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Abstract: Digital Twins (DTs) are receiving considerable attention from multiple disciplines. Much
of the literature at this time is dedicated to the conceptualization of digital twins, and associated
enabling technologies and challenges. In this paper, we consider these propositions for the specific
application of nuclear power. Our review finds that the current DT concepts are amenable to nuclear
power systems, but benefit from some modifications and enhancements. Further, some areas of the
existing modeling and simulation infrastructure around nuclear power systems are adaptable to
DT development, while more recent efforts in advanced modeling and simulation are less suitable
at this time. For nuclear power applications, DT development should rely first on mechanistic
model-based methods to leverage the extensive experience and understanding of these systems.
Model-free techniques can then be adopted to selectively, and correctively, augment limitations in
the model-based approaches. Challenges to the realization of a DT are also discussed, with some
being unique to nuclear engineering, however most are broader. A challenging aspect we discuss
in detail for DTs is the incorporation of uncertainty quantification (UQ). Forward UQ enables the
propagation of uncertainty from the digital representations to predict behavior of the physical asset.
Similarly, inverse UQ allows for the incorporation of data from new measurements obtained from
the physical asset back into the DT. Optimization under uncertainty facilitates decision support
through the formal methods of optimal experimental design and design optimization that maximize
information gain, or performance, of the physical asset in an uncertain environment.

Keywords: digital twin; nuclear power; uncertainty quantification

1. Introduction

The concept of the digital twin (DT) is permeating across nearly all engineering dis-
ciplines, as well as other fields. The increased interest in DTs relates to their role in the
Industry 4.0 revolution [1], and is driven by technology advances that bridge physical
assets with digital models, e.g., the Internet of Things (IoT). Industries that do not suc-
cessfully transition through this revolution will likely be diminished. In this regard, the
nuclear power industry is no exception. The anticipated value of DTs in nuclear power
can generally be taken as gains in efficiency and safety—both perpetual goals in nuclear
power applications. The impact of such DTs could be far-reaching, including real-time
monitoring that enables automation and predictive maintenance, accelerated development
time, enhanced risk assessment, and optimization in various aspects of the system (e.g.,
operation, component design, fuel utilization, shielding, etc.). Therefore, DTs for nuclear
power systems should be considered a key technology for expanding nuclear power appli-
cations. With the impetus of the world’s current climate crisis, carbon-free, clean energy
technologies, like nuclear power, are critical to ensure the viability of our future.

According to the authors of [2,3], the DT terminology dates to the early 2000s, and
it is usually credited to Grieves who later documented it in a white paper [4] from 2014.

Energies 2021, 14, 4235. https://doi.org/10.3390/en14144235 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7109-9368
https://orcid.org/0000-0001-6544-2764
https://doi.org/10.3390/en14144235
https://doi.org/10.3390/en14144235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14144235
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14144235?type=check_update&version=1


Energies 2021, 14, 4235 2 of 32

The U.S. Airforce in 2011 [5] and NASA in 2012 [6] defined the DT more completely for
aerospace applications and identified it as a key technology. Several other definitions of
DTs were also proposed prior to more contemporary efforts [7–10]. Many of the recent
papers focus on generalizing the idea of the DT [2,3,11–13], as the earlier works were
concerned specifically with aircraft, high-fidelity simulation, and structural mechanics.

Currently, there are many contemporary review articles on DTs focused on the def-
initions, challenges, enabling technologies, and opportunities [2,3,14,15]. (For readers
interested in a comprehensive review of DTs, we recommend the work by Rasheed et al. [3],
which has an extensive bibliography.). One recent review article on DTs identifies three
distinct application areas: manufacturing, healthcare, and smarty city environments [2]. In
this review, aircraft, power, and energy systems were all grouped under manufacturing.
However, this review included only one paper each for power systems, aircraft, and energy
systems. Therefore, the discussions in the aforementioned reviews tend to focus on these
broader views with industrial processes generally lumped in with manufacturing, and
ignore the specific considerations of any subdiscipline.

Works that are more specific to the nuclear engineering discipline include those
in [16–19]. In [16,17], Garcia et al. mention DTs, but they do not review or advance DT
concepts, nor provide clear or concise definitions of them. Rather, these works focus on the
broader concepts of secure embedded intelligence and integrated state awareness, where
DTs have a specific role. The DT concept is closely tied to Industry 4.0, and Lu et al. [18]
provide a review of nuclear power plants in the context of AI and Industry 4.0. This
work also mentions DTs, and advances the concept of a nuclear power plant as a Human-
Cyber-Physical System, very much in the spirit of DTs, but limits the focus to AI-based
approaches. Additionally, there is a review article in preparation by Lin et al. [19] that
focuses on uncertainty quantification (UQ) of machine learning (ML) generated DTs for
prognostics and diagnostics supporting autonomous management and control of nuclear
power systems. The main contributions of this work are the review of ML methods to
support DT creation and assessment, and how the software underlying the ML-based DTs
may be evaluated in a risk-aware and regulatory setting. Overall, however, we make the
observation that there is a notable dearth of literature on DTs for nuclear systems.

We do not seek to replicate the reviews for general DTs in this paper, nor do we seek to
describe the technical details of a particular DT solution or software architecture. Instead,
our aim is to convey the salient elements of some of these works and offer perspectives
about the relationship to ongoing activities in the nuclear engineering community. With this
paper we seek to add to the literature for DT concepts related to nuclear applications, and
in keeping with the spirit of other contemporary works, we focus on understanding and
defining the DT concept in the context of nuclear power. Specifically, the objective of this
paper is to review and relate these broader works to the nuclear engineering community.
We aim to accomplish this by identifying what aspects of DT development and enabling
technologies are most appropriate for study and advancement by the nuclear engineering
community, and where the community should be looking to adopt existing technologies.
Much of the paper focuses on physics-based simulation technologies for DT development—
rather than ML—and the importance of UQ in connecting the physical and digital assets.
Further, we provide commentary on the recent directions and activities of research and
development in nuclear power applications, and modeling and simulation (M&S). We
also offer suggestions on how we might refocus some of current efforts to support DTs in
nuclear power applications. In general, we will not focus on the aspects of risk-informed
analysis or AI/ML methods as these are suitably covered by Lin et al. [19].

For the remainder of this paper, we first provide some background on nuclear power
technology. Then, a review and discussion about the important details of defining DTs
is given in Section 3 with a newly proposed definition for nuclear power applications.
Section 4 reviews existing nuclear engineering M&S capabilities in the context of DTs. Next,
in Section 5, we offer perspectives on the needs and challenges of developing and using
DTs for nuclear power applications. This section focuses primarily on the computational
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and simulation aspects of DTs. Following this, in Section 6, we transition the discussion to
UQ from a more technical angle. Here, we identify and examine challenges and promising
methodologies for linking the physical and digital halves of the DT. Finally, we summarize
the paper with some concluding remarks in Section 7 on the relevance of DTs as an enabling
technology for nuclear power in a clean energy future.

2. Brief Overview of Nuclear Power Systems

Nuclear power systems produce heat energy through the fission process which is
driven by the interaction of neutrons with the nucleus of an atom. In the fission process,
heavy nuclides break apart and deposit their kinetic energy locally as heat. The primary
element for fission in commercial energy production is uranium. The principle advantages
of nuclear fission as a thermal energy source are its overall power density, long operation
times without needing to refuel, and lack of carbon emissions.

In currently operating nuclear power systems, the heat produced by fission is trans-
ported away and typically used in a Rankine cycle to rotate a turbine to produce electricity.
This is essentially the same power conversion cycle as combined-cycle natural gas plants
and other fossil fueled power plants. Some example diagrams of existing reactor types are
illustrated in Figure 1 to show some of the primary components in the system.

(a) Pressurized Water Reactor (b) Boiling Water Reactor

Figure 1. Schematics of currently operating nuclear reactors (Source: U.S. NRC).

Advanced nuclear systems (also called Gen-IV reactors), which have yet to operate
commercially (although there are a handful of historical examples), may use different
power conversion cycles, such as a Brayton cycle or working fluids (such as molten salts).
Simplified reactor system schematics of Generation IV reactor designs are given in Figure 2
to illustrate some of the main components in these nuclear power systems. To create a DT
of a nuclear power system, these components—at least—would need to be digitized and
modeled; however, in actual nuclear power systems, there can be thousands of components.
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(a) Very High Temperature Reactor

(b) Sodium-Cooled Fast Reactor

Figure 2. Cont.
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(c) Supercritical Water Reactor

(d) Gas-Cooled Fast Reactor

Figure 2. Cont.
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(e) Lead-Cooled Fast Reactor

(f) Molten Salt Reactor

Figure 2. Gen-IV advanced reactor designs [20].
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Because the power conversion systems for nuclear energy are similar to power conver-
sion systems used in the fossil industry, there is considerable overlap in the components
that are required for digitization to construct a digital twin. The defining aspect of nuclear
power systems is the nuclear core. Although some other systems and components utilize
highly specialized materials and are subject to unique degradation modes as a result of
operating in intense radiation environments, the particular aspects of a nuclear power
DT that differentiate it from other DT efforts derive from the presence of radiation and
the physics resulting from the interaction of radiation with matter in the physical sys-
tem. Consequently, much of our discussion throughout this manuscript focuses on these
defining features.

For the modeling of nuclear power systems, the usual equations of structural me-
chanics and dynamics, fluid dynamics, and heat transfer are no different than other fields
of engineering. In materials performance at the engineering scale, the physics are so
complex that first principles equations are not as well defined, so empirical formulations,
Arrhenius-like equations, and statistical mechanics are used to develop models that may
be quite different from those found in other engineering disciplines. The equations that are
most unique to the nuclear system are the Boltzmann neutron transport equation (NTE),
Equation (1), and the nuclide transmutation and decay equation (often called the Bateman
equation), Equation (2). There are also modified forms of the NTE that describe the trans-
port of gamma rays, and charged particles, after introducing terms for electromagnetic
forces. These equations are relevant to the transport of other particles in reactors, and are
important to modeling the mechanisms for the detection of radiation.

1
v

∂ψ(~r,~Ω,E,t)
∂t + ~Ω · ∇ψ(~r, ~Ω, E, t) + Σt(~r, ~Ω, E, t)

=
∫ ∞

0

∫
4π Σs(~r, ~Ω′ · ~Ω, E′ → E, t)ψ(~r, ~Ω′, E′, t)d~Ω′dE′ + χd(E)

4π ∑k λkCk(~r, t)

+(1− β)
χp(E)

4π

∫ ∞
0

∫
4π ν(E)Σ f (~r, E′, t)ψ(~r, ~Ω′, E′, t)d~Ω′dE′ + Q(~r, ~Ω, E, t).

(1)

In the time-dependent NTE shown by Equation (1), the fundamental unknown is the
angular neutron flux, ψ, which has dependent variables for its position in 3D space,~r; its
direction of flight, ~Ω (described by two independent angles); its energy, E (or velocity,
v); and time, t. Physically it represents the number of neutron tracks generated per unit
volume for a given speed and direction at a moment in time. The NTE is a conservation
equation for the time rate of change of the angular flux where neutrons are lost by leaking
out of the system or colliding with a nucleus. Neutrons of different energies and directions
of flight may scatter into a particular unit of phase space, be generated through fission, or
some other external source, Q. The probability that a neutron collides with a nucleus is
described by the total macroscopic cross section, Σt, where some of those interactions may
result in a scattering event or a fission event. The corresponding probability for scattering
from another direction, ~Ω′, and energy, E′, into E and ~Ω is described by the scattering
kernel, Σs(~r, ~Ω′ · ~Ω, E′ → E, t). The probability that a neutron–nucleus interaction results
in a fission is given by the macroscopic fission cross section, Σ f . On average, a fission event
produces ν(E) neutrons with the probability of the neutrons being emitted at E given by
χp(E). The remaining fraction of neutrons emitted, β, are delayed. These neutrons are
emitted through the radioactive decay of precursors, Ck, at a rate of λk, and have a different
emission spectrum, χd(E), than the prompt neutrons. The precursor concentrations have
their own set of differential equations that follow as simplifications to Equation (2), and
we give these in Equation (5). Reactors operate by sustaining a chain reaction, so during
normal operation, the derivative of the angular flux with respect to time is essentially zero.

∂Ni(~r,t)
∂t = ∑j Nj(~r, t)λj`j→i + ∑j Nj(~r, t)

∫ ∞
0 σa,j(E) f j→i(E)φ(~r, E, t)dE

−
(
λi +

∫ ∞
0 σa,i(E)φ(~r, E, t)dE

)
Ni(~r, t).

(2)
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The Bateman equation describes the evolution of the materials in the reactor subject to
neutron bombardment and radioactive decay. It is also a conservation equation. The time
constants in this equation can vary from microseconds to millions of years. For practical
engineering applications, important effects described by Equation (2) occur on time scales
from days to months. The solution of this equation is essential to knowing the state of
the materials in the reactor, its resulting criticality (whether or not it can sustain a chain
reaction), and how much fuel is left. In this equation, Ni represents the number density of
isotope i. The system of differential equations can include up to every known isotope in the
chart of nuclides, which is more than 2000. λ is the decay constant for radioactive decay of
the nuclide; `j→i is the fraction of decays of nuclide j resulting in formation of nuclide i;
σa is the microscopic absorption cross section; f j→i is the fraction of neutron absorptions
in nuclide j resulting in the formation of nuclide i; and φ is the scalar neutron flux, which
is the angular flux integrated over ~Ω. For non-solid fuels, the Bateman equation must be
modified to include an advection term to account for the motion of nuclides in space.

Common approximations of the NTE include the neutron diffusion equation, Equation (3),
which neglects the dependence on the direction of flight for neutrons and assumes that
they are distributed isotropically in angle, and the point kinetics equations, Equation (4),
that ignores the spatial and energy dependence of the neutrons in a reactor. Although
simpler, these equations are still widely used in reactor analysis, and in a broader sense
may be understood as reduced order models of Equation (1).

∂φ(~r,E,t)
∂t −∇ · D(~r, E, t)∇φ( ~r, E, t) + Σt(~r, E, t)φ(~r, E, t)

=
∫ ∞

0 Σs0(~r, E′ → E, t)φ(~r, E′, t)dE′ + χd(E)∑k λkCk( ~r, t)

+(1− β)χp(E)
∫ ∞

0 ν(E)Σ f (~r, E′, t)φ(~r, E′, t)dE′ + Q(~r, E, t).

(3)

In the diffusion equation, most of the terms have the same meaning as given in
Equation (1), and φ(~r, E, t) =

∫
4π ψ(~r, ~Ω, E, t)d~Ω is the scalar neutron flux. The main

approximation introduced in the diffusion equation is that the leakage (advection) operator
is replaced by a diffusion operator with a diffusion coefficient, D(~r, E, t). Essentially this
assumes that how neutrons move through a system can be sufficiently described by Fick’s
Law of Diffusion.

dP(t)
dt

=
ρ(t)− β

Λ
P(t) +

1
Λ ∑

k
λkCk(t), (4)

dCk(~r, t)
dt

= −λkCk(~r, t) + βk

∫ ∞

0
ν(E)Σ f (~r, E′, t)φ(~r, E′, t)dE′. (5)

The point kinetics equations describe the time dependence of the power, P of a point-
reactor, where ρ is the reactivity that results from perturbations to the system by passive
feedback or operator intervention, and Λ is the prompt neutron lifetime. We also introduce
the other set of important differential equations for the production of delayed neutrons that
are emitted milliseconds to 10 s of seconds after a fission event (rather than simultaneously
with the fission event). The delayed neutron precursors, Ck, correspond to daughter
nuclides produced from fission; however, typically these data are obtained from regression
models such that there are 6 or 8 delayed neutron precursors instead of the actual dozens
of nuclides emitting neutrons. βk is the fraction of delayed neutrons emitted per fission by
precursor group k, where β = ∑k βk is the total delayed neutron fraction.

In summary, these are some examples of the types of nuclear power systems for
which we seek a digital twin. Further, the first-principles equations unique to nuclear
power systems, and common approximations to them used in regular engineering analysis,
were presented and discussed to provide context to the underlying problems that must be
simulated that are unique to a nuclear power system DT.
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3. Defining Digital Twins for Nuclear Power Systems

The concept of twins are not new in nuclear power. Since the beginning of the
commercial nuclear power industry, it has been practically standard practice to commission
a duplicate control room for training purposes. In some of the early U.S. Government
research programs for developing reactor systems, physical twin assets were also used.
Since that time however, there has not been much innovation or advancement in the concepts
of twinning. To be sure there have been significant advances in the technology underlying
the various components, their design, and associated means of making measurements,
but there has not been much in the way of conceiving of the physical systems and their
twins or their use in a way that is fundamentally different. This is contrasted with the
recent interests around the notion of the DT, particularly the high-fidelity kind, which is
essentially made possible by the incredible advances in computers and simulation. M&S
has now matured to a point that researchers in this area think it is possible, and imminent,
to be able to create a DT. Exactly how that may be done is the focus of the Section 5. Prior
to that, consistent, pedantic definitions of the DT for nuclear applications are needed.

3.1. Review of Digital Twin Definitions

Presently, the definition of a DT is quite broad and varies. This is due to the wide
range of disciplines interested in DTs. Several definitions for DTs often contain nuanced
but significant differences. What we are interested in elucidating in this section are the
key characteristics that lead to these subtle differences and how to best organize this
information into a conceptual model amenable to understanding the application of DTs to
nuclear reactor systems.

Like the work by Fuller et al. [2], we start with a short review of some of the definitions
given previously:

• Tuegel et al. [5] define the DT as being “ultrarealistic in geometric detail, including
manufacturing anomalies, and in material detail, including the statistical microstruc-
ture level, specific to this aircraft tail number”. Here, the DT concept is focused on
high-fidelity simulation by the finite element method (FEM) and computational fluid
dynamics (CFD) for the prediction and management of the structural life of aircraft.
The authors note that another key feature of their concept is the ability to “translate
uncertainties in inputs into probabilities of obtaining various structural outcomes”.

• Glaessgen and Stargel [6] have a similar definition centering on ultra-high-fidelity
simulation being integrated with a vehicle’s health management system. In this
paper, the authors focus more on certification of the vehicles and a reliance on the
assumed similitude of data used for certification. They identify this as a shortcoming
to be addressed by DTs. Their definition for a DT is “an integrated multiphysics,
multiscale, probabilistic simulation of an as-built vehicle or system that uses the best
available physical models, sensor updates, fleet history, etc., to mirror the life of its
corresponding flying twin”.

• Boschert and Rosen [7] provide a very general definition with “the Digital Twin itself
refers to a comprehensive physical and functional description of a component, product
or system, which includes more or less all information which could be useful in all—
the current and subsequent—life cycle phases”. Here, the authors acknowledge that
the DT concept is variable in terms of where it is applied in the product life cycle and
the overall fidelity of data and models encompassed.

• Chen [8] similarly broadens the usage of DT and defines it as “a computerized model
of a physical device or system that represents all functional features and links with
the working elements”.

• Schluse et al. [10] take a slightly different perspective on DTs focusing on the value as
an asset for experimentation. Nevertheless, many of the same fundamental require-
ments arise from their definition of experimental DTs as “a one-to-one replica of a
real system incorporating all components and aspects relevant to use simulations for
engineering purposes but also inside the real system during real-world operations”.
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• Tao et al. [21] describe the DT in a few ways. First, it is a concept “associated with
cyber-physical integration.“ Further, DTs create “high-fidelity virtual models of physi-
cal objects in virtual space in order to simulate their behaviors in the real world and
provide feedback”, and “reflects a bi-directional dynamic mapping process”.

• Rasheed et al. [3] state that a “Digital twin can be defined as a virtual representation
of a physical asset enabled through data and simulators for real-time prediction,
optimization, monitoring, controlling, and improved decision making”.

• Lin et al. [19] also offer a good definition with: “A DT is a digital representation
of a physical asset or system that relies on real-time and history data for inferring
complete reactor states, finding available control actions, predicting future transients,
and identifying the most preferred actions”.

3.2. Analysis of Key Characteristics

From the selected definitions given above, a few commonalities stand out: high-
fidelity simulations, integration of calculated and measured quantities, detailed equivalence
with a unique physical system, and application over a product’s/asset’s life cycle. Some
definitions differ on the degree of equivalence between the digital and physical twins,
noting that every detail is important or there may be only a subset of information that is
relevant. Some definitions denote real-time simulation capability; others acknowledge the
need for probabilistic methods. Several of the definitions describe the DT in the context of
its application (e.g., prediction and management of the structural life or optimal control),
although this application may vary.

3.3. Proposed Definition

In proposing our definition of the DT and related concepts, we draw from the concepts
described by Fuller et al. [2]. However, we find these definitions by themselves lacking the
context of a life cycle, so our definition expands these to exist within the life cycle laid out
by Boschert et al. [7].

Fuller et al. [2] develop a taxonomy of three definitions that differentiate concepts
based on information flow between the physical and digital assets, and categorize two
of these as misconceptions. Their taxonomy defines digital models, digital shadows, and
digital twins. We consider each of these valid, rather than some being misconceptions, as
they each serve a distinct function in the life cycle to be described later. This differs from
definition put forth by Lin et al. [19] where a DT is defined in terms of its function (intended
use), its model (how it is developed), and interface (how information is communicated to
the operator).

We propose the use of Fuller’s taxonomy as these definitions are relational with clear
features, and do not necessarily preclude aspects of Lin’s conceptualization. The conceptual
relation of the digital model, digital shadow, and digital twin is illustrated by Figure 3. As
an example, in this figure, photographs of the Ford Nuclear Reactor represent the physical
asset. Below this are a collection of images comprising digital representations of the Ford
Nuclear Reactor. The digital representations include component models, simulation results,
and virtual environments. The blue ovals represent the digital objects that comprise the
digital model, digital shadow, and digital twin; the arrows illustrate the relationships and
information exchange among these digital objects.
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Figure 3. Relationship of Digital Model, Digital Shadow, Digital Twin, and the Physical Asset using images and models
of the Ford Nuclear Reactor as an example. Large arrows represent automated information exchange and small arrows
represent manual data exchange.

Our interpretation of Fuller’s Taxonomy is as follows:

• The digital model may or may not be associated with a physical asset. Thus, it need not
integrate with physically measured or sensed quantities. This is how we might think
of most of the existing M&S efforts in nuclear engineering. Full simulation models of
planned or existing reactors, and their systems and components, capable of simulating
the system physics and dynamics comprise the digital model. What distinguishes the
digital model from the digital twin is that information generated by the digital model
is not automatically integrated with the physical asset.

• The digital shadow extends the digital model by incorporating information from an
existing physical asset to update the digital model, but does not utilize any information
generated by the digital representation in the physical asset. We note that digital
representations of historic facilities that no longer exist can qualify as digital shadows.
The inverse of the digital shadow, where information only flows from a digital model
to a physical asset, is not a coherent paradigm for useful engineering analysis as there
is a physical system operating with essentially no connection to reality. Therefore, this
situation is not explicitly defined or discussed further (For the curious reader, this
paradigm essentially aligns with Plato’s Allegory of the Cave [22] or Putnam’s more
contemporary “Brain in a vat” [23]).

• The digital twin is therefore the “closed loop” model of the physical asset and the
digital representation(s). The digital twin exchanges information in real-time with the
physical system to update its state and perform predictive calculations that are then
used to inform decisions and control actions on the physical asset.

The definitions above do not necessarily clarify use or differentiate meaning within
the context of a life cycle. Thus, we expand these definitions to describe how they should
be used in the various phases of the physical asset’s life cycle. For the life cycle phases,
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we adapt those definitions from Boschert et al. [7]. The sequence of phases are shown in
Figure 4 and include

• the initial conceptual design,
• the engineering design,
• procurement and construction,
• the operational phase that undergoes intermediate service, and
• and finally the decommissioning phase.

The lifetimes of the various digital objects are illustrated below with the life cycle
phases in Figure 4. This figure shows that the digital model is the initial point of creation
and may persist indefinitely. The lifetime of the digital twin is fully coincident with the
lifetime of the physical asset. If there is no asset, there is no digital twin. Beyond the
lifetime of the twin there is the digital shadow. The shadow can also exist coincidentally
with the physical asset. Moreover, the shadow can exist indefinitely as integration of data
from the physical asset may be manual. This recognizes the value of destructive testing
and post-irradiation examinations of various components of the plant, where there can
still be valuable information learned, and integrated into the digital object to refine the
underlying models for the next generation of products.

Figure 4. Illustration of physical asset life cycle phases and associated lifetimes and activity of the digital model, twin, and
shadow. The width of these lifetimes indicates level of interaction with the digital object.

The last aspect of our proposed definition is not to presume a single model, instance,
fidelity, or physics in the digital representation. Rather, the digital object may be able to
provide multiple models at the appropriate fidelity. This detail was not a part of the initial
definitions of digital twins [5], but as these definitions evolved, it was incorporated [7].
The desire to have varying fidelity is one of the unique challenges that we discuss further
in Section 5.

To summarize, the definition we propose for the DT includes the following components:

• Prior to the existence of any information exchange between the digital and physical
assets, the digital object is described as a digital model. This often encompasses the
conceptual and engineering design phases.
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• The digital model may exist alongside the physical twin and indefinitely, if there is no
information exchange with the physical asset.

• Following the creation of a physical asset, a digital shadow may be created that
incorporates information from the physical asset in either an automated or manual
sense, but it does not provide information back to the physical asset.

• The digital shadow may also persist indefinitely.
• The digital twin exists only as long as there is a physical asset.
• The digital twin has real-time, automated, two-way information exchange between

the digital representation and physical asset.
• The digital twin may involve a set of models of varying fidelity and complexity.
• A digital twin has a corresponding digital model and digital shadow. The digital

model and digital shadow are specific aspects of the twin.

In the remainder of this paper, we refer to the collection of these digital objects simply
as the digital twin.

DTs should include a physical and functional description of all systems, structures,
and components that captures as much detail as possible that is useful for any analysis,
real-time prediction, monitoring, or control in any phase of the life cycle. The requirements
and enabling technologies for the digital representations are discussed in Section 5. Next,
we consider historical and contemporary digital representations of nuclear power systems
to compare their capabilities to our definition of the digital twin.

4. Historical and Contemporary Digital Representations of Nuclear Power Systems

Several simulation capabilities for nuclear systems have been developed over the past
60 years. Advancing M&S capabilities of nuclear power systems has also been a key area of
research in the past decade. Furthermore, there are numerous commercial tools not specific
to nuclear power systems that have features to support DTs.

4.1. Common Nuclear Engineering Simulation Tools

The first tool we focus on is the plant simulator. Plant simulators have been around
for several decades. They are generally full-scope and real-time—two attributes often
desired of DTs. Their use is historically for training, and oftentimes includes a (physical or
digital) duplicate of the control room. These replica control rooms are even known to be
kept up to date with the minutiae of the real control room with details such as scratched
surfaces or replaced instruments. Two commercial vendors for plant simulators are Western
Services Corporation with their 3KEYMASTERTM platform that relies on RELAP5-3D [24]
for system thermal-hydraulics, MARS [25] for core thermal hydraulics, and NESTLE [26] for
core neutronics among other components. The other commercial vendor is GSE Solutions,
which has their Generic PWR product (GPWR), but is also developing new build simulators
for NuScale, AP1000, mPower, and the PBMR. We mention these as important technologies
because they are full-scope, and they are real-time. They are not necessarily high-fidelity,
and it is not clear how they might be adapted to integrate real-time information from a
physical asset, or provide predictive capabilities. Nevertheless, they have clearly defined
the necessary computational resource and modeling requirements to support the full-scope,
real-time simulation of a plant. These contemporary products essentially run on single-core
desktops with 2–3 GHz processors at real-time, or faster than real-time. This is in stark
contrast to the high-fidelity tools to be discussed momentarily.

To accomplish this in the GPWR, the SimExec engine manages the dynamic execution
of the various models for each component at the associated time intervals and maintains a
master state of a few thousand state variables. To run real-time, component models are
essentially lumped parameter dynamics models with strict execution time requirements
(e.g., the model for component x must execute at 7 Hz). This engine can also integrate with
a highly realistic interactive digitization of an actual control room if needed.

The requirements for plant simulators were detailed some time ago by Wiltshire in
1986 [27]. In that paper, Wiltshire describes a state-of-the-art system with the simulation
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requirements for an advanced gas reactor simulator. For a full-scope system, there are
not only differential equations, but also algebraic (arising from property correlations and
definitions of coefficients) and boolean systems of equations (arising from diagnostics).
Table 1 summarizes the orders of magnitude in unknowns for some various components
based on the information in [27] and more recent estimates. We note that Wiltshire describes
a hardware system that uses 52 parallel computers, while today much of this is calculated
on a single processor.

Table 1. Number of unknowns by type of equation for a real-time, full-scope plant simulator. The
O-notation indicates order of magnitude. For example, “O(1000)” in the second row, second column
means the “Reactor (x,y)” equations need to solve thousands of unknowns from the discretized
differential equations.

Component Differential Eqn. Algebraic Eqn. Boolean Eqn.

Reactor (x,y) O(1000) O(1000) –

Reactor Axial O(10)−O(100) O(10)−O(100) –

Steam Generator O(1000) –

Turbine O(100) O(100)−O(1000) –

Feed Pumps O(10) O(10)−O(100) –

Control Systems O(10)−O(100) O(1000) –

Electrical System O(10)−O(100) O(1000) –

Protection System – – O(1000)

Total O(10, 000) O(1000)−O(10, 000) O(1000)

Beyond the full-scope plant simulator, the nuclear engineering community has focused
considerable efforts on the system dynamics models with codes such as TRACE [28] and
RELAP, which we note are already a part of these simulators in some cases. However, it
is likely the versions in the simulator are not the most advanced form of these tools or
necessarily use the highest fidelity representation of the plant. In addition to the system
dynamics, the core modeling is the other area that receives considerable attention in terms
of the tool development because the physics involved in the reactor are specific to the
nuclear engineering discipline. The industry standard tool here is SIMULATE [29], which
solves for the core power distribution and dynamic response—at least for light water
reactors. For advanced reactors, DIF3D [30] is still the standard for non-pebble bed designs.
In pebble bed designs, the core modeling tools are VSOP [31] and AGREE [32]. Reactor
vendor specific tools also exist.

The high-fidelity simulation tools for plants thus far have mainly focused on individual
components. The recent programs supporting development of these next generation tools
were CASL [33], and now NEAMS [34]. Many of the tools developed under NEAMS are
finite element-based, while under CASL, the VERA software [35] was an amalgam of mod-
els and codes, with the most novel contribution being the core simulator, VERA-CS [36].
The NEAMS finite element tools are generally based on the MOOSE framework [37]. From
the MOOSE framework, there is also a suite (or zoo) of applications implementing various
physics for modeling various components. For advanced reactor systems analysis, the
SAM [38] code is also in development based on the MOOSE framework.

The tools described thus far are all mechanistic in nature—they arise from physically
based governing partial differential equations. Beyond these mechanistic tools, the RAVEN
framework [39] provides capabilities to support users with reduced order model (ROM)
construction, statistical analysis, UQ, probabilistic risk assessment, and others. In a sense,
RAVEN is designed to integrate with the mechanistic tools to exercise its capabilities.
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Collectively, these tools do not rise to the level of supporting a DT on their own. They
do, however, meet the criteria for a digital model, but this should not be surprising. In the
nuclear engineering community, the last decade of research focus has been primarily on
advancing the M&S capabilities that support digital models. As a result, we have several
new codes and a program for advancing the fidelity of the mechanistic models through
the adoption of more computationally expensive models. Nearly all of the NEAMS tools
are designed to run in parallel on high-performance computing (HPC) systems, and are
far from being able to provide value for real-time DTs. However, they can still serve a
role in support of DTs as a basis for ROM construction, and other ways we will discuss in
Section 5.1.3. Beyond this role however, the investments in high-fidelity simulation may
not yield much return in the DT space without further advances.

4.2. Relevant Non-Nuclear Commercial Simulation Tools

Outside of nuclear engineering, there has been considerable progress in providing
capabilities to support DTs. From the modeling side, any commercial software suite for
dynamic systems modeling is capable of developing a full-scope, real-time digital model
like the nuclear plant simulator. Some of these commercial tools at present are: Simulink,
SimulationX, Dymola, MapleSim, 20sim, ANSYS Twin Builder, MSC Apex, etc. These
products are generally far ahead of the corresponding U.S. Department of Energy (DOE)
counterparts in terms of their overall feature set and capabilities for usability. However,
beyond the physics for thermal-fluids and structural mechanics modeling, nearly all of
them do not contain representations of the requisite physics for nuclear power applications
described in Section 2.

This observation presents a conundrum about where to put forth effort. Should the
M&S community work to integrate their capabilities with commercial tools or should they
expend the effort to bring the quality and capabilities of their existing tools to the level of
the commercial tools? This is a complicated question that the authors will forgo proposing
an answer to. However, in the next section we discuss some tangible opportunities that
relate to this consideration.

4.3. Emerging Tools and Capabilities

The emerging capabilities for DTs in the nuclear arena have both digital and physical
components. On the digital side, there has been a notable investment in Modelica-based [40]
models through the TRANSFORM library [41] and by the Integrated Energy Systems group
at the Idaho National Laboratory (INL) where they have recently built system dynamics
models of the NuScale reactor [42]. These models are notable for demonstrating the capa-
bilities to model the dynamics of nuclear systems using Modelica, which is a modeling
language that is arguably the most appropriate for DT applications. The emerging physical
assets that present good opportunities are those under development in the microreactor
program, and in particular the MAGNET [43] test bed. The Compact Integral Effects Test
(CIET) facility has also been modeled with TRANSFORM [44] and SAM [45]. There is
also an effort that has just started for developing and demonstrating a DT in the SAFARI
project [46]; which is one of many recent ARPA-E funded projects under the GEMINA pro-
gram with a DT component [47–50]. Last, the recently demonstrated KRUSTY experiments
in the Kilopower project [51] demonstrated good prediction from the digital models and
measured high quality data.

Thus, these recent and emerging tools and facilities represent an existing foundation on
which one can build towards a functional DT. However, there is not yet an automated con-
nection between the physically measured quantities and the digital models. Consequently,
additional work is needed to realize nuclear system DTs. This is what we discuss next.

5. Enabling Technologies and Challenges for Digital Twins of Nuclear Power Systems

In this section, we describe the enabling technologies to realize nuclear DTs adhering
to the definitions developed in Section 3. We focus on where contributions should be made
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by the nuclear engineering community. Moreover, technologies that are sufficiently mature,
although not sufficiently familiar to the nuclear engineering community, where contribu-
tions are not necessarily needed, are also identified. Finally, some potential approaches to
realizing a nuclear DT and their challenges are described. Since a significant aspect to the
challenges and enabling technologies is in the area of UQ, Section 6 is devoted entirely to
this topic.

5.1. Enabling Technologies
5.1.1. System Dynamics Modeling

System dynamics models are well established in several engineering disciplines.
The evidence for this is in the plethora of multidisciplinary commercial simulation tools
listed in Section 4.2. There is also an extensive history of their application in nuclear
power systems. This is an enabling technology for DTs that will likely not require any
revolutionary developments or contributions. Codes like TRACE, RELAP, and SAM are
all systems dynamics codes developed specifically for nuclear reactor applications. We
can think of these models as lumped parameter systems of varying fidelity—although the
aforementioned examples are capable of capturing considerably more complex physics.
Lumped parameter models can be sufficiently accurate and sufficiently inexpensive to
evaluate. This has been proven repeatedly, as demonstrated by the examples of the
simulators described in Section 4.1. Where system dynamics models typically fall short is
in the applicability of their coefficients. In these models, the ROMs are known and can be
rigorously derived with some assumptions (e.g., the point kinetics equations). The physics
and applicability of these models rely almost entirely on the coefficients. The coefficients
are the physics. Therefore, the challenge with system dynamics models is in having a way
to adapt or recalibrate the coefficients to better match a physical asset’s behavior.

5.1.2. Model Based Controllers

One promising role for DTs in nuclear engineering is that they will support au-
tonomous control and operation. Numerous methods exist in controls engineering, and we
suggest that model-based controllers are the specific enabling technology for DTs. Model-
based control systems rely on some underlying model that is reasonably predictive of
the system dynamics. Several examples of model based control exist for nuclear power
systems [52–55], and are generally applied to the core power, but may be used for other
components or quantities of interest [56,57]. These models are typically lightweight so as
to meet requirements for real-time execution and may be constructed rigorously through
physics-based methods, statistical methods, purely data-driven approaches, or ML. Model
predictive control (MPC) [58] is one example of model-based control with several variants
that extend the underlying method to be robust in the presence of noise [59], applicable
to nonlinear systems [60], or incorporate some ML methods [61]. We propose that model-
based control is superior to model-free controllers (e.g., PID) because it is easier to make
guarantees about the limits of the controller’s behavior and explainability is more easily
achieved. Furthermore, in most cases we have a good sense of what the mechanistic model
is, and purely model-free methods ignore this knowledge.

5.1.3. Automated ROM Construction

Another key technology for DT development will be automated ROM construction.
There is more than 60 years of digital models of nuclear systems and many of these are not
real-time. The simulation components of the DT will need to be primarily real-time. In any
situation where an existing digital model is not real-time, it is amenable to representation
as a ROM. As the digital models span a range of codes, models, tools, inputs, etc., having
an automated way to produce a ROM will be a key enabling technology to seamlessly
generate the necessary pieces to build a DT. There are numerous techniques that exist to
produce ROMs. Some of these are given in Figure 5, illustrating how they might relate to
other models, and one another, in terms of their knowledge of the physics and complexity.
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Any of these approaches, and others, are suitable for ROM construction. Although we
suggest that knowledge of the physics being modeled by the ROM should be used to
prioritize what technique is used.

Figure 5. A taxonomy of model order reduction techniques in terms of complexity and knowledge of physics.

Some capabilities exist in this regard through RAVEN [39], and they have been success-
fully demonstrated for risk-informed safety margin characterization [62]. However, the full
spectrum of model order reduction methods is not available, so some contributions could
be made here. An additional, practical, and critical consideration for automated ROM
construction tools is ease of use by the community. To have tangible gains in productivity,
modelers should expect to put forth as little effort as possible to create a ROM. Therefore,
usability and flexibility should be the focus of this effort, not necessarily novel contribu-
tions to model order reduction techniques. Opportunities for novel contributions still exist
though, but these should focus on developing a priori and a posterior error estimates of the
ROM construction techniques to facilitate confidence in the usability and flexibility.

5.1.4. Functional Mockup Interfaces

The functional mockup interface (FMI) [63] is an open standard for a software interface
to facilitate model exchange and co-simulation. This is an enabling technology because
of the need to integrate different models of different fidelities involving different physics.
Effectively, FMI standardizes an interface for coupling computational models independent
of the tools. It uses a combination of XML files for describing the model contents and
interface, and C-interfaces, shared libraries, or source code to provide a means to execute
the code. There have been numerous attempts in the nuclear engineering community
to develop such a capability [64–68]. However, none of these have seen broad adoption
because they are largely tool- or framework-based. Our recommendation is that this
standard be adopted to facilitate interaction with commercial tools and various software
tools developed within the nuclear engineering community. Furthermore, the standard can
support integration with physically sensed data and extended reality (either augmented or
virtual). Presently, the standard is supported by several international experts and industry
entities. We present Figure 6 from Touran et al. [68] as an example of the various interfaces
that can exist for a nuclear energy DT; here, each of the interfaces could be implemented
with FMI enabling broad interoperability with other commercial or open source tools.
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Figure 6. A depiction of the interface stack operating on the reactor model. Each arrow can be implemented with FMI
where each box represents a different software tool. (Source: Touran et al. [68]).

5.2. A Digital Twin Paradigm

As we noted earlier, much of the necessary theory for the enabling technologies of
DTs, and in some cases the technology itself, exists in some form. Therefore, we offer the
opinion that the development and realization of a DT is primarily an applied research area,
as opposed to a basic research activity. Our paradigm for the DT–physical asset interaction
is illustrated in Figure 7. In this figure, the DT is a real-time dynamics model based on
mechanistic models. This model calculates predicted responses and control actions for the
DT, and receives inputs from the physical asset. It is assumed to contain various levels
of controllers and decision making frameworks. This is to execute all in real-time and
uses FMI as the basis of information exchange (or similar standard). Below the FMI-based
communication layer is an offline—but on-demand—capability that uses resources that are
slower than real-time. This also includes some data repository component for recording the
history of the DT operation. Use of this on-demand resource would be managed by Optimal
Experimental Design methods described in Section 6.3. The on-demand capabilities would
likely consist of data-driven approaches to make sense of the sensed data and the existing
high-fidelity M&S capabilities in nuclear reactor analysis.
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Figure 7. Paradigm for DT–Physical Asset Interaction.

The purpose of the on-demand capabilities is to evaluate the inconsistencies in the
simplified real-time dynamics of the DT and, through ML processes (whether they are
statistics-based, involve regression, or use neural networks), provide corrections to the
DT. These corrections may account for changes in model coefficients due to the natural
evolution of the physical asset (e.g., burnup, lower power states, high power states, etc.) or
known limitations of the model (e.g., due to assumptions like linearity). We see this as one
way to make use of the existing advanced M&S capabilities in NEAMS.

To achieve this paradigm using the aforementioned technologies there are several
challenges that we now describe.

5.3. Challenges to Realizing Digital Twins
5.3.1. Security

As nuclear power systems represent sensitive and critical infrastructure, security of
the information around the DTs should be considered a necessary requirement. Information
security for DTs though should not be something developed by nuclear engineers, instead
the community should consider itself a user of this technology. As a challenge, what is
needed in this area is the proper engagement of experts in the field of cyber-physical system
security to ensure the requirements of nuclear power applications are captured. Trying to
devise our own solutions to the security problem are likely misguided. As an example,
standards for IoT systems security are already in development [69]. Further, the notion of
secure embedded intelligence [16] could be leveraged to devise solutions to this challenge.

5.3.2. Integration with Prognostics and Health Management

A recognized area for value extraction from DTs is in prognostics and health man-
agement (PHM). PHM appears repeatedly across multiple potential DT applications. The
exact manner in which PHM-related data integrates with DTs remains unclear, specifically
how the data is used as it is collected from the physical asset. Some proof-of-concepts for
integration with PHM have been demonstrated [70] through using the enabling technolo-
gies mentioned in Section 5. A similar approach could be leveraged for nuclear power
applications; however, this area represents one of the key challenges where the nuclear
engineering community will need to engage the broader PHM community to develop
novel solutions.
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5.3.3. Data Collection, Curation, Transmission, and Integration

The tasks of data collection from sensors, curation of this data, and transmission
and integration of the sensor data into the DT will likely present substantial challenges.
However, all of these challenges are expected to be practical in nature, which is not to
dismiss their importance. A DT must be able to perform these tasks. There is nothing
theoretically complex about them, but they should be expected to be tedious, error-prone,
and initially unreliable. For nuclear power system DTs, these capabilities should ideally be
“turn-key”. Furthermore, these capabilities more generally fall under the capabilities of IoT
infrastructure–where there are notable advancements happening rapidly. For example, the
problem of localization of either people or radiological material inside a nuclear facility is
paramount, but devising solutions to this problem like Pascale et al. [71] is not necessarily
within the domain of expertise of nuclear engineers. Consequently, our suggestion is that
these issues be addressed by IoT experts. A possible exception to this would be for nuclear
engineers to engage with IoT experts to ensure the reliability of IoT in harsh environments
(e.g., high temperature and high radiation).

5.3.4. Integration with Risk Assessments

DTs must be integrated with risk assessments for regulatory acceptance. Moreover, in-
tegration with risk will likely be necessary to achieve the benefits from increased reliability
of the physical system and improved automation. One way that the integration of the DT
and risk has been envisioned is through dynamic probabilistic risk assessment. Traditional
Probabilistic Risk Assessment (PRA)—which is not dynamic—is one of the cornerstone
safety analysis methodologies for reactor licensing. Through traditional PRA, fault-trees
and event-trees are developed with appropriate probabilities of failures and events, then
analyzed to produce core damage frequencies. The core damage frequency is defined as
the probability of core damage per reactor year of operation. The core damage frequency
is also usually categorized by the severity of the event. The probabilities that go into the
PRA are typically based on best estimate design information and relevant experiment or
operational data, and include some conservatism. The conventional PRA is performed
throughout the life of the physical asset for licensing purposes, but generally it is not done
in real-time.

The traditional PRA is limited in this sense as the probabilities that should go into it
can very well be a function of the current reactor state. The condition and health of various
components as they age is a first-order effect to determining these probabilities, as is the
operational state (e.g., the turbine is rotating at a resonant frequency of the blades and
begins vibrating). Dynamic PRA can utilize the latest state information of the DT—and even
near-term forecasts by the DT—to provide more accurate and real-time risk assessments.
These risk assessments can include the time-to-failure of a component in the physical asset,
the resulting event due to this failure, and the potential for radiological release.

We consider the area of integrating DTs with risk analyses to be one of the challenges
for the nuclear engineering community given the unique risks of nuclear power. Fortu-
nately, activities in support of addressing this challenge are underway by both the DOE
and NRC, and build on a strong foundation. Since the 1980s the U.S. NRC has invested
in software capabilities for PRA—the latest iteration of which is the SAPHIRE code [72].
Further, the NRC also recently updated their standard review plan for digital instrumen-
tation and control systems that would necessarily be a part of DTs. The DOE has also
recently launched the Risk-Informed Systems Analysis project that developed the Risk
Assessment process for Digital I&C (RADIC) [73] which discusses digital-based systems,
structures, and components that would exist within a DT. Lin et al. [19] discuss these and
other approaches to the integration of DTs with risk assessments in detail. We refer the
reader to this work for a more in-depth discussion of these approaches and challenges.



Energies 2021, 14, 4235 21 of 32

5.4. Computing Infrastructure and Reliability

A hidden challenge for realizing DTs relates to the reliability of the computing in-
frastructure and DT implementation. The DT’s reliability is intimately woven into into
the security, data transmission, and risk assessment challenges. Therefore, unless this is
considered separately, it tends to remain as a hidden challenge. This challenge basically has
to address the overall question of how the implementation and reliability of the hardware,
computing, and digital infrastructures for the digital asset affects the physical asset. As an
example, consider what level of reliability is required for the DT to use sensor data and
make predictions. Moreover, what is the consequence of a failure of this system?

If the real-time DT suddenly goes offline (partially or fully), would it result in increased
risk of failure of the physical asset? This is a fundamental question that should go into
the design of the DT, where we as a community should desire that there is a minimal and
acceptable increased risk to the physical asset in the event of a DT malfunction. Hopefully,
it should not be the case that the risk to the physical asset is decreased when the DT
goes offline; otherwise, the value proposition of the DT becomes questionable. With the
adoption of a DT, the fault-tree and even-tree analyses of the PRA that nuclear engineers
are accustomed to, suddenly become much more complex. All of the systems, structures,
and components supporting the DT—and its models and software—now contribute to
the overall risk assessment of the physical system. Some of these questions are being
investigated by the nuclear community, as in Lin et al. [19], and members of the broader
IoT community have also identified this challenge.

In [74], Nguyen et al. focus on exactly this problem for IoT infrastructure used in
healthcare monitoring. Part of the challenge addressed by this work is in identifying and
comparing relevant metrics and applying these in the right way to asses IoT reliability.
Another challenge is the design of the IoT infrastructure to maximize reliability—even
in the presence of cyber-security threats. Those proposed in this reference include the
mean time to failure, mean time to recovery, and steady-state availability. These metrics are
standard in the risk and safety analysis of nuclear systems [75], however the nuclear system
designers and regulators are less familiar with the reliability data of IoT infrastructures
and underlying computing infrastructure. Advancing the state of PRA for nuclear systems
to incorporate the reliability of the DT, which depends on the reliability of the software and
hardware underlying the DT, and its corresponding effects back into the physical-digital
coupled system will be a challenge.

5.4.1. Standardization

A common attribute of successfully deployed technologies is a reliance on standard-
ization. The nuclear industry has a history of standards with high pedigree, and this has
resulted in one of the safest industries with high reliability and capacity factors for existing
installations. Presently, the standardization of DTs is a recognized challenge with no stan-
dards having been finalized yet. However, there are ongoing efforts by the International
Standards Organization under the joint technical committee ISO/IEC JTC 1/SC 41 for the
Internet of Things and Digital Twin. Some standards relevant to DTs exist [76] without
reference to twins, but nearly all of those devoted to DTs are in development [77–82]. More-
over, none of these are necessarily tailored for nuclear applications. Therefore, beyond the
general standardization of DTs, the nuclear engineering community will need to addresses
the challenge of standardizing DTs for nuclear power applications. This activity should be
performed by professional societies, national and international standards organizations,
and regulators with an interest in, or oversight of, nuclear energy.

5.4.2. Leverage the Progress in High-Fidelity Advanced Modeling Simulation

One of the major challenges for the nuclear engineering community will be to consider
how to best leverage the existing activities and recent progress of the advanced M&S
efforts within the U.S. DOE. Over the last 10 years there has been a roughly $500 million
investment by DOE’s Office of Nuclear Energy in M&S efforts. The presumption in these
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programs was that the computing platforms would be leadership class, or other large HPC
clusters, having tens of thousands of processors and terabytes of memory. Consequently,
many of the tools developed under these programs are designed to run on these platforms,
and this is precisely the opposite of what is needed for real-time DTs. Exactly how a
program focused on developing DTs will leverage advanced M&S is an open question.
Although we propose the strategy represented in Figures 7 and 8 as one possibility.

Another possibility relates to developing variable fidelity models. Here, any of the
existing high-fidelity models can expose an FMI standard interface and be incorporated
into a system model. This would likely not yield a real-time digital representation, but
could be leveraged as an on-demand capability.

Figure 8. UQ tasks (yellow boxes) in the context of a DT.

5.4.3. Uncertainty Quantification

The last challenge we identify is in UQ. This is a necessary capability for reliable DTs
as it is needed for integrating information into the physical asset, and for integrating data
from the physical asset into the DT. The challenges in this area are sufficiently broad and
complex that we dedicate the next section to their discussion.

6. Uncertainty Quantification for Digital Twins

Establishing reliability and trust in DTs is crucial for their adoption in practice, espe-
cially for safety/mission-critical settings with potentially catastrophic consequences such
as those in the nuclear domain. UQ is an enabling technology for initiating the assessment
of these traits. With access to information about where the DTs are confident or uncertain,
designers, operators, and other stakeholders can become aware of the different possible
responses and outcomes. Consequently, informed decisions can be made on control, design,
policy, or further experimentation. UQ therefore promotes transparency of the DT, and is a
crucial component of decision support systems. Further, combined with code verification
and model validation, the VVUQ (verification, validation, and uncertainty quantification)
system [83] has grown to become the standard in many fields of computational science
and engineering.

Among a broader selection of UQ paradigms, we follow a framework that rigorously
characterizes uncertainty using the mathematical formalism of Bayesian probability [84–87].
While a frequentist perspective views probability as a frequency within an ensemble, a
Bayesian perspective regards (and derives) probability as an extension of logic [88]. In this
view, a probability distribution represents the state of uncertainty, and is updated through
Bayes’ rule as new evidence (e.g., sensor measurements) become available. This update
rule naturally handles observations that materialize sequentially over time and offers a
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coherent representation of evidence aggregation. The updated distribution, called the
Bayesian posterior, consistently concentrates towards the true parameter values as more
measurement data are obtained (see, e.g., in [89]). Furthermore, a Bayesian approach is
advantageous for accommodating sparse, noisy, and indirect measurements; consolidating
datasets from different sources and of varying quality; and rather importantly injects
domain knowledge and expert opinion. Its use with digital models and in the context of
scientific research has been widely demonstrated [90–92].

In the remainder of this section, we do not attempt to make a comprehensive review
of UQ work in nuclear engineering, or even a review of UQ algorithms. Instead, we will
present a technical overview on a number of key UQ tasks that fall under the interaction
cycle between the physical and digital twins in Figure 3, which is further accentuated
in Figure 8 below. These tasks are forward UQ, inverse UQ, and optimization under
uncertainty (OUU). Forward UQ is concerned with “How well do we know our simulated
predictions?”; inverse UQ is concerned with “How well do we know the state of our
physical asset using our sensor data?”; and OUU is concerned with “What actions should
we take to improve our predictions about the Physical Asset, or to improve its performance?”
We offer a discussion highlighting UQ concepts perhaps less often encountered in the
current nuclear engineering literature, and our view of their challenges pertaining to DTs.

6.1. Forward UQ

Forward UQ entails characterizing the uncertainty of DT prediction about the response
of the physical asset resulting from the uncertainty in the DT input parameters—that is,
a propagation of uncertainty in the forward direction of the DT simulation. In Figure 8,
forward UQ resides on the side of the Digital Asset, without needing direct interaction
with the Physical Asset. We use the term “parameters” here to encapsulate all sources
of uncertainty that can be applied to the DT. For example, this may include physical and
material constants, nuclear data, manufacturing tolerances and defects, boundary and
initial conditions, control actuations and forcings, geometric features, and any additional
tunable model parameters or latent variables. A simplified abstraction may take the form

y = G(θ) + ε, (6)

where θ denotes the uncertain parameters, G(θ) is the DT prediction of quantities of interest
(QoIs) made at θ, ε is measurement noise, and y is the (noisy) observation perceived by
sensors in the physical asset. Then, given the current uncertainty state of θ expressed as a
probability density function (PDF) p(θ), forward UQ seeks to characterize the correspond-
ing pushforward distribution p(G(θ)), or predictive distribution p(y) (The pushforward
is the distribution of the noiseless signal predicted by the DT, and the predictive is the
distribution of the noisy measurement that may be observed by the sensors.).

Computationally, forward UQ is typically tackled by Monte Carlo (MC) sampling [93],
from which useful statistics such as the mean, covariance, probabilities of rare/failure
events, and expectations of performance and health metrics may be obtained. For example,
one major area of forward UQ in nuclear science involves propagating uncertainty from the
cross section data of nuclear isotopes through reactor analysis calculations, with some recent
examples found in [94,95]. However, MC sampling converges slowly and is considered
prohibitively expensive. We further discuss this challenge in Section 6.4 together with those
from the other UQ tasks.

6.2. Inverse UQ

Inverse UQ deals with incorporating measurements from the physical asset (e.g.,
via sensors) into the DT. That is, we want to find out what plausible values of θ could
have lead to the observations y. This is an inverse problem, with a flow in the inverse
direction of a DT simulation. In Figure 8, this corresponds to the flow of information from
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the Physical Asset to the Digital Asset. In contrast to single point estimation, Bayesian
inference provides a probabilistic inverse solution:

p(θ|y) = p(y|θ)p(θ)
p(y)

. (7)

Here, p(θ) depicts the prior uncertainty on θ before having measurements, and p(θ|y)
represents the updated posterior uncertainty after having these measurements. p(y|θ) is
the likelihood function describing the discrepancy between the DT prediction and actual
measurements, e.g., from Equation (6): p(y|θ) = pε(y − G(θ)). Thus, each likelihood
evaluation translates to one DT evaluation G(θ), typically the most expensive component
of all UQ computations. Last, p(y) is the model evidence (marginal likelihood) that serves
as a PDF normalization, generally this is intractable to compute and avoided whenever
possible. Solving the Bayesian inference problem (the inverse UQ task here) thus entails
characterizing the posterior p(θ|y).

Computationally, attempting to directly approximate p(θ|y) using functional ap-
proximation techniques would inevitably involve estimating p(y) (a difficult integration
problem), and only feasible to low dimensional θ (i.e., less than 3). A more scalable
approach involves sampling from p(θ|y) via Markov chain Monte Carlo (MCMC) algo-
rithms [93,96,97] that completely avoid the need for computing p(y). However, even the
more advanced MCMC variants, such as the Hamiltonian MC [98,99], are only effective
for .O(100) dimensional θ in practice. As an example in nuclear systems, the work
in [100] provides a recent review of inverse UQ methods—Bayesian and non-Bayesian—for
application to thermal-hydraulic models.

Another important area of inverse UQ is within the time-dependent settings, for
example, where the parameters θ are evolving over time according to a dynamical system
in the DT, and when data y are also streamed in the form of a time-series (e.g., sensors
continuously operating under a fixed sampling frequency). Such cases are commonly
encountered in state estimation problems (e.g., θ(t) being an uncertain state evolving over
time) and can be effectively approached with methods of data assimilation [101,102] that
encompasses the well-known Kalman filter (KF), ensemble KF, particle filter, etc. The
broader problem classes of filtering, smoothing, and forecasting all can be derived from a
sequential Bayesian inference framework.

Overall, these different inverse UQ methods all seek to combine the predictive power
of our digital asset together with sensor observations in order to describe the uncertainty
about our knowledge of our physical asset’s current state.

6.3. Optimization under Uncertainty

Optimization under uncertainty (OUU) is associated with decision-making (i.e., taking
actions) in the DT context. We divide OUU into two types: optimal experimental design
(OED) and design (performance) optimization. In the former, OED focuses on selecting
new experiments (e.g., expensive high-fidelity simulations), if any, in order to improve
our digital model predictions. “Experiments” can be interpreted broadly, and may entail
computational or physical experiments (The term “OED” stems from the statistics com-
munity, and it refers to the statistical design of experiments (i.e., to optimize for certain
desirable statistical properties). In setting up an experiment in practice, however, much
more considerations need be incorporated requiring the expertise, experience, and instinct
of a seasoned experimentalist.). These experiments do not need to achieve real-time require-
ments of the DT, and can be carried out in the background and incorporated into the DT
when complete. Therefore, we view OED here for acquiring new information, but not from
the physical twin, in order to improve our digital asset’s predictions. This task is found
within the Digital Asset box in Figure 8. In the latter, design (performance) optimization
is concerned with taking actions on the physical asset that can improve its performance.
This task resides between the Predictions and Actions ovals on the Digital Asset side in
Figure 8.
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We begin by introducing OUU in a general form, with d denoting the decision (ac-
tion) variable:

d∗ = arg max
d

J(d). (8)

The OUU problem then seeks d∗ that maximizes an objective function J that reflects
the anticipated value from the proposed decision, subject to any decision constraints. What
makes OUU different in comparison to classical optimization problems is the presence
of uncertainty.

For OED, we present simulation-based OED [103–106] that leverages the predictive
capabilities in a DT. This is in contrast to exploration-based design of experiment that does
not make use of a digital model, such as space-filling, Latin hypercube, and factorial design
sampling procedures (see, e.g., in Cox & Reid [107] and Chapters 1–6 in Santner et al. [108]).
For example, a common choice for J in OED is the expected information gain (EIG) on θ:

J(d) = Eŷ|d[DKL(p(θ|ŷ, d)||p(θ))], (9)

where we use ŷ to differentiate these observations to be from the experiments rather than
the physical asset. DKL is the Kullback–Leibler (KL) divergence that measures the degree
of dissimilarity between the posterior and prior distributions, and the expectation Eŷ|d
accounts for different possible observations under the proposed experimental design.
Therefore, in this case, we want to find an experiment that, averaged over all possible
experiment outcomes, provides the greatest change from the prior to the posterior (i.e., the
new measurement is most informative in reducing our uncertainty about θ).

For design (performance) optimization, we consider problems that target engineering
performance metrics in J and in the constraints, under the current state of uncertainty.
In nuclear power systems, some examples of such quantities include the expectation of
power production, variance of market demand, probability of power outage, etc. Under
this direction, mathematical frameworks such as the reliability-based design optimization
(RBDO) and robust design optimization (RDO) are commonly used to incorporate chance
constraints and variability in the performance objective (see, e.g., Wang et al. [109]). These
frameworks are integral to address the challenges of incorporating risk and reliability
discussed in Sections 5.3.4 and 5.4.

Computation for OUU is typically highly demanding, especially for OED which
in itself involves solving many inverse UQ subproblems. Conceptually, in OED, each
evaluation of J(d) in Equation (9) at a given d requires MC sampling of many different
experimental outcomes and performing Bayesian inference using MCMC followed by KL
divergence estimation for each scenario. This J(d) estimation is further wrapped under a
numerical optimization routine that needs to be able to handle noisy objectives (due to MC
sampling). Overall, this triply-looped procedure—optimization over MC sampling over
MCMC and KL estimation—must be accompanied by other numerical advances in order
to be feasible. For example, the work by Ryan et al. [110] presents a nested MC estimation
for J(d) that sidesteps the need for MCMC, and the work in Ryan et al. [111] provides an
overview of some recent approaches, and we will point to a few more in Section 6.4.

6.4. Challenges in UQ for Digital Twins

A prominent challenge of applying UQ to DTs is the need for speed. This arises from
the common application of DTs for real-time monitoring and control of the physical assets,
as well as the aggregated complexity of a large physical system. Performing simulations of
the DT that potentially involves multiscale, multiphysics, and multidisciplinary interactions
on a supercomputer would be rarely viable for online usage. Correspondingly, substantial
computational acceleration is needed for the various UQ tasks. The availability of many
UQ software packages such as DAKOTA [112], UQTk [113], and QUESO [114] also greatly
facilitates the democratization of UQ adoption and further development.
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One major strategy to this computational challenge is to trade model fidelity for speed,
by building ROMs or surrogate models as discussed in Section 5.1.3 and Figure 5. Another
strategy is to focus on advancing solution techniques for the UQ tasks. For example, MC
sampling efficiency can be improved through importance sampling and quasi Monte Carlo
methods [115] while MCMC mixing can be enhanced with adaptive and gradient-informed
strategies for proposing new locations of Markov chain progression (see, e.g., in [116,117]).
The parameter space that needs to be explored can also be decreased through various
dimension-reduction techniques. Alternatively, improved scaling to higher dimensions
can also be achieved by approximating the uncertainty distributions with simpler families,
such as the use of Gaussian distributions via variational inference [118,119] and Laplace
approximation. Combinations of these techniques have also been leveraged in OED, such as
the use of surrogate modeling and gradients [120,121], Gaussian approximations [122,123],
and low-rank structures [124].

Acceleration can also be achieved through reducing the need for processing large
amounts of data. Indeed, a high-resolution spatial-temporal sensor network attached
to the physical asset may create a huge quantity of measurement data that overwhelms
the available computational capabilities, necessitating a strategic selection/prioritization
of data processing. In this regard, many methods for data reduction would be highly
valuable, such as techniques aimed at data dimension reduction (e.g., principal component
analysis, tensor decomposition, and autoencoders; see in [125,126] for an overview) and
subsampling (e.g., randomized algorithms [127] and coresets [128,129]).

While our discussion so far has revolved around computation, there are also questions
regarding the UQ problem formulation. For instance, in addition to parametric uncer-
tainty, there are also contributions from model discrepancy [90] resulting from modeling
assumptions, unknown physics, or other inadequate portrayals of the physical asset. Yet
another crucial challenge is to achieve an integration of the different UQ tasks instead
of approaching them in isolation; indeed, one can imagine that additional benefits may
be realized if we have a better and longer forecast of what might unfold in the future. A
general problem of sequential decision-making under uncertainty can be mathematically
characterized via a partially observable Markov decision process (POMDP), which also
connects to the work of reinforcement learning and dynamic programming. Some initial
investigations have taken place within the context of UQ and DT, such as in [130–132].

We end this section by returning to one of the key desirable properties for DT and AI
technologies in general: trust. We view UQ to be an important enabler to achieve trustwor-
thy DT tools, as it promotes greater transparency on the competency of the computational
models. However, we note that there are many other important factors for establishing
trust, such as beneficence, explainability, operation reliability, ability of human control, and
even the psychology and culture of human users that defines their behavior. These fields
are very much beyond the scope of our discussions, and we refer interested readers to the
articles in [133,134] as a starting point.

7. Summary and Conclusions

This paper provides an overview of recent papers defining DTs in general terms. We
review and discuss these definitions to provide an appropriate concept for nuclear power
applications. Our proposed definition for the DT includes several components—the digital
model, the digital shadow, and the digital twin—that each serve a unique purpose during a
physical asset’s life cycle. The differentiating factor in these definitions is how information
is exchanged between the physical asset and its digital representations. The defining
feature of a digital twin is a closed-loop of automated information exchange between the
digital representation and physical asset in real-time.

With this definition, we survey the history of tools and capabilities for digitally
modeling a nuclear power system. This discussion identifies that for some time nuclear
plant simulators have been close to meeting the criteria of a digital twin, but lack the
integration of sensed data from a physical asset. Another item identified in Section 4 is that
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recent modeling and simulation activities have been focused on capabilities that are less
amenable to DT development, although there are some exceptions.

After our survey on existing nuclear capabilities, we discussed the enabling technolo-
gies and the challenges of their adoption by the nuclear engineering community to close
the gap between the existing modeling and simulation capabilities and advanced sensing
capabilities to achieve the realization of a DT. In the enabling technologies, the Model-
ica modeling language and Functional Mock-up Interface are identified as appropriate
platforms for DT development. Model-based control and the recent advances in this field
are also identified as key to realizing the DT. We strongly recommend the model-based
approaches over model-free as, for most aspects of modeling, a nuclear power system there
is a deep understanding of the underlying physics. The use of model-free methods will typ-
ically ignore the knowledge and experience the larger community has with nuclear power
systems. Therefore, relying solely on these methods seems misguided. Instead we promote
their use as augmenting model based approaches to correct for known assumptions or
unknown behaviors.

Several challenges to DT realization are then discussed. With these, some like security
and IoT capabilities are better solved by experts from other fields, and the community in-
terested in nuclear power systems should consider itself a stakeholder or customer in these
technologies. Others, like integration with PHM, could be collaborative with the nuclear
community. The challenges unique to the nuclear field will include the development of
additional standards, determining how to best utilize the existing modeling and simulation
infrastructure, and the way to integrate our simulation technologies with risk assessments.

Last, we presented a technical overview on a number of key UQ tasks that fall under
the interaction cycle between the physical and digital twins. Namely, forward UQ to
propagate uncertainty from digital representations to predict behavior of the physical asset,
inverse UQ to incorporate new measurements obtained from the physical asset back into
the DT, and optimization under uncertainty to facilitate decisions of experiments that
maximize information gain, or actions that maximize performance for the physical asset
performance under an uncertain environment. We offered discussions of their challenges
pertaining to UQ for DTs, residing primarily within the areas of computational speed,
integration among different UQ tasks, and the role of UQ within the more expansive goal
of establishing DT trust.
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