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Abstract: Research on the modeling and fault diagnosis of rotor eccentricities has been conducted
during the past two decades. A variety of diagnostic theories and methods have been proposed
based on different mechanisms, and there are reviews following either one type of electric machines
or one type of eccentricity. Nonetheless, the research routes of modeling and diagnosis are common,
regardless of machine or eccentricity types. This article tends to review all the possible modeling
and diagnostic approaches for all common types of electric machines with eccentricities and provide
suggestions on future research roadmap. The paper indicates that a reliable low-cost non-intrusive
real-time online visualized diagnostic method is the trend. Observer-based diagnostic strategies are
thought promising for the continued research.

Keywords: fault diagnosis; rotor; eccentricity; electric machine

1. Introduction

The diagnostic approaches toward predictive maintenance for rotating electric ma-
chines have been developed for decades. They provide early detection and severity
evaluation with ease, saving time and labor costs [1–3]. A good diagnostic approach should
also provide out-of-service margin, which helps to make full use of service life and make
maintenance schedules.

In this area, the diagnosis for rotor eccentricity has attracted attention due to its catas-
trophic consequences. In general, there is a tolerable inherent eccentricity degree due to
limited accuracy of fabrication and assembly. The permissible eccentricity could be exacer-
bated due to stresses or faults, such as misalignment and bearing wear. A lateral injure of
bearing ball could cause shaft incline and rotor eccentricity occurs. Longtime misalignment
would cause shaft bent and rotor eccentricity occurs. The aggravated eccentricity causes
unbalanced magnetic pull, increased cogging torque, excessive vibration, and rotor temper-
ature increase [4]. As the direction of unbalanced magnetic pull is roughly consistent with
the direction of eccentricity, the rotor is gradually dragged to a more eccentric position.
This positive feedback eventually evolves to a rotor stator rub, which harms lamination
and generates sparks. Besides, an inverter-driven permanent magnet synchronous ma-
chine (PMSM) prototype with severe eccentricity could cause serious torque oscillations
and inverter failures. Nonetheless, these hazards can be avoided by applying advanced
diagnostic approaches [5].

Various diagnostic methods have emerged so far, and there are reviews regarding the
diagnosis of eccentricity [6–9]. These articles discuss either one type of rotary machines
or eccentricity. On the other hand, other reviews on general topics of diagnostics cannot
give full discussion on eccentricities. While in this paper, all the possible modeling and
diagnostic approaches for rotor eccentricities in general types of electric machines are
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reviewed. It is held that there are common research routes in the eccentricity modeling and
diagnostics for any type of machines. Therefore, the paper is organized in a general frame
and the most representative diagnostic strategies are reviewed. Suggestions for future
research from the perspective of electrical engineering are given.

The paper is organized as follows. In Section 2, a brief review of the rotor eccentricities
is presented. In Section 3, modeling techniques of electric machines with eccentricity faults
are reviewed. In Sections 4 and 5, the eccentricity diagnostic approaches are analyzed
based on their most prominent features. The approaches are classified into model-based,
and signal- and data-based methods, which will be dealt with separately. The challenges
on the distinction between the eccentricity and other similar faults are discussed in Section
6. The trend of diagnostic approaches for eccentricities is further discussed in Section 7.
The conclusion is presented in Section 8.

2. Rotor Eccentricity

In the literature, the rotor eccentricity is idealized as static eccentricity (SE), dynamic
eccentricity (DE), or mixed eccentricity (ME), as shown in Figure 1 [10,11]. The SE indicates
that the rotor and the stator centers do not coincide, and the rotor revolves the rotor center.
The DE indicates that the rotor and the stator centers do not coincide, and the rotor revolves
both the stator and the rotor centers. The ME contains both the SE and the DE, and in
which case the rotor revolves a third center other than the stator and the rotor centers.
The definitions of SE degree ρs, DE degree ρd, and ME degree ρm are depicted in Figure 2,
where g0 represents the air-gap length. It is indicated that if ρs equals ρd, then the rotor
center trajectory will pass through the stator center. In [12], an axial inclined or a bent
rotor is modeled in segments to analyze the air-gap flux and unbalanced magnetic pull.
Nonetheless, the 2-D SE, DE, and ME models are enough for study.

Energies 2021, 14, x FOR PEER REVIEW 2 of 21 
 

 

Various diagnostic methods have emerged so far, and there are reviews regarding 
the diagnosis of eccentricity [6–9]. These articles discuss either one type of rotary machines 
or eccentricity. On the other hand, other reviews on general topics of diagnostics cannot 
give full discussion on eccentricities. While in this paper, all the possible modeling and 
diagnostic approaches for rotor eccentricities in general types of electric machines are re-
viewed. It is held that there are common research routes in the eccentricity modeling and 
diagnostics for any type of machines. Therefore, the paper is organized in a general frame 
and the most representative diagnostic strategies are reviewed. Suggestions for future re-
search from the perspective of electrical engineering are given. 

The paper is organized as follows. In Section 2, a brief review of the rotor eccentrici-
ties is presented. In Section 3, modeling techniques of electric machines with eccentricity 
faults are reviewed. In Sections 4 and 5, the eccentricity diagnostic approaches are ana-
lyzed based on their most prominent features. The approaches are classified into model-
based, and signal- and data-based methods, which will be dealt with separately. The chal-
lenges on the distinction between the eccentricity and other similar faults are discussed in 
Section 6. The trend of diagnostic approaches for eccentricities is further discussed in Sec-
tion 7. The conclusion is presented in Section 8. 

2. Rotor Eccentricity 
In the literature, the rotor eccentricity is idealized as static eccentricity (SE), dynamic 

eccentricity (DE), or mixed eccentricity (ME), as shown in Figure 1 [10,11]. The SE indi-
cates that the rotor and the stator centers do not coincide, and the rotor revolves the rotor 
center. The DE indicates that the rotor and the stator centers do not coincide, and the rotor 
revolves both the stator and the rotor centers. The ME contains both the SE and the DE, 
and in which case the rotor revolves a third center other than the stator and the rotor 
centers. The definitions of SE degree ρs, DE degree ρd, and ME degree ρm are depicted in 
Figure 2, where g0 represents the air-gap length. It is indicated that if ρs equals ρd, then the 
rotor center trajectory will pass through the stator center. In [12], an axial inclined or a 
bent rotor is modeled in segments to analyze the air-gap flux and unbalanced magnetic 
pull. Nonetheless, the 2-D SE, DE, and ME models are enough for study.  

 
Figure 1. Diagram of RE. (a) SE. (b) DE. (c) ME. Figure 1. Diagram of RE. (a) SE. (b) DE. (c) ME.



Energies 2021, 14, 4296 3 of 21

Energies 2021, 14, x FOR PEER REVIEW 3 of 21 
 

 

According to the permeance formula Λ = g·S/μ and the definition of inductance L = 
N1N2/Λ, where g is the air-gap length, S is the area, μ is the permeability, N1 and N2 are the 
number of turns, the asymmetric air gap distribution affects the inductances by changing 
g and μ, and further the distorted inductances cause fault harmonics in the machine cur-
rents. Therefore, the diagnostics have been proposed based either on exposed (cur-
rent/voltage/power) performance or on internal (inductance) distortion.  

The low-frequency fault frequencies of ME in line currents are depicted as [13] 

recc sf f kfυ= ±  (1)

where fs is the power supply frequency, fr is the mechanical rotational frequency, ν is the 
principal harmonic order of stator currents, and k is a positive integer.  

Specifically, for an IM with rotor slot harmonics, the high-frequency band fault fre-
quencies of the eccentricity faults in currents are depicted by [13] 

h 2 d r s ( )f kZ n f fυ= ± ±  (2)

where Z2 is the number of rotor slots. For the SE, nd is 0, while for the DE, nd is a positive 
integer. Note that fh with nd = 0 are the rotor slot harmonic frequencies, therefore the SE 
fault causes a rise in the amplitude of rotor slot harmonics. For the pure SE or pure DE, it 
has been also found that the prerequisite of Equation (2) is that Z2 and p should satisfy Z2 
= 2p (3(m ± q) ± r) for a balanced three phase winding, where p is the number of pole pairs, 
m ± q∈N+, and r = 0 or 1 [14]. Nonetheless, the ME fault is most considered in practice. 
Figure 2 shows the calculation model of ME degree. 

 
Figure 2. Calculation of ME. 

3. Modeling of Machines with Eccentricities 
An accurate model with configurable eccentricity type and degree can be used to 

predict the potential performance of a diagnostic strategy [15]. The finite element method 
(FEM), the analytical method, the magnetic equivalent circuit (MEC) method, and the 
modified winding function approach (MWFA) have been reported.  

The FEM precisely simulates the magnetic field distribution and parameter varia-
tions of a faulty machine provided that the physical properties and geometrical dimen-
sions are given. The simulated inductances of an interior PMSM under the ME condition 
is provided in [16] by using FEM. However, as the ME (and also the DE) has time-varying 
air gap length, it requires full time-step FEM, which is slow compared with static FEM 
which can be used for the SE. The joint simulation of FEM and digital control demands 
excessive computation [17,18]. Furthermore, the FEM cannot provide analytical mathe-
matic relations between concerned variables and eccentricity degree, especially in the case 
of ME. Therefore, the FEM has been often utilized to verify the other methods. 

Figure 2. Calculation of ME.

According to the permeance formula Λ = g·S/µ and the definition of inductance
L = N1N2/Λ, where g is the air-gap length, S is the area, µ is the permeability, N1 and
N2 are the number of turns, the asymmetric air gap distribution affects the inductances
by changing g and µ, and further the distorted inductances cause fault harmonics in the
machine currents. Therefore, the diagnostics have been proposed based either on exposed
(current/voltage/power) performance or on internal (inductance) distortion.

The low-frequency fault frequencies of ME in line currents are depicted as [13]

fecc = υ fs ± k fr (1)

where f s is the power supply frequency, f r is the mechanical rotational frequency, ν is the
principal harmonic order of stator currents, and k is a positive integer.

Specifically, for an IM with rotor slot harmonics, the high-frequency band fault fre-
quencies of the eccentricity faults in currents are depicted by [13]

fh = (kZ2 ± nd) fr ± υ fs (2)

where Z2 is the number of rotor slots. For the SE, nd is 0, while for the DE, nd is a positive
integer. Note that f h with nd = 0 are the rotor slot harmonic frequencies, therefore the SE
fault causes a rise in the amplitude of rotor slot harmonics. For the pure SE or pure DE, it
has been also found that the prerequisite of Equation (2) is that Z2 and p should satisfy Z2
= 2p (3(m ± q) ± r) for a balanced three phase winding, where p is the number of pole pairs,
m ± q∈N+, and r = 0 or 1 [14]. Nonetheless, the ME fault is most considered in practice.
Figure 2 shows the calculation model of ME degree.

3. Modeling of Machines with Eccentricities

An accurate model with configurable eccentricity type and degree can be used to
predict the potential performance of a diagnostic strategy [15]. The finite element method
(FEM), the analytical method, the magnetic equivalent circuit (MEC) method, and the
modified winding function approach (MWFA) have been reported.

The FEM precisely simulates the magnetic field distribution and parameter variations
of a faulty machine provided that the physical properties and geometrical dimensions
are given. The simulated inductances of an interior PMSM under the ME condition is
provided in [16] by using FEM. However, as the ME (and also the DE) has time-varying
air gap length, it requires full time-step FEM, which is slow compared with static FEM
which can be used for the SE. The joint simulation of FEM and digital control demands
excessive computation [17,18]. Furthermore, the FEM cannot provide analytical mathematic
relations between concerned variables and eccentricity degree, especially in the case of ME.
Therefore, the FEM has been often utilized to verify the other methods.



Energies 2021, 14, 4296 4 of 21

The analytical methods include subdomain methods, perturbation methods, superpo-
sition methods, field reconstruction methods, and so forth [19–25]. Although the compu-
tation burden of the analytical methods is less than that of the FEM, the literature shows
that the analytical methods have difficulty in dealing with the ME due to the continuous
movement of the minimum air gap location. Therefore, the analytical methods are mostly
used to calculate the cogging torque, air-gap field distribution, and UMP for a surface-
mounted PMSM or an induction machine (IM) with SE or DE. The analytical method is
seldom utilized to verify diagnostic strategies for inverter-driven eccentric machines.

The MEC and MWFA use magnetic circuit to describe electric machines. Both can
be implemented in the MATLAB®/Simulink® (MathWorks, Natick, MA, USA) combined
with a converter model, and thus the performance of a converter-based diagnostic strategy
can be easily predicted and evaluated. As a lumped parameter method, the MEC uses
permeance network to describe machine structure. An eccentric salient pole synchronous
machine model based on MEC has been developed in [26]. A 3-D MEC model has been
proposed to calculate the winding inductances of an eccentric IM in [27]. The MEC
method can retain more structural details than the analytical method, yet its computation
could be more intensive. The MWFA, which was proposed by Toliyat and developed by
Faiz et al., is the extension of winding function theory for the eccentricity modeling of
electric machinery [28,29]. As the model accuracy of MWFA is limited due to its series
approximation of inverse air-gap function, a unified winding function approach has been
further proposed to overcome this drawback in [16,30], and the effect of slotting and
saturated teeth reluctance have been further considered in [31]. Recently a simplified
MWFA model for IM with ME has been presented to reduce the computational effort
caused by rotor bars [32]. In a word, the MWFA assumes superposition in taking saturation
and slotting effects into account, which depends on machine type and is challenging.
The MWFA is not comparable to the MEC method in retaining the physical geometrical
details, while the computation burden of MWFA can be less. The simulation accuracy of
MEC and MWFA could be the same if only the air-gap permeance is considered in the
modeling. Moreover, the MWFA is easier to provide analytical solutions of inductance
matrices especially in the case of ME [33]. Table 1 compares the characteristics of these
modeling approaches qualitatively.

Table 1. Qualitative comparison between modeling methods for eccentricity diagnosis.

FEM Analytical
Methods MEC MWFA

Computation burden High Medium, Medium Low

Accuracy High
Depends on model

simplification
assumptions

Depends on model
simplification
assumptions

Depends on model
simplification
assumptions

Can simulate ME Yes No Yes Yes
Provide analytical

relations No Yes Yes Yes

Convenience in joint
simulation with

digital control and power
electronics

Low No High High

Comments

Good tool for fault
diagnosis and

validation of other
modeling methods.

Good tool for
computing cogging

torque, field
distribution and

radial force.

Good tool for fault
diagnosis

Good tool for fault
diagnosis
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4. Model-Based Diagnosis

It is held herein that if a diagnostic strategy is based on the analysis of machine system
model and related theories rather than the direct adoption of well-known eccentricity fault
signatures like Equations (1) and (2), then it is classified as a model-based approach. The
model-based approaches are superior to merely utilizing well-known eccentricity fault
signatures because Equations (1) and (2) can confuse the eccentricity fault with other faults
that have similar sideband patterns, which will be discussed in Section 6.

Model-based methods have been proposed in the last two decades. They are herein
divided into simulation model analysis, MMF-permeance analysis, instantaneous power
analysis, coordinate transform, auxiliary voltage injection, sensor-based and observer-based
approaches, etc.

4.1. Simulation Model Analysis

The diagnostic approach based on simulation model analysis is to establish a faulty
model for a real target prototype and predict the behavior based on the appearing fault
signatures in simulation. The signatures are handled as the diagnostic criteria for the
prototype machine.

For mains-fed and voltage source converter-driven machines, the winding currents
under fault condition are unknown and different from those under healthy condition.
Therefore, the supply input of simulation model should be configured as voltage source.
For instance, time-step FEM, MWFA, and MEC model with applied voltage source have
been developed to simulate currents of healthy and faulty machines [34–36]. Motor current
signature analysis (MCSA) can be selected to analyze the simulated currents and spectral
components of significant amplitude increase under SE, DE, and ME can be taken as fault
indices [37,38]. In this way, the amplitudes of (1 ± (2k − 1)/p) f s and f s ± f r are selected
as SE and ME indices, respectively, for a surface-mounted PMSM in [39]. The amplitude
of 2f s is selected to detect SE fault for a salient pole synchronous generator [40]. For IMs,
the amplitudes of f h (k = 1, ν = 1) and f s ± kf r are considered to discriminate SE, DE, and
ME [41]. However, an important conclusion is arrived through MWFA model analysis
that if an axial inclined rotor of IM with SE is symmetrical about the midpoint, then there
are no SE frequencies in f h [42]. It can be concluded that simulation model-based MCSA
relies on machine type and physical properties, indicating that the frequency indices of a
machine could become invalid if design sheets are adjusted. Therefore, other simulation
model-based approaches have been proposed as well. In [43], an exact MWFA model is
developed for an IM prototype, and particle swarm optimization is introduced to correct
the SE and DE degrees of model until minimum fitting function value is reached. The
eccentricity type and severity are determined in this way. Stator inductance fluctuation is
proposed in [44] as an eccentricity index for IM based on MWFA model.

The FEM model analysis is an effective tool for eccentricity diagnosis of the switched
reluctance machine (SRM). The current source is applied to the SRM model for current
chopping control mode and the voltage source is applied to the SRM model for single-pulse
control mode. It has been found in simulation that the amplitudes of mutual induced
voltages of idle phases increase with the eccentricity degree. Then the mutual induced
voltage is proposed in [45] as the fault index for a 4-phase 8/6 SRM.

The simulation model analysis has also been applied to resolver position sensors
which is assembled along with the machine because the resolver can reflect the eccentricity
in the electric machine. In [46], an MWFA model of resolver under SE and DE has been
developed and fault indices are proposed based on the regular resolver signals. The
eccentricity in the machine is detected indirectly. Its advantage is the low complexity of
eccentric resolver model because the resolver operates in linear zone and its structure
is simple.
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4.2. MMF-Permeance Analysis

The MMF-permeance analysis has been developed to predict fault frequencies of
eccentricity [47–51]. Its theory is to expand F1/Λ into series expansion, where F1 is the
time-space function of stator MMF and Λ is the time-space function of air-gap permeance.
The merit of this method is that the effects of slotting and magnetic saturation can be easily
considered with concise derivation. Nonetheless, as it cannot provide rigid quantitative
results, the method is often used to provide theoretical basis for frequency distribution.

4.3. Instantaneous Power Analysis

The eccentricity of IM has been diagnosed by instantaneous power signature analysis
(IPSA) in [52]. However, the fault indices of IPSA are found to be affected by motor load and
control mode [53]. Therefore, it is hard to claim that the IPSA is better than MCSA. In [54],
the apparent power signature analysis has been proposed to diagnose the eccentricity fault.
In [55], the amplitude of f r frequency component of instantaneous reactive power spectrum
has been used to diagnose the ME for a doubly-fed induction generator. Experiments
show that the sensitivity of f r amplitude is twice that of MCSA. The instantaneous power
analysis is not a widely adopted means in literature.

4.4. Coordinate Transform

The usage of Clarke and Park transforms is a general measure for motor diagnosis.
(It should be reminded herein that the Clarke and the Park transforms are confused in
some literature.) The Clarke transform of stator currents should be a circle and the shape
deforms in the case of unbalance faults. Therefore, the Clarke transform of stator voltages
and currents have once been used for diagnosis. However, it fails to separate the fault
types. Therefore, it is often combined with the other methods. The Park transform has been
often utilized to diagnose broken rotor bar (BRB) instead of eccentricity. This is because the
BRB frequency is 2k times the slip frequency and can be submerged by spectral leakage at
light load, but this is not an issue for the eccentricity detection [56]. Nonetheless, the SE
fault has been detected based on the shift direction of Vd and Vq [57].

In addition, zero or negative sequence components have been used to diagnose SE
for the IM. As stated earlier, the SE can be diagnosed by Equation (2) only if p and Z2
have a particular relation. Otherwise, new solutions have to be explored. In [58], slot
harmonic components in zero-sequence current are proposed to solve this issue. In [59],
the fundamental negative sequence of q-axis current is used to diagnose the SE.

An ingenious approach has been proposed in [60,61]. The stator winding of a syn-
chronous generator is customized as parallel-pole-phase group structure. Each branch is
equipped with a current sensor. If the total number of parallel branches is R, then this
2p-pole 3-phase generator is equivalent to a 2-pole R-phase machine. The R-phase currents
are further turned into 0th ~ (R − 1)th complex sequence components by symmetrical
components transform. Two generalized zero-sequence components and (R/2 − 1) pairs
of complex conjugate sequence components are obtained. Only the first R/2 sequences
are considered due to the conjugate relation. The pth order attributes to the fundamental
supply f s, and the (p ± 1)th order attributes to the eccentricity. Then, the eccentricity com-
ponent and the fundamental supply component are finally decoupled in time domain. 2-D
visualization of eccentricity components using LabVIEW® (National Instruments, Austin,
TX, USA) is shown in Figure 3. However, the main drawbacks of this approach are that
it requires R sensors and the winding structure has to be redesigned, indicating that the
hardware cost increases, and the reliability decreases, and that the designated winding
distribution limits its application.
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4.5. Auxiliary Voltage Injection

Diagnosis based on auxiliary voltage signals has attracted much attention recently. Dif-
ferent injection patterns have been proposed to obtain equivalent inductance or impedance,
which is used to detect eccentricities [62–65]. In most cases, the injection patterns are gener-
ated by inherent converter of the driving system, which do not need additional hardware.
In [62], the rotor of an IM is kept halted and a low-amplitude rotational square-wave pulsat-
ing voltage is injected by converter. The curve of zigzag leakage inductance (or impedance)
along the mechanical circle is then calculated for eccentricity detection. In [63], on the
contrary, the direction of the pulsating voltage is fixed while the rotor of an IM is manually
rotated. The pulsating voltage is applied between any two phases with an AC power
supply. Despite the fact that the method in [63] requires manual operation, its accuracy is
higher than that in [58]. The injection pattern is further modified in [64], where the rotor of
the IM is halted, and a low-frequency square-wave pulsating voltage with an increasing
DC bias is injected in a fixed direction by converter. The curve of the calculated differential
inductance with resulted DC current values is drawn. The knee point on the curve is used
to diagnose eccentricity. The method in [64] is further extended onto a PMSM [65]. The
DC bias is no more needed owing to the existence of PM, and the equivalent differential
d-axis inductance is proposed as the eccentricity fault index of PMSM. The indices relating
to the differential d-axis inductance further evolves in [66], where the d-axis axis saturation
current and the height of lump of incremental inductance curve are used to detect the SE
fault of PMSM. The imperfection of the aforesaid approaches is that they are implemented
offline and cannot provide online diagnosis.

Moreover, research efforts are also dedicated to realizing real-time eccentricity visual-
ization based on auxiliary injection. The trajectory of transient current change vector has
been proposed using high-frequency pulsating voltage [67–69]. It is a real-time visualized
offline approach, while its theory does not match well with tests. The injected pulses are
required to be implemented within one PWM cycle, indicating the fundamental voltage
commands cannot be generated during injection and basically the tests have to be offline.
To solve this problem, inverse transient complex inductance vector theory with a special
voltage sequence pattern is proposed in [15] to achieve online real-time visualization of
SE, DE, and ME. The inner and outer boundaries of the experimental vector trajectories in
Figure 4 provide both the degree and the proportion of existed types of eccentricities. The
principle of this theory lies in that

g ∝ Λm
−1 ∝ L −1 (3)
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where g is the air-gap length, Λ is the permeance and L is the inductance, which means that
the inverse of machine inductance with “mH” unit turns out to be a value of thousands
and then the air-gap length is significantly amplified. The sensitivity of eccentricity degree
is increased. However, the limitation of this method is that it fails in high-speed operating
cases due to the restriction of injection frequency.
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A series of offline eccentricity diagnoses based on voltage injection and time-step FEM
has been designed for the SRM as well. In [70], two rotor poles are aligned with two stator
poles, and a low-frequency sinusoidal pulse is injected into one of the unaligned phases.
The produced current signatures in idle phases are processed to diagnose SE, DE and ME.
Likewise, in [71], all the windings are open circuited and the produced voltage signatures in
idle phases are processed. Further, in [72], a pair of out-of-phase high-frequency sinusoidal
pulses are injected into the two coils of the full aligned phase, and the differential currents
in all phases are processed for severity estimation and eccentricity location. The proposed
fault indicator is independent of the healthy motor information, which makes it reliable
and applicable tool for all sizes of SRMs. It is shown that the diagnostics for SRM are more
flexible than conventional AC machines.

In addition to the above, the surge tester has been used to detect the eccentricity
offline [73]. The anode of surge tester is connected to one phase and the cathode is
connected to the rest. The test is taken at evenly spaced mechanical angle in one round.
The arriving time of the first and the fifth zero crossings of the surge wave is recorded
in each test. The spectra of zero-crossing time are used for detection after hundreds of
mechanical rounds.

Taken together, the existing injection-based approaches are applicable to offline stand-
still or online low-speed situation with no load or light load, which limits the scope of
usage. Nonetheless, the speed range of the online injection-based methods will be fur-
ther enlarged if the inverter switching frequency is increased with the development of
semiconductor devices.

4.6. Sensor-Based Detection

Herein, the sensor-based approaches merely imply that these methods require addi-
tional sensors that are not essential for normal operation. Invasive and noninvasive sensors
have been put into practice for eccentricity diagnosis where production cost is not in the
first place. Search coils have been an effective tool for invasive detection. A polar graph
formed by field components of induced coil voltages has been proposed to discern types
of eccentricity faults for a concentrated-winding PMSM [74]. Spatiotemporal distribution
of the amplitudes of the stator tooth fluxes are presented in [75]. In [76], one search coil
is wound around the teeth corresponding to an even number of pole pitches to detect the
DE fault. In [77], two additional windings with p + 1 and p − 1 pole pairs are installed as
search coils to diagnose eccentricity for a 2p-pole wound rotor IM. The diagnostic principles
in [77] and aforementioned in [60] are similar.



Energies 2021, 14, 4296 9 of 21

The inherent built-in analog Hall sensor signals of BLDC have also been used to detect
the eccentricity and the partial demagnetization (PD) in [78]. The idea takes advantage
of the essential Hall sensors in the motion control. In [79], a small optical sensing system
has been integrated inside the machine to measure the air-gap eccentricity based on the
reflection of infrared radiation between the rotor and the stator. The embedded sensors are
immune to the motor structure and operating conditions. On the other hand, the reliability
of the installed sophisticated device needs assessment.

In addition to the invasive detection, flux sensors have also been placed on the external
motor frame and stray field is measured and analyzed for eccentricity detection [80–82].
The use of stray flux analysis is becoming popular due to its noninvasive nature and
simplicity [83,84]. The stray flux is obtained at the midst or the end of the frame. The
sensor position determines the portion of radial or axial flux components. The advantage
of stray flux analysis is that the fault can be detected with low additional cost. While
the constraints are that the difficulty determination of fault indicator and that the sensor
position influences the results [85]. Apart from flux sensor, a Rogowski-coil current sensor
without integrator circuit is used to detect eccentricity for the IM [86]. In [87], search
coils, serving as stray flux sensors, are equally placed outside a generator to locate the
SE position. Though nonintrusive, such layout faces a practical challenge in the accurate
fixation of search coils.

It is seen that the robustness of intrusive sensors is higher than nonintrusive sensors
in the fault detection.

4.7. Observer-Based Approaches

Few papers are focused on observer-based eccentricity diagnosis. A simple open-loop
torque observer is designed in [88] to monitor the load mass imbalance, in which, however,
the load imbalance is improperly regarded as a kind of eccentricity. In [89], a second-order
sliding mode observer is proposed to detect both the BRB and the eccentricity.

As the modulated d- and q-inductances is the root cause of low-frequency current
signatures in the case of ME, there is latent potential to diagnose ME by developing a time-
varying inductance observer, which could possibly achieve online eccentricity diagnosis
with no need of auxiliary injection or additional sensors. There is a lack of works in this
area at present.

5. Signal and Data Based Diagnosis

The sustained interest in advanced signal-processing tools for motor diagnosis has led
to abundant research outcomes. The eccentricity fault is only one of the application scenes
to test the feasibility of these signal-processing techniques. The original motivations of the
works on signal-based methods come from three issues: (a) FFT-based traditional MCSA
fails in transient operating condition, (b) the fault signatures are prone to spectral leakage
in frequency domain, and (c) the fault signatures are weak. The latter two issues do not
exist in eccentricity detection. Therefore, the signal-based eccentricity detection is mainly
focused on the fault signature tracking in nonstationary cases.

Data-driven methods have been also studied for eccentricity detection and they are
mostly combined with signal- or model-based approaches. In this regard, data-driven
methods have been mostly used to evaluate eccentricity severity or classify fault types
in literature.

Both signal-based and data-based methods manipulate signal data from transducers
and mostly do not require knowledge of machine parameters. Therefore, many of these
methods proposed for other types of faults (e.g., BRB and bearing defect) can be used for
eccentricity diagnosis as well [90,91].
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5.1. Signal-Processing Techniques

The signal-based methods use appropriate signal processing techniques to find fault
characteristic frequencies from sampled sensor data. Comprehensive studies on steady-
state MCSA and transient MCSA have been conducted to detect eccentricities.

As the FFT-based MCSA has the aforementioned drawbacks, a number of papers are
focused on enhancing the fault feature and optimizing the feature extraction by applying
Hilbert transform and Teager–Kaiser operator to the stator currents before performing
FFT [91,92]. The adverse effect of spectral leakage is reduced and the signal-to-noise ratio
is improved. A robust fault decision-making algorithm is proposed in [93] for MCSA
to suppress false detection rate and achieve close to 100% accuracy on a tested IM with
eccentricity and BRB faults.

More contribution has been focused on transient MCSA. The transient MCSAs are
applied in machine startup to obtain time-frequency patterns. Short-time Fourier transform
(STFT), Gabor, wavelets, Wigner–Ville distribution (WVD), and Hilbert–Huang transform
(HHT) have been explored for the eccentricity faults [94–100]. It has been proved in [91]
that the STFT has better extraction ability for fault components evolutions compared with
discrete wavelet transform (DWT) in detecting ME. The continuous wavelet transform
(CWT) is similar to the STFT, but the CWT has been proved to be less suitable for rotor fault
components evolutions than the STFT [101]. Further, adaptive slope transform (AST) with
optimal atom selection criterion has been proposed to improve the STFT and CWT so as to
achieve a minimum ridge width [102,103]. The criterion asserts that the atom slope must be
equal to the time derivative of the frequency along the harmonic trajectory. The evolution
of each frequency component can be optimized as a thin line via the criterion. The WVD is
a biquadratic distribution technique with inherent high-resolution, which offers perfect
thin lines. However, its use is hindered by the cross terms which hamper the interpretation
of distribution. The variants of WVD and prior notch filters have been adopted to suppress
the cross terms [104,105]. A full comparison between all the above-mentioned methods
has been done in the reference paper [101], and among which the STFT improved by AST
is concluded as the best tool for ME detection.

Recent researchers have studied other techniques to present spectrum-like plots for the
nonstationary cases as well. In [106], the filtered transient sideband harmonic is turned into
a constant-frequency signal by polynomial-phase transform (PPT). Then, the FFT spectrum
of such signal can be used to detect eccentricity. More literatures have been focused on a
series of order tracking (OT) techniques [107–110]. The horizontal axis of order spectrum in
angular domain represents the multiples of rotor speed and hence the velocity-dependent
rotor faults can be depicted in a 2-D plot. An alternative approach of OT has been proposed
in [111,112], where stator currents are expressed in rotor reference frame and the rescaling
is performed after the time-frequency results of Gabor analysis. The reduced spectrum-like
plot does not require large memory to store time-frequency distribution results, which
makes it easier for industrial application. The results of traditional time-frequency pattern
and OT spectrum are compared in Figure 5. The traditional time-frequency pattern tracks
the fundamental frequency and eccentricity sideband frequencies from 0 Hz to 50 Hz, while
the OT spectrum always presents like dealing with a stationary signal. Table 2 summarizes
the signal processing techniques for eccentricity fault.
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Table 2. Summary of signal processing techniques for eccentricity diagnosis.

Stationary Signal
Processing Nonstationary Signal Processing

Representative methods FFT, etc.
STFT, CWT, DWT, HHT, WVD, AST,

etc.
OT, PPT, etc.

Necessity of improvements
for eccentricity Low High

Best suitable methods for
eccentricity FFT STFT, AST

OT

Representative form Spectrum
Stem plot

Time-frequency pattern
Spectrum-like plot

5.2. Data-Driven Algorithms

The data-driven method acts as an auxiliary artificial intelligence tool for fault clas-
sification and severity evaluation in literature. Various machine learning and statistical
methods, such as neural network (NN), support vector machine (SVM), k-nearest neighbors
(k-NN), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA),
have been applied to eccentricity diagnosis. Data sources could be electrical, mechanical,
acoustic, and their fusions [113]. Methods based on electrical data are within the scope and
discussed herein.

Figure 6 presents a typical flow of data-driven algorithms for motor fault detection. In
most cases for eccentricity detection, the data features are extracted from current or voltage
signatures before fault classification. In [114], the LDA is used to classify the fault type and
estimate the severity based on the amplitude of the main harmonics in MCSA or motor
voltage signature analysis (MVSA). In [115], the fuzzy min-max (FMM) and classification
and regression tree (CART) are used after MCSA to classify five different motor conditions
including eccentricity. In [116], combined with MCSA, the k-NN has been used to classify
SE and DE, and the fuzzy SVM has been employed to estimate the eccentricity degree.
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The sign of an accurate data-based approach is to own a well-partitioned database. To
succeed in this, the initial extracted features need to be carefully selected by researchers’
experience or feature selection algorithms. The goal of feature selection is to maximize
the distance between classes. In addition to the feature selection, principal component
analysis (PCA) is often required to reduce the dimension of the selected features because
these features could still have mutual correlated information. The PCA is also a common
means for visualization. In [117], the SE and rotor-side inter-turn short circuit (ITSC) of
a turbo-generator are detected based on the data from flux probes and electrical sensors.
Fisher criterion and sequential backward selection (SBS) algorithm are used and compared
for feature selection. It is shown that the SBS algorithm with the Euclidean distance is
better. In order to determine the optimal feature space dimension, the k-NN is used to
measure the classification accuracy versus the dimension of new feature space. In this
reference article, the PCA is used to verify the effectiveness in 3-D representation. In [118],
a classical hierarchical classifier for eccentricity and bearing fault detection is proposed.
After the feature generation by FFT and HHT, sequential forward search (SFS) algorithm is
used for feature selection and PCA is used for dimension reduction. Then QDA is used
as the first classifier for the super-category: normal and eccentricity. SVM is used as the
second classifier for the sub-category: SE and DE.

It can be seen that the present data-driven methods based on electrical sensors often
require efforts in the feature extraction and selection, which may need redesign for a
new diagnosis task [119]. Recently, unsupervised feature learning algorithms, such as
sparse filtering, have been applied to bearing defects detection based on vibration sensors.
The raw sensor data can be transformed from original space into a feature space by such
algorithms. Nonetheless, very few publications have reported the use of unsupervised
feature learning algorithms in electrical sensor-based eccentricity detection. Therefore, the
unsupervised feature learning techniques could be an interesting research subject for the
eccentricity detection.

Last but not least, large numbers of samples are required for the data-driven methods
in order to have a high probability of correct detection. However, the amount of computa-
tion can be greatly reduced if the fault features are previously proposed by the model-based
approach, and the data-driven method only needs to provide the classification stage at this
time. In the aforementioned [57], the features are the commanded voltages and the k-NN,
LDA and QDA can be chosen for classification due to the distinct moving direction of Vd
and Vq under healthy, eccentricity, PD and ITSC conditions, as shown in Figure 7.
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6. Separation with Other Faults

As the appearance of sideband patterns could be wrongly attributed to PD, ITSC, load
torque oscillation, and shaft misalignment, the separation of eccentricity from the other
faults has been considered in recent literature, and the discrimination ability should not be
neglected in evaluating the feasibility of a diagnostic approach.

6.1. Separation with Load Torque Oscillation

The current or voltage harmonics due to rotor position dependent load torque oscil-
lations usually have large magnitudes, which leads to an ambiguity in the diagnostics.
The load torque oscillations can be produced by shaft misalignment, mass unbalance,
transmission gear, etc. The load torque oscillation is usually simulated by an inertia disc
with uneven mass distribution [120]. The distinctions between single frequency load torque
oscillation and eccentricity have been studied by researchers. To distinguish between eccen-
tricity and load torque oscillations of a closed-loop drive-connected IM, the fundamental
negative sequence component of stator currents has been proposed as a mark of distinc-
tion, because the load torque oscillation does not belong to structural asymmetries, and it
would not cause the fundamental negative sequence current [121]. However, whether the
sequence fundamental negative sequence appear in the voltage or current signals depends
on the controller bandwidth. The negative sequence component may also be produced by
stator ITSC, yet this ambiguity can be excluded by analyzing the fundamental component
of zero-sequence voltage. In [122], the spectral analyses of both instantaneous power factor
and its phase angle have been found effective to separate them, but which require the
measurements of all the stator voltages and currents.

The response of torque harmonic to the bandwidth of speed controller has been
considered for the separation [123]. The f r torque harmonic shows opposite trends for the
two cases and is suggested as the separation criterion. However, this criterion is much
affected by the regulating range of the bandwidth and fails when both faults appear.

The separation has been also considered from the perspective of signal processing.
The load torque oscillation produces phase modulation while the eccentricity produces
amplitude modulation in stator currents. Based on this theory, pseudo-Wigner distribution
has been used for analysis [124].

As the load torque oscillation does not produce anomalies in rotor MMF while the
eccentricity does, the flux amplitude patterns monitored by embedded Hall sensors have
been recently used to distinguish them in [125].
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6.2. Separation with PD

The sideband patterns of MCSA were studied in the early stages in order to find
differences between eccentricity and PD for PM motors. In [126,127], the (1 − 1/p) f s of
MCSA is suggested for DE detection and the 7th negative sequence harmonic is suggested
for SE. The remnant PM flux or the EMF–speed ratio is estimated to detect PD. How-
ever, the remnant flux of common PM materials has a negative temperature coefficient
(αBr ≈ −0.03%/◦C for SmCo), which has to be taken into account. Moreover, in [128], the
(1 − 1/p) f s is found to be related to SE, which is inconsistent with the above conclusion.
The (1 − 3/p) f s and (1 − 2/p) f s have been suggested for PD diagnosis. Therefore, the
MCSA cannot provide reliable distinction.

As the air-gap variations affect the inductances significantly, the d-axis inductance Ld
is considered in the aforementioned [65]. It is concluded that in the case of eccentricity, the
magnetic field is deeply saturated at the narrower air gap, and the permeance is reduced at
the wider air gap, leading to the final decrease of Ld. On the other side, if linear magnetic
circuit is assumed, inductances are supposed to become larger based on the equations of
MWFA. However, the practical no-load operating point is beneath the knee point of B–H
curve, and thus the Ld decrease caused by saturation is much likely to mask the Ld increase
under the eccentricity case. Therefore, it is acknowledged that the effectiveness of indicator
Ld is affected by the direction of eccentricity, the designed operating point, and the motor
structure. This drawback has been indicated in [62], because in which the zigzag leakage
inductance increases with eccentricity degree, which is consistent with the results of linear
magnetic circuit MWFA. To overcome this drawback, an additional DC bias current has
been further injected onto the d-axis to assist saturation, as shown in Figure 8, and this
work is accomplished in [129]. The DC bias helps to distinguish eccentricity and PD offline
successfully. Note that both the works in [65,129] have an implicit assumption that the
recoil line and the demagnetization curve coincide.
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Instead of exploiting the Ld saturation, the aforementioned work in [15] use the
amplitude modulation of inductances to distinguish ME and PD online for an inverter-
fed PMSM. The generated 2-D inverse transient complex inductance trajectories give
intuitive distinction.

The aforementioned work in [57] also provides intuitive distinction between SE and
PD. The flux linkages λd and λq have been found to be in distinct trends for different types
of faults. Then the change direction of (Vd, Vq) in Vd–Vq plane is affected and is used to
distinguish the SE and PD faults.

In fact, intrusive sensor measurements can easily give clear graph comparison for
the fault distinction. The aforementioned distributed search coils in [74] provide distinct
intuitive voltage polar graphs for SE, DE, ME, and PD. Similarly, the aforementioned
embedded Hall sensors in [78,121] can distinguish DE, ME, and PD by displaying the
peaks of the flux waveforms.
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6.3. Separation with ITSC

As the air-gap magnetic field distribution is deformed under both ITSC and eccen-
tricity cases, the diagnosis and distinguishing of stator/rotor ITSC and eccentricity faults
have been reported in the aforementioned [35,57,74,117]. Except for the invasive search
coils, classification algorithms are commonly seen in literature. The separation with ITSC
contributes a small proportion.

7. Discussion on Continued Research

The model-based, signal-based, and data-based eccentricity diagnostic approaches
are suitable for applications with diverse properties and demands. The signal-based
approaches are mostly proposed for startup process or feature extraction before data pro-
cessing. The data-based approaches are basically studied for multiple faults classification
in steady-state process. The model-based approaches have developed into all kinds of
means and are also suitable for steady-state diagnosis. Moreover, the model-based ap-
proaches have clear theoretical basis for faults separation. These approaches could be used
in combination in practice, such as in [57].

In Section 4, the model-based approaches have been categorized by the most promi-
nent features and some subcategories inevitably overlap. For instance, the auxiliary-
voltage-injection-based, the sensor-based approaches need simulation model analysis to
provide performance prediction. In addition, it is challenging to distinguish eccentricity
from other rotational faults, such as PD. Nevertheless, several methods based on auxiliary
voltage injection, sensor detection and coordinate transform etc. are demonstrated to be
valid in discrimination. Their attributes are presented in Table 3. To achieve a minimum
cost, the injection based online approach is the best. To achieve sufficient robustness,
the intrusive sensor based online approach is the best. The coordinate-transform-based
approaches are less competitive compared with the other two. It can be inferred that the
recent trend of diagnostic strategies for eccentricity is toward reliable low-cost noninvasive
visualized online diagnostics without interfering with the normal operation, although it is
not possible to achieve all these goals at present.

Table 3. Comparison of predominant methods in distinguishing eccentricity and demagnetization.

Auxiliary Voltage
Injection

Sensor-Based
Detection Coordinate Transform

Principle

Inductances (or
impedances) are
modulated and

distorted

Magnetic field
distortion

Variation of
components transform

Real-time
capability

Offline [129] or
real-time online [15] Real-time online [74]

Real-time [60,61] or
non-real-time online

[57]

Pros

Small computation and
low cost

No additional
hardware or FFT is

required
No winding structure

modification is required

Simple principle and no
interference

Robust to operating
conditions

No interference

Cons

The diagnostic
condition is restricted

to low speed or offload
The operation is

intermittently affected

Additional fabrication
cost,

and reliability issue

Additional
computation [57],

hardware or fabrication
cost [60,61],

and reliability issue
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The aforementioned observer-based approach in Section 4.7 does not have the above
drawbacks in theory. The ME, PD, and load torque oscillation could be separated by
observing the stator inductances if a proper time-varying model observer was designed.
The principle is shown in Figure 9, which presents the distortion of one stator phase
inductance under ME and PD. The amplitude of stator inductance under ME is modulated
by frequency f r, which is notably different from PD fault. In addition, the load torque
oscillation hardly affects motor inductances. Then the observer-based approach could
be effective.
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Last but not least, the load torque oscillation produced by shaft misalignments involves
nonlinear dynamics and it cannot be simulated by single frequency fluctuation. Therefore,
the elimination of shaft misalignments effects in eccentricity detection is also worth to be
investigated.

8. Conclusions

The modeling and diagnostic approaches for the eccentricity fault have been reviewed.
In terms of modeling approaches, the MEC and MWFA are suitable for the early verification
of diagnostic strategies, while the analytical methods are suitable for the electromagnetic
analysis. The FEM is an effective verification tool for both modeling and diagnostic meth-
ods. The choice of modeling approaches depends on the specific selection of model-based
approaches. In terms of diagnostic approaches, a reliable diagnosis requires accurate
discrimination of ME, PD, and load torque oscillations, which have similar fault charac-
teristics in the collected signals. The existing technologies have achieved real-time online
visualized diagnosis and fault separation. The search coil-based diagnosis has the highest
robustness while the injection-based diagnosis has the least practice cost. However, their
shortcomings restrict the scope of application. The ideal solution is to develop a reliable
low-cost noninvasive visualized online diagnostic without interfering with the normal
operation. The observer-based diagnostic approach for eccentricity is suggested as the
ongoing research interest.
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