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Abstract: Renewable energy sources such as wind power and photovoltaics (PVs) have been increas-
ingly integrated into the power system through power electronic converters in recent years. However,
power electronic converter-driven stability has issues under specific circumstances, for instance,
modal resonances might deteriorate the dynamic performance of the power systems or even threaten
the overall stability. In this work, the integration impact of a hybrid renewable energy source (HRES)
system on modal interaction and converter-driven stability was investigated in an IEEE 16-machine
68-bus power system. In this paper, firstly, an HRES system is introduced, which consists of full
converter-based wind power generation (FCWG) and full converter-based photovoltaic generation
(FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by
linearized state-space modeling. On this basis, converter-driven stability analysis was performed
to reveal the modal resonance mechanisms between different renewable energy sources (RESs) and
weak grids in the interconnected power systems and the multi-modal interaction phenomenon.
Additionally, time-domain simulations were conducted to verify the effectiveness of dynamic models
and support the converter-driven stability analysis results. To avoid detrimental modal resonances, a
multi-modal and multi-parametric optimization strategy is further proposed by retuning the con-
troller parameters of the multi-RESs in the HRES system. The overall results demonstrate the modal
interaction effect between the external AC power system and the HRES system and its various
impacts on converter-driven stability.

Keywords: converter-driven stability; hybrid renewable energy source (HRES) system; multi-modal
interaction; full converter-based wind power generation (FCWG); full converter-based photovoltaic
generation (FCPV)

1. Introduction

High penetration of converter-based power sources has become a popular trend due
to its benefits in terms of environmental protection and social sustainability, especially
the integration of wind power and photovoltaic (PV) solar energy in modern power
systems [1,2]. The full converter-based wind generation (FCWG, e.g., permanent magnet
synchronous generator (PMSG)) is more promising than doubly-fed induction generators
(DFIGs) in new wind power applications [3]. As for PV solar energy, several generic PV
system models based on the Type 4 wind turbine generator model have been introduced
by Western Electric Coordinating Council (WECC) [4]. PV generation is modeled as an
inverter-based generator associated with a variety of active power control reactive power
control options.

Renewable energy sources are interconnected to the power system via flexibly con-
trolled power electronic converters that might produce new stability issues due to the
modal interactions between converter-based generators and the power system, such as
converter-driven stability and resonance stability [5]. In particular, oscillation issues could
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be induced by the modal interaction between converters and external AC power sys-
tems. The sub-synchronous resonance (SSR) was observed in ERCOT of United States [6],
Hebei province of North China [7], London blackout in the United Kingdom [8], and
sub-synchronous oscillation (SSO) in Xinjiang province of China [9]. Low-frequency power
oscillations are normally caused by the modal interaction between the interconnection of
power grids and the fast-response automatic voltage regulators (AVRs). It is generally
understood that the occurrence of the oscillations is due to the lack of damping of power
systems electromechanical oscillation modes (EOMs) [10,11]. An unusual transition in
electromechanical dynamics is disclosed in [12], which indicates that an EOM may be
dominated by FCWG dynamics and tuned into a quasi-EOM when the FCWG quasi-
electromechanical state variables actively participate. The authors of [13] studied how
system impedance and the parameters of the phase-locked loop (PLL) affect the dynamic
behavior and the stability limits of the converters in HVDC applications.

Furthermore, increasingly power electronic converter-interfaced renewable energy
sources introduce a challenge for converter-driven stability of the overall system [14]. Al-
though the interconnection of power electronic converter-interfaced renewable generators
and conventional power systems enhances the overall flexibility and controllability [15–17],
the modal interactions of both transmission and distribution systems become compli-
cated [18–20]. In contrast to the traditional synchronous generators (SGs), converter-based
renewable energy sources have a major impact on power system converter-driven stability.
The authors of [21] studied how the parameters of rotor current controllers have influences
on the eigenvalues shift locus. Based on the dynamic modeling and analysis of traditional
generators and converter-based DFIG, the impact on power system stability is the mini-
mum under small-scale penetration of wind power generations [22]. However, when the
wind power penetration level increases, the converter-driven stability of the overall power
systems may be greatly affected. The authors of [23] conclude that the damping reduction
of power system EOM may occur at weak interconnection lines and increased wind power
penetration level. In multiple grid-interconnected PV generation systems, the coupling
behavior between PLLs and near converters may make the system more vulnerable or even
lose converter-driven stability [24,25].

In this work, a hybrid renewable energy source (HRES) system consisting of FCWG
and FCPV was integrated into the same power system to study the complex modal inter-
action with external AC power systems and thus consequent impact on converter-driven
stability. The main contributions of this paper are listed as follows:

1. Detailed dynamic models of FCWG and FCPV, including PMSG, PV generation unit,
DC/DC converter and the associated control system, DC-link, grid side converter
(GSC) and associated control systems, synchronous reference frame phase-locked
loop (SRF-PLL), and the external AC power system are established. The linearized
state-space models of each dynamic component, as well as the entire closed-loop
system, are developed as the foundation of converter-driven stability analysis.

2. Based on the above models, modal analysis is conducted with different wind power
and PV solar energy penetration levels in the IEEE 16-machine 68-bus system. Pecu-
liarly, open-loop FCWG oscillation mode (FOM) and FCPV oscillation mode (POM)
are tuned to be close to critical EOM in terms of frequency, which is the necessary
condition of open-loop modal resonance.

3. Open-loop and closed-loop modal analysis is compared. Multi-modal interaction in
the examined system with different renewable energy penetration levels is evaluated
to analyze the essential resonance mechanism, which provides a theoretical indication
to alleviate the negative effect caused by strong modal resonance.

4. To circumvent the malignant modal resonance and to enhance the converter-driven
stability, a modal interaction optimization strategy was implemented to prevent
potential modal resonance through carefully retuning the controller parameters of the
HRES system. The overall converter-driven stability and dynamic performance of the
entire system were improved thereafter.



Energies 2021, 14, 4290 3 of 20

2. Hybrid Renewable Energy Source (HRES) System

Wind power and PV solar energy have become prevalent renewable power sources
and represent a gradually increasing share of generation in modern power systems. Conse-
quently, these renewable energy sources also induce a long-lasting and complex impact
on power system stability [26]. In this section, an HRES system is introduced to cover
different types of renewable energy and their complex modal interaction with external AC
power systems.

2.1. Configuration of FCWG

The typical topology of an FCWG is depicted in Figure 1.

Figure 1. Physical configuration of an FCWG connected to the AC power system.

The FCWG consists of three parts: (1) the PMSG, the machine side converter (MSC),
and the associated control system (as demonstrated in Figure 1a); (2) the DC-link, the grid
side converter (GSC), and the associated control system (as shown in Figure 1b); and (3) the
SRF-PLL (as presented in Figure 2), which is used to synchronize FCWG with the external
power system.

Figure 2. Block diagram of SRF-PLL.

2.2. Configuration of FCPV

A full converter-based photovoltaic generation (FCPV) farm interconnected to a power
system is depicted in Figure 3, which consists of three main parts: (1) a PV generation unit,
the DC/DC converter, and the associated control system; (2) the DC-link, GSC, and the
associated control system; and (3) the SRF-PLL, which has the same control configuration
and function as that of FCWG.
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Figure 3. Physical configuration of an FCPV interconnected to the AC power system.

3. Dynamic Models of FCWG and FCPV

To elaborate the modal interaction mechanism, the external AC power system exclud-
ing the HRES dynamics is denoted as the open-loop system, while the entire system is the
closed-loop system. Therefore, the impact of the HRES system can be quantified through
open-loop and closed-loop modal analysis.

3.1. State-Space Model of FCWG

Dynamics equations of all FCWG components are derived in this section.

1. Modeling of PMSG

The PMSG can be represented by the following equations:{ dψpsd
dt = −ω0Rpsipsd − ω0vpsd + ω0ωprψpsq

dψpsq
dt = −ω0Rpsipsq − ω0vpsq − ω0ωprψpsq

(1)

{
ψpsd = Xpdipsd − ψpm
ψpsq = Xpqipsq

(2)

where ψpsk, vpsk, ipsk and Xpk (k = d, q) are the direct and quadrature axis flux, voltage,
current, and reactance of stator winding, respectively. Rps is the stator winding resistance,
ωb is the base angular speed in rad/s, ψpm is the flux linkage produced by the permanent
magnet. ωpr is the stator electrical angular speed, defined by: ωpr = npωm = ωm, where
np = 1 is the number of pole pairs of PMSG and ωm is the mechanical (rotor) angular speed.

The motion equation of the wind turbine rotor is expressed as

Hpr
dωpr

dt
= Tpm − Tpe (3)

where Hpr is the inertia constant of the rotor, Tpm is the mechanical torque of the wind
turbine, Tpe is the electrical torque of PMSG.

2. Modeling of MSC

From Figure 1a, the dynamics of MSC are derived as
ipsqre f = Kpp1(ωpr − ωprre f ) + xp1
dxp1

dt = Kpi1(ωpr − ωprre f )
dxp2

dt = Kpi2(ipsqre f − ipsq)
dxp3

dt = Kpi3(ipsdre f − ipsd)

(4)

where xpk (k = 1, 2, 3) are the state variables of PI controllers in MSC control loops. Kppk
and Kpik (k = 1, 2, 3) are the proportional and integral parameters shown in Figure 1a. X∗ref
denotes the reference value of variable X∗, and such denotations are also applied to other
variables in the following content.
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3. Modeling of DC-link

The equation of the DC-link voltage is derived as

CpVpdc
dVpdc

dt
= Pps − Ppc (5)

where Cp is the capacitance, Vpdc is DC voltage across the capacitor, Ppc is the active power
output and expressed as

Ppc = Vpcd Ipcd + Vpcq Ipcq = Vpd Ipcd + Vpq Ipcq (6)

where Vpck and Ipck (k = d, q) are the direct and quadrature axis output voltage and output
current of GSC, respectively. Vpd and Vpq are the direct and quadrature axis voltage at the
point of common coupling (PCC), respectively.

The line voltage equations across the filter reactance Xp f in Figure 1b is expressed as
dIpcd

dt = ω0
Xp f

(Vpcd − Vpd) + ω0 Ipcq
dIpcq

dt = ω0
Xp f

(Vpcq − Vpq)− ω0 Ipcd
(7)

4. Modeling of GSC

A standard GSC configuration is shown in Figure 1b, and the mathematic equations
are derived as 

dxp4
dt = Kpi4(Vpdc − Vpdcre f )

dxp5
dt = Kpi5(Ipcdre f − Ipcd)

dxp6
dt = Kpi6(Qp − Qpre f )

dxp7
dt = Kpi7(Ipcqre f − Ipcq)

(8)

where xpk (k = 4, 5, 6, 7) are the state variables of PI controllers in GSC control loops. Kppk
and Kpik (k = 4, 5, 6, 7) are the proportional and integral parameters shown in Figure 1b.
Qp is the reactive power output of GSC and expressed as

Qp = Vpq Ipcd − Vpd Ipcq (9)

5. Modeling of PLL

From the block diagram of SRF-PLL shown in Figure 2,{
d
dt xpll = KipllVpq
d
dt θpll = xpll + KppllVpq + ωpllre f

(10)

where xpll and θpll (i.e., phase angle) are the state variables of PLL dynamics, ωpllre f is the
angular speed of PLL in rad/s, Kipll and Kppll are the integral and proportional parameters
of the PLL controller, respectively.

By linearizing Equations (1)–(10) and combining them, the linearized state-space
model of FCWG can be expressed as [3]{ d

dt ∆Xw = Aw∆Xw + Bw∆Vw
∆Iw = Cw∆Xw

(11)

where ∆Xw denotes all the state variables of FCWG (i.e., the differential state variables in
equations above); Aw, Bw, Cw are the state-space matrices after integrating all linearized
differential equations; ∆Vw and ∆Iw denote the voltage variation and current variation at
the PCC of FCWG in the common x-y coordinate.
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3.2. State-Space Model of FCPV

1. Modeling of PV generation unit

According to the voltage-current characteristic of FCPV, the relation between the
output voltage and current of an FCPV is expressed as [27]

Vpv =
NsnkT

q
ln
(

Np Isc Ir/100 − Ipv

Np Ir
+ 1
)

(12)

where Vpv and Ipv are voltage and current output respectively; T is the junction temperature,
k is Boltzmann’s constant, Ns and Np are the number of PV cells in series and parallel
respectively, q is the charge of electron, n is the ideality factor, Ir is the irradiance, Isc is the
short-circuit current, I0 is the saturation current.

Therefore, the output active power from an FCPV is expressed as

Ppv = Vpv Ipv (13)

An inductance is used to limit the change of output current of the FCPV, and its
dynamics can be derived as

dIpv

dt
=

ω0

Ldc
(Vpv − Vdc1) (14)

where Vdc1 is the input DC voltage of DC/DC converter.

2. Modeling of DC/DC converter

The control structure of DC/DC converter is shown in Figure 4. The DC/DC converter
control system consists of two control loops, i.e., an outer active power control loop and an
inner current control loop.

Figure 4. Control structure of DC/DC converter.

The dynamics of DC/DC converter control system can be written as

dx1
dt = Ki1

(
Ppvre f − Ppv

)
Ipvre f = x1 + Kp1

(
Ppvre f − Ppv

)
dx2
dt = Ki2

(
Ipvre f − Ipv

)
Vdc1 = −x2 − Kp2

(
Ipvre f − Ipv

)
+ Vpv

(15)

where x1 and x2 are the state variables of PI controllers, Ki1 and Kp1 are the integral and
proportional parameters of the active power controller, Ki2 and Kp2 are the integral and
proportional parameters of the current controller.

3. Modeling of DC-link

Ignoring the power loss of converters, the dynamic equation of the DC capacitor is
expressed as

CdcVdc
dVdc

dt
= Ppv − Pw (16)



Energies 2021, 14, 4290 7 of 20

where Cdc is DC capacitance, Vdc is the voltage across the capacitor, Ppv in the injected
power from PV, and Pw is the output active power in DC-link and defined as

Pw = Vwd Iwd + Vwq Iwq (17)

where Iwd and Iwq are the direct and quadrature axis output current of GSC, respectively;
Vwd and Vwq are direct and quadrature axis voltage of PCC, respectively.

The dynamics of the filter inductor are expressed as{ dIwd
dt = ω0

xw
(Vcd − Vwd) + ω0 Iwq

dIwq
dt = ω0

xw
(Vcq − Vwq)− ω0 Iwd

(18)

where xω is the inductance of the filter, Vcd and Vcq are direct and quadrature axis output
voltage of DC/AC converter.

4. Modeling of GSC

The control structure of GSC is shown in Figure 5. GSC control system consists of four
control loops: (1) the outer DC voltage control loop; (2) the inner direct axis current control
loop; (3) the outer reactive power control loop; and (4) the inner quadrature axis current
control loop.

Figure 5. Control structure of GSC in FCPV.

The dynamics of GSC control system can be represented as

dx3
dt = Ki3(Vdc − Vdcre f )

Iwdre f = Kp3(Vdc − Vdcre f ) + x3
dx4
dt = Ki4(Iwdre f − Iwd)

Vcdre f = Kp4(Iwdre f − Iwd) + x4 − Xw Iwq + Vwd
dx5
dt = Ki5(Qw − Qwre f )

Iwqre f = Kp5(Qw − Qwre f ) + x5
dx6
dt = Ki6(Iwqre f − Iwq)

Vcqre f = K6(Iwqre f − Iwq) + xp6 + Xw Iwd + Vwq

(19)

where xk (k = 3, 4, 5, 6) are the state variables of PI controllers, Kpk and Kik (k = 3, 4, 5, 6)
are the parameters of corresponding PI controllers. Qw is the injected reactive power into
power systems and expressed as

Qw = Vwq Iwd − Vwd Iwq (20)
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5. Modeling of SRF-PLL

The same structure of the SRF-PLL shown in Figure 2 is applied in the FCPV and its
dynamics are expressed as{

d
dt xpll2 = Kipll2Vwq
d
dt θpll2 = xpll2 + Kppll2Vwq + ωpll2re f

(21)

where all variables are similar to that of Equation (10). Accordingly, X*2 is used in (21)
corresponding to X* in (10).

Therefore, by linearizing Equations (12)–(21), the linearized state-space model of FCPV
is obtained as { d

dt ∆Xpv = Apv∆Xpv + Bpv∆Vpv
∆Ipv = Cpv∆Xpv

(22)

where ∆Xpv denotes all state variables of FCPV; Apv, Bpv, Cpv are state-space matrices
after integrating all the linearized differential equations. ∆Vpv and ∆Ipv denote the voltage
variation and current variation at the PCC of FCPV in the common x-y coordinate.

3.3. Linearized Modeling of HRES System

Based on the linearized state-space models of FCWG in (11) and FCPV in (22), the
linearized state-space model of an HRES system can be represented as{ d

dt ∆XRES = ARES∆XRES + BRES∆VM
∆IM = CRES∆XRES

(23)

where
∆XRES= [∆XT

WG ∆XT
PVG]

T, ∆XT
WG =

[
∆XT

w1 ∆XT
w2 . . . ∆XT

wM

]T
, ∆XT

PVG =
[
∆XT

pv1 ∆XT
pv2 . . . ∆XT

pvN

]T
,

ARES= diag[AWG APVG], AWG = diag[Aw1 Aw2 . . . AwM], APVG = diag[Apv1 Apv2 . . . ApvM],
BRES= diag[BWG BPVG], BWG = diag[Bw1 Bw2 . . . BwM], BPVG = diag[Bpv1 Bpv2 . . . BpvN],
CRES= diag[CWG CPVG], CWG = diag[Cw1 Cw2 . . . CwM], CPVG = diag[Cpv1 Cpv2 . . . CpvN];
Awx, Bwx, Cwx (x = 1, 2, . . . ,M) are state matrices of the 1st to Mth FCWG, respectively;
Apvx, Bpvx, Cpvx (x = 1, 2, . . . , N) are state matrices of the 1st to Nth FCPV, respectively;
∆XT

wx (x = 1, 2, . . . ,M) and ∆XT
pvx (x = 1, 2, . . . , N) denote the vector of all state variables

of FCWGs and FCPVs, respectively; ∆VM and ∆IM are the voltage variation and current
variation of the HRES system at PCCs. diag[] denotes either a diagonal matrix or a block
diagonal matrix.

3.4. Entire Interconnected Power System

In the open-loop power system, the HRES system is modeled as a constant power
source. Assume that the state-space model for N SGs in the AC power system is expressed as{ d

dt ∆Xg = Ag∆Xg + Bg∆Vg
∆Ig = Cg∆Xg + Dg∆Vg

(24)

where ∆Xg= [∆XT
g1 ∆XT

g2 . . . ∆XT
gN]

T, ∆Ig= [∆IT
g1 ∆IT

g2 . . . ∆IT
gN]

T, ∆Vg= [∆VT
g1 ∆VT

g2 . . . ∆VT
gN]

T,
Ag= diag[Ag1 Ag2 . . . AgN], Bg= diag[Bg1 Bg2 . . . BgN], Cg= diag[Cg1 Cg2 . . . CgN],
Dg= diag[Dg1 Dg2 . . . DgN], ∆XT

gj (j = 1,2, . . . , N) denotes the vector of all state variables of the
jth SG. ∆IT

gj and ∆VT
gj (j = 1,2, . . . , N) are the current variation and voltage variation at connecting bus of

jth SG. Agj, Bgj, Cgj, and Dgj (j = 1,2, . . . , N) denote state-space matrices of the jth SG.
The equation of the transmission network is expressed as Ig

IM
IN

 = Y

 Vg
VM
VN

 =

 Ygg Ygw Ygn
Ywg Yww Ywn
Yng Ynw Ynn

 Vg
VM
VN

 (25)
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where Ig and Vg denote the current injection and voltage at the connecting buses of all
SGs; IM and VM denote the current injection and voltage at PCCs of the HRES system; IN
and VN denote the current injection and voltage at other buses in the network; Y denotes
the admittance matrix.

From Equations (24) and (25), the open-loop power system can be derived as{ d
dt ∆Xg = Ags∆Xg + Bgs∆IM
∆VM = Cgs∆Xg + dgs∆IM

(26)

where
Ags = Ag + Bg

(
YggN − YgwNY−1

wwNYwgN − Dg

)−1
Cg,

Bgs = −Bg

(
YggN − YgwNY−1

wwNYwgN − Dg

)−1
YgwNY−1

wwN,

Cgs = −Y−1
wwNYwgN

(
YggN − YgwNY−1

wwNYwgN − Dg

)−1
Cg,

dgs = Y−1
wwN + Y−1

wwNYwgN

(
YggN − YgwNY−1

wwNYwgN − Dg

)−1
YgwNY−1

wwN,

YggN =
(

Ygg − YgnY−1
nn Yng

)
, YgwN = Ygw − YgnY−1

nn Ynw,

YwgN =
(

Ywg − YwnY−1
nn Yng

)
, YwwN =

(
Yww − YwnY−1

nn Ynw

)
.

From Equations (23) and (26), the closed-loop interconnected model of the power
system can be derived as

d
dt

[
∆Xg

∆XRES

]
=

[
Ags BgsCRES

BRESCgs ARES + BRESdgsCRES

][
∆Xg

∆XRES

]
(27)

4. Methodology of Optimization Strategy

According to the modal superposition theory in [20], modal interaction can be cate-
gorized into three types: (1) weak interaction which indicates the HRES system interacts
very slightly with the AC power system and thus the interaction effect can be ignored
while studying converter-driven stability; (2) modal resonance that drives adjacent oscil-
lation modes to move against each and thus impairs the system damping and threatens
converter-driven stability; and (3) modal counteraction that implies that the HRES system
interacts positively with AC power system and improves the system damping. It is worth
mentioning that the negative modal resonance will jeopardize converter-driven stability
and thus should be avoided, while the beneficial modal counteraction would be a favorable
choice when integrating an HRES system.

To facilitate the positive interaction between the HRES system and the AC power
system, an eigenvalue shift index (ESI) is utilized to quantitively evaluate the effect of
modal interaction on the critical EOM. Denote λolsysi = σ ± jω as the ith oscillation mode
of the open-loop power system, λclsysi = σ̂ ± jω̂ as the ith oscillation mode of the closed-
loop system. Hence, the modal interaction effect of the newly introduced HRES system
is evaluated by ESI=∆λsys = λclsysi − λolsysi. According to the open-loop and closed-loop
models in Section 3.4, modal analysis can be applied and thus provide a quantitative
calculation for ESI.

If the real part of ESI, i.e., Re (ESI) < 0, demonstrates that the modal interaction is
beneficial for the converter-driven stability. However, if Re (ESI) > 0, a detrimental impact
regarding modal interaction is induced and deteriorates the converter-driven stability. To
tackle this negative impact, a modal interaction optimization strategy can be implemented
by tuning the control parameters of the HRES system. The optimization objective, as
expressed in (28) is to obtain the largest modal shift in critical EOM towards the left half
complex plane.

Minimize Re (ESI) = real (∆λsysi) (28)

where ∆λsysi represents the eigenvalue shifts of interactive EOMs.
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It should be pointed out that the modal interaction optimization should not sacrifice
the dynamics of the HRES system at an unacceptable level. Since parameter tuning is per-
formed in HRES controllers, it is necessary and feasible to guarantee a sufficient damping
margin for the HRES system. In this study, the PLLs of FCWG and FCPV were identified to
be key components to optimize the multi-modal interaction with two EOMs of AC power
system, and thus this can be regarded as a multi-modal multi-parametric optimization
problem. The multi-objective particle swarm optimization (MOPSO) algorithm was applied
to tune the parameters of key controllers.

5. Case Study
5.1. Introduction of Test Power System

An IEEE 16-machine 68-bus system [28] with an HRES system connected at bus
8 is illustrated in Figure 6. The HRES system consists of an FCWG-based wind farm
and an FCPV-based solar energy farm. To emulate different penetration levels, four
operating condition cases were thoroughly studied to uncover the impact on converter-
driven stability regarding the modal interaction between the HRES system and AC power
system. Denote the active power outputs (in per unit with base Sb = 100 MVA) of FCWG
and FCPV as PWG and PPV respectively. The four operating condition cases were: (1) Case
1: PWG = 0, PPV = 0; (2) Case 2: PWG = 0.5 p.u., PPV = 0.5 p.u.; (3) Case 3: PWG = 1.0 p.u.,
PPV = 1.5 p.u.; and (4) Case 4: PWG = 2.0 p.u., PPV = 2.5 p.u. Both FCWG and FCPV
adopted reactive power control with constant power factor of 0.98. The test system was
built on the Matlab R2020b platform via M-language programming.

Figure 6. Configuration of test IEEE power system integrated with an HRES system.

The modal interaction can be either weak or strong. In a weak interaction case, the
interaction impact can be ignored and the HRES system can be regarded as a constant power
source. However, in strong interaction cases, the modal interaction between the HRES
system and AC power system might have a considerable impact on the converter-driven
stability and thus will be carefully addressed in the following analyses.

To begin with, open-loop modal analyses of the examined power systems with differ-
ent wind power and PV solar energy penetration level were performed. Then, closed-loop
modal resonance analyses of the closed-loop system and time-domain simulations were per-
formed as supplementary verification. To mitigate the detrimental effect caused by strong
modal interaction (i.e., modal resonance), the modal interaction optimization strategy was
further adopted as well.
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5.2. Converter-Driven Stablity Analyses Considering Different Renewable Energy Penetration
Levels

Based on the linearized state-space model the state matrix in Equation (26), the critical
EOM of the open-loop power systems can be calculated, as exhibited in Table 1. The
open-loop critical EOM of the power systems examined was slightly affected by different
constant injected active power after ignoring the modal interaction of FCWG and FCPV.
Since the open-loop EOM is mainly determined by the electromechanical dynamics of SGs
in the AC power system, it had a relatively stable oscillation frequency (0.57 Hz–0.60 Hz)
with a damping ratio (DR) around 2.9%. This was also confirmed by the electromechanical
loop correlation ratio (ELCR) [12], which stayed at a very high level (36.80–37.50).

Table 1. Open-loop modal analysis regarding different renewable energy penetration levels.

Active Power from FCWG and
FCPV (p.u.) Open-Loop Critical EOM (λopsys) Frequency (Hz) DR ELCR

Case 1 (0, 0) −0.1064 ± 3.6391 i 0.5792 2.92% 36.80
Case 2 (0.5, 0.5) −0.1067 ± 3.6694 i 0.5840 2.91% 36.88
Case 3 (1.0, 1.5) −0.1068 ± 3.7158 i 0.5914 2.87% 37.08
Case 4 (2.0, 2.5) −0.1060 ± 3.7790 i 0.6014 2.80% 37.50

As shown in Table 2, when the renewable energy penetration level grew higher,
the modal interaction became stronger. This is because the modal interaction between
the HRES system and AC power system is negative (viz., modal resonance), and such
interaction effect is further magnified in the cases with large active power output from
the HRES system [20]. The decrease in DR manifests that the closed-loop critical EOM
becomes weaker and less stable. For instance, in Case 4, the closed-loop critical EOM had a
negative DR (−0.72%), which means that the system lost its converter-driven stability and
became unstable.

Table 2. Closed-loop modal analysis regarding different renewable energy penetration levels.

Active power from FCWG and
FCPV (p.u.) Closed-Loop Critical EOM λclsys Frequency (Hz) DR ELCR

Case 1 (0, 0) −0.1064 ± 3.6391 i 0.5792 2.92% 36.80
Case 2 (0.5, 0.5) −0.0527 ± 3.6022 i 0.5733 1.46% 2.9990
Case 3 (1.0, 1.5) −0.0105 ± 3.5506 i 0.5651 0.30% 1.8867
Case 4 (2.0, 2.5) 0.0251 ± 3.4917 i 0.5557 −0.72% 1.4929

Participation factor analysis in Figure 7 illustrates that, in Case 1, since the active
power of FCWG and FCPV were zero, they did not participate in the closed-loop critical
EOM, and thus it stayed in the same position of the open-loop critical EOM. However,
when the active power outputs of FCWG and FCPV increased, they began to actively
interact with SGs and even became the dominant power sources (as shown in Case 3 and
Case 4). A few very interesting and important findings are observed below. When we
compare the active power outputs, although the total active power output of the HRES
system (2.0 p.u. in Case 3 and 4.5 p.u. in Case 4 respectively) was less than one-tenth
of the total active power of 13th and 15th SGs (45.91 p.u.), the HRES system had much
larger participation factors for the critical EOM than that of the 13th and 15th SGs. It is
also noteworthy that ELCR in Table 2 decreased significantly, which further indicates this
critical EOM became less relevant to the electromechanical dynamics among SGs.

Through participation factor evaluation, it was also revealed that the closed-loop
critical EOMs with oscillation frequencies between 0.55 Hz and 0.58 Hz were mainly domi-
nated by PLL dynamics of the HRES system and electromechanical dynamics of the AC
power system, respectively. Specifically, state variables related to PLL dynamics (i.e., ∆xpll ,
∆θpll , ∆xpll2, ∆θpll2) and SG electromechanical dynamics (i.e., ∆ωK, ∆δK, (K = 1, 2, . . . , 16))
were the most active components in these closed-loop EOMs.
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Figure 7. Participation factor analysis for closed-loop critical EOM (0.55 Hz–0.58 Hz). (a) Case 1;
(b) Case 2; (c) Case 3; (d) Case 4.

It is worth mentioning that the integration of the HRES system not only affected the
critical EOM, but also interacted with other EOMs with different intensity levels. Here we
demonstrate the participation of HRES in another local EOM (0.65 Hz~0.67 Hz, mainly
dominated by 14th and 16th SGs and denoted as EOM2) in Figure 8. In Case 4, the
HRES system had a total participation factor larger than 0.2, and both FCWG and FCPV
participated. It can be seen that the DR of EOM2 increased from 2.22% to 3.60%. In other
words, the modal interaction effect on EOM2 was positive. Moreover, despite the large
geographical/electrical distance between the HRES system and SGs (14th and 16th), great
attention should be paid to their modal interaction, especially in the detrimental modal
resonance cases. This also proves that the HRES dynamics can penetrate deeply into the
local electromechanical dynamics. It further indicates that the interaction between the
HRES system and AC power system can be multi-modal. In this study, two HRES oscillation
modes and two EOMs were representative and involved in the modal interaction process.

Modal interaction also affects the oscillation modes of the HRES system. In this work,
we investigated two critical oscillation modes of the HRES system, i.e., one from FCWG
and the other from FCPV, which are denoted as FOM and POM respectively. It should be
pointed out that there are 7 pairs of conjugated oscillation modes in FCWG and 5 pairs in
FCPV. Only the two most active oscillation modes are listed and analyzed, and the other
modes have a very limited interaction with the electromechanical dynamics and thus can
be ignored in this study. The closed-loop modal analysis of the HRES system is presented in
Table 3 (FCWG) and Table 4 (FCPV). The results of open-loop modal analysis are not listed
separately here since they are almost the same as those of Case 1 in the closed-loop modal
analysis. This is because the modal interaction impact is not considered in the open-loop
modal analysis, and the power flow impact on modal shifts is minimal unless significant
changes occur in the AC power system, as demonstrated in Table 1.



Energies 2021, 14, 4290 13 of 20

Figure 8. Participation factor analysis for closed-loop EOM2 (0.65 Hz~0.67 Hz). (a) Case 1; (b) Case 2;
(c) Case 3; (d) Case 4.

Table 3. Closed-loop modal analysis of FOM (wind power).

Active Power from
FCWG (p.u.). Closed-Loop FOM λclwg

Frequency
(Hz) DR ELCR

Case 1 (0) −0.0702 ± 3.7456 i 0.5961 1.87% 0
Case 2 (0.5) −0.0812 ± 3.8706 i 0.6160 2.10% 0.0482
Case 3 (1.0) −0.0783 ± 3.9024 i 0.6211 2.01% 0.0187
Case 4 (2.0) −0.0786 ± 3.9446 i 0.6278 1.99% 0.0122

Table 4. Closed-loop modal analysis of POM (PV).

Active Power from
FCPV (p.u.) Closed-Loop POM λclpv

Frequency
(Hz) DR ELCR

Case 1 (0) −0.0748 ± 3.8683 i 0.6157 1.93% 0

Case 2 (0.5) −0.1083 ± 3.9019 i 0.6210 2.77% 0.2868

Case 3 (1.5) −0.1327 ± 3.9710 i 0.6320 3.34% 0.6820

Case 4 (2.5) −0.1297 ± 4.0445 i 0.6437 3.21% 1.4651

In can be seen in Tables 3 and 4 that both closed-loop FOM and closed-loop POM were
improved with damping increase. Meanwhile, the corresponding oscillation frequencies
also increased slightly. It is important to highlight that, in Case 4, the closed-loop POM
has a large ELCR (1.4651), which is greater than 1. Thus, this POM can be recognized as an
EOM, and its participation factor analysis is exhibited in Figure 9. Five SGs (12th–16th SGs)
participate actively in this POM. Moreover, FCWG also has a large participation (larger
than 0.1) in this POM, which indicates that FCWG and FCPV might interact with each
other and affect their own dynamics.
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Figure 9. Participation factor analysis for closed-loop POM in Case 4.

To demonstrate the modal interaction effect discussed above, the modal shifts re-
garding four main interactive oscillation modes (i.e., Critical EOM, EOM2, FOM, and
POM) from their open-loop location to closed-loop location are illustrated in Figure 10.
λclsysk, λclsys2k, λclwgk, and λclpvk (case number k = 1, 2, 3, 4) denote the eigenvalues of
four closed-loop oscillation modes in four cases, respectively. It should be noted that the
open-loop location of the oscillation modes in all four cases was almost of the same as their
closed-loop location of Case 1 (i.e., λclsys1, λclsys21, λclwg1, and λclpv1). This phenomenon
can be evidenced the information in Table 1, as well as the nature of PLL oscillation modes
of FCWG and FCPV. Hence, for better readability, the open-loop oscillation modes are not
presented in Figure 10, and instead λclsys1, λclsys21, λclwg1, and λclpv1 can be treated as the
starting points of each modal shift. In other words, the modal shift of each oscillation mode
due to the interaction is the eigenvalue movement from its starting point to the closed-loop
oscillation mode. It is easy to conclude from Figure 10 that although EOM2 and POM were
meliorated, the critical EOM was impaired and gradually shifted towards the unstable
right half-plane.

Figure 10. Modal shifts due to modal interaction in four cases.
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To verify modal analysis results and further illustrate converter-driven stability vi-
sually, time-domain simulations were carried out. The simulation conditions were set as:
a 5% step increase in the mechanical power of 1st SG occurs and subsequently drops to
the original value after 100 ms. From the participation factor analysis in Figure 7, 13th
and 15th SGs had the largest and second-largest participation factors in the AC power
system, respectively. Hence, the rotor speed difference between 13th and 15th SG and
active power of 15th SG were demonstrated. The DRs in Table 2 are also marked in the
simulation results.

From Figures 11 and 12, modal interaction between the HRES system and AC power
system had a negative impact on the closed-loop critical EOM. Especially in Case 4, the 13th
and 15th SGs lost synchronism and the active power output of 15th SG became unstable.
Therefore, the simulation results are consistent with the modal analysis above.

5.3. Modal Interaction Optimization to Enhance Converter-Driven Stability

A modal interaction optimization strategy was implemented to mitigate the detri-
mental effect of modal resonance and enhance the converter-driven stability. By tuning
parameters of FCWG and FCPV, the open-loop critical FOM and POM can not only be
relocated but also induce beneficial modal interactions with the AC power system. As
a result, the strong multi-modal resonance was eliminated. In this study, PLL control
parameters of FCWG and FCPV were identified as pivotal parameters related to strong
modal resonance. Therefore, the modal interaction optimization strategy was performed
to appropriately adjust these parameters. The modified parameters and corresponding
modal analysis results are listed in Table 5. Compared with the original power system with
inadequate damping, the closed-loop critical EOM after optimization gains significantly
improved damping, and hence better converter-driven stability.

Figure 11. Rotor speed difference between 13th SG and 15th SG in four Cases. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.
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Figure 12. Active power output of 15th SG in four Cases. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Table 5. Parameter optimization of FCWG and FCPV.

Type Original Control Parameters Optimized Control Parameters

PLL control parameters of FCWG Kpwg = 0.15, Kiwg = 15, Kpwg = 0.5631, Kiwg = 11.4376
PLL control parameters of FCPV Kppv = 0.16, Kipv = 16 Kppv = 0.3487, Kipv = 16.3764

Open-loop critical FOM
(Freq., DR) −0.0776 ± 3.9385 i (0.6268 Hz, 1.97%) −0.2731 ± 3.3194 i

(0.5283 Hz, 8.20%)
Closed-loop critical FOM

(Freq., DR)
−0.0786 ± 3.9446 i
(0.6278 Hz, 1.99%)

−0.1388 ± 3.2740 i
(0.5211 Hz, 4.23%)

Open-loop critical POM
(Freq., DR)

−0.0792 ± 3.9783 i
(0.6332 Hz, 1.99%)

−0.1725 ± 4.0220 i
(0.6401 Hz, 4.29%)

Closed-loop critical POM
(Freq., DR)

−0.1297 ± 4.0445 i
(0.6437 Hz, 3.21%)

−0.1907 ± 4.1088 i
(0.6539 Hz, 4.64%)

Open-loop critical EOM
(Freq., DR)

−0.1060 ± 3.7790 i
(0.6024 Hz, 2.80%)

−0.1060 ± 3.7790 i
(0.6024 Hz, 2.80%)

Closed-loop critical EOM
(Freq., DR)

0.0251 ± 3.4917 i
(0.5557 Hz, −0.72%)

−0.1647 ± 3.5897 i
(0.5713 Hz, 4.58%)

Open-loop EOM2
(Freq., DR)

−0.0934 ± 4.1669 i
(0.6632 Hz, 2.24%)

−0.0934 ± 4.1669 i
(0.6632 Hz, 2.24%)

Closed-loop EOM2
(Freq., DR)

−0.1504 ± 4.1728 i
(0.6641 Hz, 3.60%)

−0.1323 ± 4.1232 i
(0.6562 Hz, 3.21%)

The modal shifts of system EOMs are also presented in Figure 13. Compared with the
original system, in the optimized system, the closed-loop critical EOM moves towards the
left half complex plane. Its DR increases from −0.72% to 4.58%, which is quite a prominent
improvement. It should also be highlighted that such a change is only brought by the
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parameter tuning with the optimization strategy, while the operating condition remains
the same. From the perspective of system operators, this method is very cost-effective since
no additional control or devices involved.

Figure 13. Modal shifts of system EOMs with/without optimization strategy.

The rotor speed difference between 13th and 15th SGs and active power of 15th SG
are compared in Figure 14. The dynamic performance of the modified interconnected
system was greatly improved. These results are in accordance with the DR indication
of the closed-loop critical EOM in Table 5. Therefore, the implemented multi-modal
and multi-parametric optimization strategy was found to be effective for reinforcing the
converter-driven stability.

Figure 14. Comparison of simulation results in Case 4 before/after optimization. (a) Rotor speed difference between 13th
and 15th SGs; (b) Active power output of 15th SG.

6. Discussion

In the above converter-driven stability analysis, various modal interaction conditions
were thoroughly investigated by extensively evaluating the multi-modal interactions
between the multi-RESs in the HRES system and AC power system. Several important
findings are summarized as follows:

(1) From the open-loop modal analysis of the external AC power system, with the
increasing active power injection of RESs, the open-loop critical EOM was very slightly
affected. Such minor variations are mainly due to the power flow impact since the
modal interaction of the HRES system was excluded in the open-loop analysis.
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(2) For the closed-loop modal analysis, the overall impact of HRES integration was
evaluated, considering both the power flow impact and modal interactions. Strong
modal interaction occurred when the open-loop critical FOM and POM were close to
the open-loop EOMs in terms of oscillation frequency. This is a necessary condition to
induce strong modal interaction.

(3) The multi-modal interaction involved oscillation modes of the multi-RESs in the
HRES system and AC power system. The integration of the HRES system mainly
affected two EOMs (i.e., one global critical EOM and one local EOM2). Strong modal
interaction effects can be either positive or negative. For instance, in this study, the
critical EOM deteriorated while the local EOM2 improved.

(4) The HRES system could participate more actively in the critical EOMs even at a
much lower active power output compared to SGs. The HRES dynamics could
penetrate deeply into the local electromechanical dynamics regardless of their geo-
graphical/electrical distance.

(5) The electromechanical dynamics of SGs might also participate in HRES oscillation
modes (e.g., FOM and POM), which will lead to either positive or negative modal
shifts in HRES oscillation modes. Their participation can also be quantified by ELCRs.

(6) Apart from the interaction between SGs and HRES, FCWG and FCPV inside the HRES
system can also interact with each other and participate in each other’s dynamics.
Therefore, it is necessary to coordinate their interaction (e.g., parameter tuning) and
avoid the interior modal resonance.

(7) An interesting phenomenon appears when electromechanical dynamics become quite
active in an HRES oscillation mode, and thus this mode turns into an EOM. In Case 4,
the closed-loop POM had an ELCR larger than 1, and hence it can be recognized as an
EOM. Such phenomena usually happen at high HRES penetration levels.

(8) As a negative strong modal interaction, modal resonance might dramatically degrade
system damping and thus should be circumvented. An effective countermeasure is to
implement the modal interaction optimization strategy to properly modify the key
parameters of HRES controllers. With the optimization strategy adopted, not only
can the detrimental effect of modal resonance be alleviated, but also a positive modal
interaction (i.e., modal counteraction) can be achieved.

7. Conclusions

In this work, an IEEE benchmark power system with an HRES system was investigated
regarding the converter-driven stability. The converter-driven stability issues studied are in
the form of modal interaction between two subsystems (i.e., HRES system and AC power
system). Therefore, we elaborately examined the detrimental modal resonance conditions
to reveal the mechanisms of potential converter-driven instability issues.

The integration of the HRES system not only affected the power flow but also inter-
acted with the external AC power system. Particularly, when modal resonance happened,
the critical system EOM was forced to move towards the right half complex plane, and
thus threatened the converter-driven stability. An extreme condition with a multi-modal
interaction case was examined to evaluate the consequence of strong modal resonance.
The DR of closed-loop critical mode was greatly weakened or even became negative. As a
result, oscillations once being aroused due to unexpected disturbances cannot be effectively
suppressed and may further propagate in the external AC power system.

To prevent this adverse phenomenon, a modal interaction optimization strategy was
implemented. The converter-driven stability was remarkably enhanced after relocating
critical modes of the HRES system and meliorating its modal interaction with the AC power
system. Consistent with modal analysis, time-domain simulation results substantiate that
the groups of SGs can maintain synchronism in disturbance conditions after optimization
in the HRES system.
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