3.3. Experimental Results

The experimental validation follows the same business scenario as the one presented in
the simulation results in the previous section. Table 3 presents the detailed results of the DR-
MOO framework for six out of the ten users/houses included in the aggregator’s portfolio,
which were selected for participating in the day-ahead DR schedule for 9 June 2021. The
DR events were defined at midnight of the previous day, considering the day-ahead load
forecast and the user’s preferences, and were extracted from the UP-Once sub-module and
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consequently sent as notifications through the mobile app to the end-users, containing
the suggested operating time intervals of the appliances of each user, respectively. Just
before the end of the day, the UP-DD sub-module detected whether the users followed the
suggested appliance scheduling and estimates their participation rate (achievement), which
essentially corresponds to the fraction of time actually participating in the DR process
to the time dictated by the DR-MOO schedule as produced at the beginning of the day.
In particular, the detection of the operating time slots of the appliance was performed at
15 minute intervals. To calculate the achievement metric, only the time slots that were
within the proposed schedule were taken into consideration. If appliance operation was
detected at any other time or not at all, then these slots were considered “failures”. As
can be observed from column “Achievement” of Table 3, the majority of users followed
the suggested plan relatively closely. It is worth mentioning that there were cases where
some users ignored the suggestions despite their participation in the DR program. More
specifically, there were two customers that did not follow the DR schedule at all, so their
participation rate was 0%.

Table 3. Optimal DR application result. Experiment day: 9 June 2021.

Customer Shiftable Appliance Proposed Time Slot Detected Time Slot Achievement

User 1 Washing Machine 17:00–19:15 18:15–19:15 55 %
User 3 Oven 17:00–18:15 17:00–18:30 83%
User 4 Dryer 17:00–18:15 17:15–18:30 71%
User 11 Washing Machine 19:00–21:00 - 0%
User 12 Washing Machine 19:00–21:00 - 0%
User 18 Dishwasher 18:00–19:15 18:00–19:15 100%

In order to prove the efficient operation of the proposed ODRes integrated system, the
optimisation process and the results for an individual case are demonstrated in detail in
Figures 10 and 11. In particular, Figure 10 presents the suggested schedule of the washing
machine for 1 June 2021 for one consumer, resulting from the DR-MOO engine along with
the preferences related to this appliance. In Figure 11, the highlighted area depicts the
output of the UP-DD sub-module, that is, the disaggregation result. This is accompanied by
a second plot which shows the actual operational time interval of the respective appliance,
verifying the accurate appliance detection. Additionally, Figure 10 includes all the factors
that are taken into consideration during the decision making of the DR-MOO engine,
namely the preferences of a particular consumer, the day-ahead SMP and the day-ahead
load forecast for the respective house. It is evident that the suggested plan for the washing
machine coincides with the preferences, while being in accordance with the load forecast.
By observing the fluctuations of the SMP for that day, one can identify that this appliance
was placed in a time slot with a relatively low price value. Both diagrams of Figure 11
showcase the high performance of the UP-DD sub module. The appliance’s operational
interval is extracted utilising the results deriving from the output of NILM algorithm. It
is evident that the largest part of the washing machine’s operational cycle is correctly
identified. There is only one small part at the end of the operational cycle which is not
identified, however this can be considered normal because this specific appliance operates
at a very low active power level during that time. In general, the performance of the NILM
algorithm is sufficient, considering the F-score metric (F-score = 0.75), the harmonic mean
of Precision (Precision = 1) and Recall metrics (Recall = 0.6).
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Figure 10. User preferences, day-ahead load forecast and SMP used to produce the optimal appliance scheduling for one
household (house ID: User 1, experiment day: 1 June 2021).

Figure 11. UP-dd results for washing machine detection and comparison with ground truth deriving from a smart plug.

In order to assess the required time for the training of the load forecasting tool, one
should observe its algorithmic complexity. The proposed algorithm leads to the creation
of an individual set of predictive models for each household that are exclusively trained
on their data. After tuning, it was decided that three months of data was needed for
the initial training and construction of the static models. Those models are loaded daily,
during the operation of the load forecasting tool, while they are periodically updated by
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performing a re-training process. Re-training is performed on a monthly basis, capturing
the user’s behavioural changes in their energy usage that may depend on seasonal factors
or other non-deterministic causes that can not be easily modelled. This way, the model
remains up-to-date, adapting to the users’ behaviour and making sure that high quality
forecasts can be generated. Similarly, the disaggregation tool utilises pre-trained models
for each appliance that are also updated monthly. Consequently, the only computationally
demanding process regarding the AI-based tools of the Up-Update sub-module is the
initial training of the models, which requires time measured in the order of magnitude of
a few minutes. The re-training process is similar to the initial training but it only occurs
once a month. In daily semi-real time operation, the forecasting and disaggregation tools
for each user are executed in sub-second times since no training is performed and the
predictions are generated from the pre-trained models. Therefore, the framework could
easily be scaled to a large number of portfolio customers for daily operation.

4. Conclusions & Future Work

Exploiting the hidden flexibility potential within the residential sector is still a daunt-
ing task as opposed to industrial or commercial users. Configuring the most apt optimised
DR schedule has very limited real-life demonstration, despite the large amount of published
research. To that end, this work presented a holistic incentive-based DR framework (ODRes)
for load shifting. The ODRes framework is composed of several components which employ
several different technologies, including optimisation techniques, machine learning, data
analytics, hardware and mobile and web-based user interfaces. Three key innovations
are incorporated in the core components of the ODRes system: (a) the multi-objective
DR scheduling problem, which performs cost minimisation while considering end-user
comfort preferences; (b) appliance disaggregation, which aims towards identifying specific
household appliances via the analysis of quarterly aggregated energy consumption based
on pre-defined appliance signature models; and, finally, (c) the residential load forecasting,
which is based not only on historical measurements but also upon the day-ahead weather
predictions, leading to more accurate results. One major innovative aspect of the presented
work is the fact that its performance has been evaluated both in simulations and in real
houses in Thessaloniki, Northern Greece. From the performed simulations, the mean
daily profit is 1.48% with a 3.45% variance. This is the theoretical maximum profit that
can be extracted by a small portfolio with only four shiftable appliances considered. As
proven by the simulation analysis, these profits are directly correlated to the price fluctu-
ations, implying that, in the future, pricing schemes with larger deviations will lead to
significantly larger profit margins deriving from residential incentive-based DR. To test the
applicability of the proposed framework to real households, ten houses in Thessaloniki
were used as a testbed. The ODRes system was deployed in a server to run all modules
automatically, smart meters were installed on each house’s main electrical panel along with
some smart plugs, while a small mobile application was developed in order for the system
to interact with the users. The experimental results are promising with regards to both the
performance of the overall ODRes system and the business potential.

The simulation and experimental results highlight the roadmap to future work. More
specifically, to address the potentially limited user participation, the development of an in-
novative and more appealing gamification engine could lead to increased user engagement
with the DR program, achieving behavioural change targeted towards residential energy
efficiency. Furthermore, to increase profit margins, the authors have considered expanding
the number of devices included for DR, such as water heaters and residential HVAC sys-
tems (heat pump, AC etc.). The DR portfolio is also considered to be expanded to include
more households and to investigate potential issues at larger scales. These would also
lead to an expansion of the combination of devices to be identified by the disaggregation
tool. A trial of other techniques (e.g., hidden factorial Markov Models, Support Vector
Machines, unsupervised learning) regarding load forecasting and disaggregation could
be considered for utilisation for households with and without the smart plugs connected
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to the related devices. Additionally, a comparative analysis of the proposed approach
while using other DR schemes, such as DLC—or even with different DR strategies, for
example, ToU or CPP—is to be examined as well. A final interesting aspect that could be
explored is the multi-objective optimisation engine, which could be implemented using
stochastic optimisation and metaheuristic methods to improve its performance for large
aggregator portfolios.
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