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Abstract: Considering nonlinear variation of working fluid’s specific heat with its temperature, fi-

nite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irre-

versible Atkinson cycle. Through numerical calculations, performance relationships between cycle 

dimensionless power density versus compression ratio and dimensionless power density versus 

thermal efficiency are obtained, respectively. When the design parameters take certain specific val-

ues, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are 

compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency 

under the conditions of the maximum power output and maximum power density are compared. 

Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the 

compression ratio is used as the optimization variable, and the cycle dimensionless power output, 

thermal efficiency, dimensionless ecological function, and dimensionless power density are used as 

the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and 

Shannon entropy solutions under different combinations of optimization objectives. By comparing 

the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of 

single-objective optimizations based on maximum power output, maximum thermal efficiency, 

maximum ecological function and maximum power density, it is found that the deviation indexes 

of multi-objective optimization are smaller, and the solution of multi-objective optimization is de-

sirable. The comparison results show that when the LINMAP solution is optimized with the dimen-

sionless power output, thermal efficiency, and dimensionless power density as the objective func-

tions, the deviation index is 0.1247, and this optimization objective combination is the most ideal. 

Keywords: irreversible Atkinson cycle; nonlinear variable specific heat; NSGA-II; multi-objective 

optimization; finite time thermodynamics 

 

1. Introduction 

More and more thermodynamic research have focused on the optimal performance 

of given thermodynamic process and the optimal configuration of a thermodynamic pro-

cess with a given target extremum, which is defined as finite-time thermodynamics (FTT) 

[1–4]. The applications of FTT include many aspects, and the two major aspects are opti-

mal configurations [5–21] and optimal performances [22–53] studies. 

Many scholars have carried out a lot of research on the performance optimizations 

of the internal combustion engine cycles by using FTT theory; especially see the review 

article by Ge et al. [54]. For the Atkinson cycle (AC), when the working fluid’s (WF’s) 

specific heats (SHs) are constants [55–62], linear [63–69], and nonlinear [70–76] variable 
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with its temperature, many scholars have analyzed and investigated its performance char-

acteristics (PC) by taking into account the different cycle design parameters with different 

optimization objectives. 

When the WF’s SHs are constants, Chen et al. [55] investigated the thermal efficiency 

( ) at maximum power density ( dP ) criterion of a reversible AC without any losses. Ra-

shidi and Hajipour [56] analyzed the influences of cycle intake air temperature, maximum 

temperature, and compression ratio on the power output ( P ) and   PC of a reversible 

AC, and compared the optimal characteristics with those of Otto and Diesel cycles. Hou 

[57] derived the P  and   PC of an endoreversible AC with heat transfer loss (HTL). 

References [58,59] derived the P  and   PC of an irreversible AC by considering HTL 

and friction loss (FL). Zhao and Chen [60] derived the P  and   PC of an irreversible 

AC with internal irreversibility loss (IIL) and HTL. Ust et al. [61] further considered IIL 

on the basis of reference [55], and studied the influences of IIL and cycle temperature ratio 

on the optimal dP  PC of an irreversible AC. Shi et al. [62] further considered FL, HTL, 

and IIL on the basis of reference [55], and studied the influence of three losses on the dP  

PC of an irreversible AC. The analysis results revealed that the engine designed by maxi-

mum dP  criterion is smaller in size and more efficient. 

When the WF’s SHs are linear variable with its temperature, Al-sarkhi et al. [63] op-

timized dP  PC of a reversible AC. Patodi and Maheshwar [64] compared the optimal 

performances under the maximum P , maximum dP , and maximum effective P  crite-

rions of a reversible AC. Ge at al. [65,66] derived the P  and   PC of endoreversible 

[65] and irreversible [66] ACs. Lin and Hou [67] derived the P  and   PC of an irre-

versible AC by taking into account the FL and HTL as the fuel energy percentage. Haji-

pour et al. [68] optimized the P  and   PC of an irreversible AC by taking into account 

the FL, HTL, and IIL, and compared the results with those of Dual cycle and Dual-Atkin-

son cycle. Shi et al. [69] investigated the dP  PC of an irreversible AC by taking into ac-

count the FL, HTL, and IIL and compared the cycle maximum specific volume ratio,   

and pressure ratio under the maximum P  and maximum dP  criterions. 

When the WF’s SHs are nonlinear variable with its temperature, Ge et al. [70] derived 

the P  and   PC of an irreversible AC by taking into account the FL, HTL, and IIL. 

Ebrahimi [71] investigated the P  and   PC of an irreversible AC by considering the 

influences of average piston speed, equivalent ratio, and cylinder wall temperature. Zhao 

et al. [72] analyzed the impacts of average piston velocity on the P ,  , and dP  PC of an 

irreversible AC. Gonca [73] compared the optimal performances of an irreversible AC un-

der effective P  and effective dP  criterions. Ebrahimi [74] analyzed the impact of vol-

ume ratio of the removal process on the P  and   PC of an irreversible AC. Zhao and 

Xu [75] obtained the P ,  , and dP  PC of an irreversible AC by taking into account the 

influences of cycle parameters, geometric conditions, and operating variables, and com-

pared the results with those of the Otto and Miller cycles. Ahmadi et al. [76] analyzed and 

optimized the  , ecological performance coefficient and ecological function ( E ) PC of 

an irreversible AC. 

The research mentioned above have focused on single-objective optimization, but 

different optimization criteria may generate conflicts and lead to different results. Multi-

objective optimization (MOO) has better coordination capabilities. NSGA-II is an effective 

algorithm for solving MOO problems, and it is widely used in the optimization of differ-

ent cycles under different working conditions [77–95]. 

Ahmadi et al. [77,78] carried out MOO of solar powered engines [77] and solar disc-

Stirling engines [78] by considering the P ,  , and entropy generation rate as objective 

functions. Ahmadi et al. [79,80] also performed MOO of irreversible Stirling [79] and Er-
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icsson [80] refrigerator cycles by considering the cooling load and coefficient of perfor-

mance as optimization objectives. Ahmadi et al. [81] used dP ,   and exergy loss density 

as objective functions to perform MOO of fuel cell-Braysson combined heat engine. Joker 

et al. [82] used P , dP , E  density and exergy loss rate as objective functions to perform 

MOO of Brayton cycle hybrid system. Ghasemkhani et al. [83] performed MOO of en-

doreversible combined cycles under different heat exchangers. References [84–87] per-

formed MOO on the performance of thermal and economic investment cost of organic 

Rankine cycle. References [88,89] performed MOO on the dimensionless P  ( P ),  , di-

mensionless E  ( E ), and dimensionless dP  (
dP ) of endoreversible [88] and irreversible 

[89] closed modified Brayton cycles. References [90,91] carried out MOO of chemical re-

actor by considering the entropy generation and production rate as optimization objec-

tives. Sadeghi et al. [92] performed MOO of solar hydrogen production plant by taking 

into account exergy efficiency and exergy cost of product as optimization objectives. Ref-

erences [93,94] carried out MOO on the total pumping power and entropy generation rate 

in ocean thermal energy conversion system [93] and surrogate models [94]. Shi et al. 

[64,95] optimized the AC [64] and Diesel cycle [95] PC under the condition of constant 

WF’s SHs, and obtained four-objective optimization results based on NSGA-II. 

From the references mentioned above, there is no report about the dP  performance 

of an irreversible AC with nonlinear variable WF’s SHs with its temperature, and MOO 

for AC is also rarely presented. Based on the model established in references [62,70], this 

paper further analyzes the maximum dP  PC of an irreversible AC under the condition of 

nonlinear variable WF’s SHs with its temperature and compare the results with those ob-

tained under the condition of the maximum P . Based on NSGA-II, the single-, bi-, tri-, 

and quadru-objective optimization results will be obtained when the compression ratio is 

used as the optimization variable and the P ,  , E , and 
dP  are used as the objective 

functions. Three decision-making methods are selected to analyze the optimization results 

and the best choices under different conditions are obtained. Compared with reference 

[62], a further step made in this paper is to perform single-, bi-, tri-, and quadru-objective 

optimization of different optimization objective combinations for an irreversible AC when 

the WF’s SHs are nonlinear variable with its temperature. 

2. Cycle Model and Performance Parameters 

Figure 1 shows the T s  diagram (a) [62] and p v  diagram (b) of the irreversible 

AC. An irreversible AC contains an adiabatic compression process 1 2 , an isometric 

process 2 3 , an adiabatic expansion process 3 4 , and an isobaric process 4 1 . 

The processes 1 2s  and 3 4s  are reversible processes without considering the IIL. 

  
(a) (b) 

Figure 1. (a) T s  representation of Atkinson cycle [62]. (b) p v  representation of Atkinson cy-

cle. 
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In the early research [62], the WF’s SHs were assumed to be constants, but in the 

actual cycle, accompanying with the combustion reaction, the nature and composition of 

WF will change. For this reason, the variable SH model can be used to obtain more accu-
rate results. When the cycle-working-temperature range is 300 3500K K , the nonlinear 

variable SH model is defined as [85] 
10 2 6 1.5 5 4 0.5

5 1.5 6 2 8 3

7.2674 10 4.2166 10 1.23134 10 9.1698 10

        38.5787 4.3848 10 8.8827 10 6.4148 10

pC T T T T

T T T

   

  

       

      
 (1) 

According to the relationship between constant pressure SH and constant volume 

SH, one has 

v pC C R   (2) 

Then, the constant volume SH of the cycle is 
10 2 6 1.5 5 4 0.5

5 1.5 6 2 8 3

7.2674 10 4.2166 10 1.23134 10 9.1698 10

       30.2642 4.3848 10 8.8827 10 6.4148 10

v pC C R T T T T

T T T

   

  

         

      
 (3) 

where 8.3145J / (mol KR   ） is the WF’s gas constant. 

The heat flux rate supplied to the AC is 

3 3

2 2

10 2 6 1.5 5

4 0.5 5 1.5 6 2 8 3

10 3 6 2.5 6 2

  (7.2674 10 4.2166 10 1.23134 10 9.1698

  10 30.2642 4.3848 10 8.8827 10 6.4148 10

[2.422 10 1.6866 10 6.1567 10 6.1132
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T T

v
T T

U Q
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T T T T dT
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  



       

       

       

 

）

3

2

4 1.5

5 0.5 6 1 8 2

10

  30.2642 8.7696 10 8.8827 10 3.2074 10 ]
T

T

T

T T T T



  



    ＋

 (4) 

where m  is the molar flow rate of the WF. 

The heat flux rate transferred to the environment is 

1 4

4 1

4

1

10 2 6 1.5 5

4 0.5 5 1.5 6 2 8 3

10 3 6 2.5 6

  (7.2674 10 4.2166 10 1.23134 10 9.1698

10 38.5787 4.3848 10 8.8827 10 6.4148 10

[2.422 10 1.6866 10 3.0783 10

T T

out p p
T T

T

T

Q m C dT m C dT

m T T T

T T T T dT

m T T

  

   

  

  

      

       
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 



）

4

1

2 4 1.5

5 0.5 6 1 8 2

6.1132 10

 38.5787 8.7696 10 8.8827 10 3.2074 10 ]
T

T

T T

T T T T



  

 

     ＋

 
(5) 

For the two irreversible adiabatic processes 1 2  and 3 4 , the IIL is defined as 

the irreversible compression and expansion efficiencies [62,70] 

2 1 2 1( ) ( )c sT T T T   
 (6) 

4 3 4 3( ) ( )e sT T T T     (7) 

According to reference [70], the adiabatic process can be decomposed into numerous 

infinitely small processes. It is approximately considered that each infinitely small process 

has a constant adiabatic index. When the temperature of the WF changes dT  and the 

specific volume changes dV , one has 

1 1( ) ( )k kTV V dV T dT     (8) 

Changing Equation (8) one can obtain: 

ln( / ) ln( / )v i j i jC T T R V V   (9) 

where the temperature in 
vC  is the logarithmic average temperature between states i  

and j , and ( ) / ln( )i j i jT T T T T  . 

The cycle compression ratio   and maximum temperature ratio   are defined as 
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1 2/V V   (10) 

3 1/T T   (11) 

Therefore, for the two adiabatic processes 1 2s  and 3 4s  of an irreversible AC 

with WF’s SHs as nonlinear variable with its temperature, one has 

2 1ln( / ) lnv sC T T R   (12) 

4 3 1 4ln( / ) ln( / ) lnv s sC T T R T T R     (13) 

According to the reference [62], the HTL rate and the power loss due to FL are ex-

pressed as 

2 3 0( 2 )leakQ B T T T    (14) 

2 2 2/ ( / ) ( 1)      P dW dt dx dt v b      (15) 

where 2 2

2 12/ ( )b x t  , the heat transfer coefficient is expressed as B , the ambient tem-

perature is expressed as 0T , the work consumed by friction loss is expressed as W , the 

friction coefficient is expressed as  , the piston position at the minimum volume is ex-

pressed as 2x , and the power stroke time is expressed as 12t . 

The P  and   of the AC are, respectively 

10 3 3 3 3 6 2.5 2.5 2.5 2.5

1 3 2 4 1 3 2 4

6 2 2 2 2 4 1.5 1.5 1.5 1.5

1 3 2 4 1 3 2 4 3 2
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) 8.8827 10 (

) 3.2074 10 ( )] ( 1)

T T T T
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     
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       

 (16) 
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10 ( ) 30.2642(

T T T T
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
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 (17) 

According to the definition of dP  in references [55,62], one has 

max 4/ /dP P v P v   (18) 

The entropy production rates resulting from the HTL, FL, and IIL are defined as 

2 3 0 0 2 3( 2 )[1/ 2 / ( )]q B T T T T T T       (19) 

2

0 0/ ( 1) /P T b T      (20) 

   

2

2
2 2
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s
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4

4
4 4
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The entropy production rate produced by the exhaust stroke is 
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The total entropy production rate due to HTL, FL, IIL and exhaust process is 
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 (24) 

According to the definition of E  in references [96–98], one has 

0
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 



 

          

          
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 (25) 

According to the treatment method in the references [55,62], the P ,  , E , and 
dP  

are defined as 

max/P P P  (26) 

max/ ( )d d dP P P  (27) 

max/E E E  (28) 

When the compression ratio  , the cycle initial temperature 1T , and the maximum 

temperature ratio   are given, the numerical solutions of temperatures at each state 

point and cycle performances can be obtained. 
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3. Performance Optimization with the Maximum Power Density Criterion 

According to reference [62], the values of the cycle parameters can be determined: 

1 /m mol s , 0 300T K , 1 350T K , 2.2 /B W K , 4.28 6.28   , 20b W . 

Figures 2 and 3 show the effect of cycle maximum temperature ratio ( ) on cycle 

dimensionless power density versus compression ratio (
dP  ) and cycle dimensionless 

power density versus thermal efficiency (
dP  ), respectively. It can be noticed that there 

is an optimal compression ratio (
dP

 ) to make 
dP  reach the maximum. As the   

increases from 5.78 to 6.78, the 
dP

  increases from 8.3 to 9.0, and increases by about 

8.434%. The 
dP

  corresponding to the cycle maximum 
dP  increases from 0.4330 to 

0.4579, and increases by 5.75%. It shows that under the maximum dP  criterion, the 

increases of the 
dP

  and 
dP

  of the cycle are accompanied with the increase of the  . 

 

Figure 2. The curves of 
dP   about  . 

 

Figure 3. The curves of 
dP   about  . 

Figures 4 and 5 show the characteristic relationships of 
dP   and 

dP   with dif-

ferent loss combinations. In Figure 4, when only considering the FL, comparing curves 1  
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and 2 , the FL increases from 0  to 20W , the 
dP

  will decrease from 31.4 to 10.9 and 

decrease by 65.287%. When only considering the IIL, comparing curves 1  and 1 , the IIL 

increases (from 1 to 0.94), the 
dP

  will decrease from 31.4 to 18.5, and decrease by 

41.083%. When considering both FL and IIL, comparing curves 1  and 2 , the IIL in-

creases (from 1 to 0.94) the FL increases from 0  to 20W , the 
dP

  will decrease from 31.4 

to 9.1 and decrease by 71.019%. It can be seen that the decrease of the 
dP

  of the cycle is 

accompanied with the increases of the cycle losses. 

In Figure 5, when only considering the FL, comparing curves 1  and 2 , the FL 

increases from 0  to 20W , the 
dP

  will decrease from 0.7114 to 0.5611 and decrease by 

21.13%. When only considering the HTL, comparing curves 1  and 3 , the HTL increases 

from 0  to 2.2 /W K , the 
dP

  will decrease from 0.7114 to 0.6371 and decrease by 

10.44%. When only considering the IIL, comparing curves 1  and 1 , the IIL increases 

(from 1 to 0.94), the 
dP

  will decrease from 0.7114 to 0.5618 and decrease by 21.03%. When 

considering HTL and FL at the same time, comparing curves 1  and 4 , the HTL increases 

from 0  to 2.2 /W K  and the FL increases from 0  to 20W , the 
dP

  will decrease from 

0.7114 to 0.5213 and decrease by 23.72%. When considering HTL and IIL, comparing 

curves 1  and 3 , the HTL increases from 0  to 2.2 /W K  and the IIL increases (from 1 

to 0.94), the 
dP

  will decrease from 0.7114 to 0.5122 and decrease by 28.00%. When 

considering FL and IIL, comparing curves 1  and 2 , the FL increases from 0  to 20W

and the IIL increases (from 1 to 0.94), the 
dP

  will decrease from 0.7114 to 0.4791 and 

decrease by 32.65%. When considering FL, HTL, and IIL at the same time, comparing 
curves 1  and 4 , the FL increases from 0  to 20W , the HTL increases from 0  to 

2.2 /W K , and the IIL increases from 1 to 0.94, the 
dP

  will decrease from 0.7114 to 0.4459 

and decrease by 37.32%. It can be seen that the decrease of the 
dP

  of the cycle is 

accompanied with the increases of the cycle losses. 

 

Figure 4. The curves of 
dP   about c , e , and b . 
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Figure 5. The curves of 
dP   about c , e , B , and b . 

Figures 6–8 show the compared results of the cycle  , maximum specific volume 

ratio, and pressure ratio under the maximum P  and maximum dP  criterions when 

there are three losses. Comparing with the maximum P  criterion, the   and maximum 

pressure ratio under the maximum dP  criterion are higher, while the maximum specific 

volume ratio under the maximum dP  criterion is smaller. Therefore, the engine designed 

based on the maximum dP  criterion is smaller in size and more efficient. 

 

Figure 6. The curves of   versus  . 



Energies 2021, 14, 4175 10 of 24 
 

 

 

Figure 7. The curves of 4 1/v v  versus  . 

 

Figure 8. The curves of 3 1/p p  versus  . 

4. Multi-Objective Optimization 

In actual cycle, there is no point at which the P ,  , E , and dP  are optimized at 

the same time. Therefore, when solving the MOO problem, it is very important to take 

into account the trade-offs between the interests of different objectives, and obtain the 

Pareto optimal solution that simultaneously satisfies multiple different or even 

contradictory goals. The Pareto frontier is defined as the solution set of the optimization 

objectives. Figure 9 shows the algorithm diagram of NSGA-II [62]. When taking the com-

pression ratio as the optimization variable and taking the P ,  , E , and 
dP  as the op-

timization objectives, the single-, bi-, tri-, and quadru-objective optimization results are 

obtained. The optimal solution is obtained by comparing the magnitude of the deviation 

indexes obtained by LINMAP, TOPSIS, and Shannon entropy solutions. 
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Figure 9. Flow chart of NSGA-II [62]. 

The optimization problems are solved with different optimization objective combi-

nations, which forms different MOO problems. The one quadru-objective optimization 

problem is as follows: 

( )

( )
max

( )

( )

d

d

P

E

P



 













 (29) 

The four tri-objective optimization problems are as follows: 

( ) ( )( ) ( )

max ( ) ,max ( ) ,max ( ) ,max ( )

( ) ( ) ( ) ( )d d d

PP P

E E

E P P P

   

     

   

  
  

   
   
  

 (30) 

The six bi-objective optimization problems are as follows: 

( )( )( ) ( )( )( )
max ,max ,max ,max ,max ,max

( )( ) ( )( ) ( )( ) dd d

P EPP

PEP PE

   

   

     
     

      
 (31) 

Table 1 lists the results of the MOO based on LINMAP, TOPSIS, and Shannon en-

tropy solutions under different combinations of optimization objectives, and lists the re-

sults of single-objective optimization corresponding to the maximum P , maximum  , 

maximum E , and maximum 
dP , and the corresponding deviation index. Figures 10–20 

show the Pareto frontiers of different combinations of single-, bi-, tri-, and quadru-objec-

tive optimizations. The diamond represents the corresponding points of Shannon entropy 

solution, and the positive and negative triangles represent the corresponding points of 

LINMAP and TOPSIS solutions, respectively. 
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Table 1. Outcomes of decision-making methods for MOO and single-objective optimizations. 

Optimization Methods Decision Methods 

Optimization 

Variable 
Optimization Objectives 

Deviation 

Index 

  P    E
 

dP  D  

Quadru-objective 

optimization  

( P ,  , E  and dP ) 

LINMAP 7.5172 0.9865 0.4450 0.9997 0.9890 0.1250 

TOPSIS 7.5172 0.9865 0.4450 0.9997 0.9890 0.1250 

Shannon Entropy 9.1311 0.9564 0.4459 0.9345 0.9999 0.5266 

Tri-objective 

optimization ( P ,   

and E ) 

LINMAP 7.1952 0.9907 0.4438 0.9958 0.9839 0.1395 

TOPSIS 7.2939 0.9895 0.4442 0.9978 0.9856 0.1307 

Shannon Entropy 7.5582 0.9859 0.4451 0.9998 0.9896 0.1253 

Tri-objective 

optimization ( P ,   

and dP ) 

LINMAP 7.5054 0.9866 0.4449 0.9999 0.9888 0.1247 

TOPSIS 7.5485 0.9860 0.4451 0.9999 0.9894 0.1252 

Shannon Entropy 9.1297 0.9564 0.4459 0.9349 0.9999 0.5247 

Tri-objective 

optimization ( P , E  

and dP ) 

LINMAP 7.4763 0.9871 0.4449 0.9996 0.9883 0.1249 

TOPSIS 7.4763 0.9871 0.4449 0.9996 0.9883 0.1249 

Shannon Entropy 9.1314 0.9564 0.4459 0.9345 0.9999 0.5279 

Tri-objective 

optimization ( , E  

and dP ) 

LINMAP 7.8916 0.9808 0.4459 0.9966 0.9936 0.1457 

TOPSIS 7.8817 0.9809 0.4459 0.9968 0.9935 0.1450 

Shannon Entropy 9.1320 0.4459 0.9344 0.9345 0.9999 0.5269 

Bi-objective 

optimization ( P  and 

 ) 

LINMAP 7.0477 0.9924 0.4431 0.9920 0.9812 0.1609 

TOPSIS 7.0330 0.9926 0.4431 0.9915 0.9809 0.1639 

Shannon Entropy 8.4845 0.9700 0.4465 0.9764 0.9983 0.2074 

Bi-objective 

optimization ( P  and 

E ) 

LINMAP 7.1705 0.9910 0.4437 0.9952 0.9835 0.1423 

TOPSIS 7.1705 0.9910 0.4437 0.9952 0.9835 0.1423 

Shannon Entropy 7.5573 0.9859 0.4451 0.9998 0.9896 0.1252 

Bi-objective 

optimization ( P  and 

dP ) 

LINMAP 7.4628 0.9872 0.4448 0.9980 0.9882 0.1248 

TOPSIS 7.5003 0.9867 0.4450 0.9999 0.9887 0.1248 

Shannon Entropy 9.1277 0.9564 0.4459 0.9350 0.9999 0.5241 

Bi-objective 

optimization (  and 

E ) 

LINMAP 7.7359 0.9832 0.4456 0.9989 0.9919 0.1328 

TOPSIS 7.7259 0.9834 0.4456 0.9990 0.9918 0.1318 

Shannon Entropy 7.5597 0.9859 0.4451 0.9998 0.9896 0.1252 

Bi-objective 

optimization (  and 

dP ) 

LINMAP 8.8286 0.9630 0.4463 0.9566 0.9996 0.3968 

TOPSIS 8.8388 0.9628 0.4463 0.9559 0.9996 0.4011 

Shannon Entropy 9.1297 0.9564 0.4459 0.9349 0.9999 0.5247 

Bi-objective 

optimization ( E  and 

dP ) 

LINMAP 7.8949 0.9807 0.4460 0.9965 0.9936 0.1463 

TOPSIS 7.8857 0.9813 0.4459 0.9967 0.9935 0.1427 

Shannon Entropy 9.1334 0.9563 0.4459 0.9999 0.9999 0.5276 

Maximum of P  —— 5.8100 0.9999 0.4338 0.8928 0.9478 0.7326 

Maximum of   —— 8.5000 0.9697 0.4465 0.9756 0.9984 0.2752 

Maximum of E  —— 7.5900 0.9853 0.4453 0.9998 0.9902 0.1260 

Maximum of dP  —— 9.1300 0.9571 0.4459 0.9372 0.9999 0.5120 
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Positive ideal point —— 0.9999 0.4465 0.9998 0.9999 —— 

Negative ideal point —— 0.9564 0.4335 0.8895 0.9470 —— 

 

Figure 10. Quadru-objective optimization on 
dP E P   . 

 

Figure 11. Tri-objective optimization on P E  . 
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Figure 12. Tri-objective optimization on 
dP P  . 

 

Figure 13. Tri-objective optimization on 
dP E P  . 
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Figure 14. Tri-objective optimization on 
dE P   . 

 

Figure 15. Bi-objective optimization on P  . 
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Figure 16. Bi-objective optimization on P E . 

 

Figure 17. Bi-objective optimization on 
dP P . 
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Figure 18. Bi-objective optimization on E  . 

 

Figure 19. Bi-objective optimization on 
dP  . 
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Figure 20. Bi-objective optimization on 
dE P . 

The deviation indexes of maximum P , maximum  , maximum E , and maximum 

dP  are 0.7326, 0.2752, 0.1260, and 0.5120, respectively. For the quadrur-objective optimi-

zation, Figure 10 shows the Pareto frontier for 
dP E P   . It can be noticed that with 

the increase of  , the P  and 
dP  increase, and the E  first increases and then de-

creases. The deviation indexes (0.1250, 0.1250, 0.5266) obtained by the LINMAP, TOPSIS, 

and Shannon entropy solutions are smaller than those of single-objective optimization. It 

means that the results obtained by four-objective optimization are more perfect than sin-

gle-objective optimization. In addition, when taking P ,  , E , and 
dP  as the objective 

functions, the deviation indexes obtained by LINMAP and TOPSIS solutions are the same, 

and the optimization results are more desirable than those obtained by the Shannon en-

tropy solution. 

For tri-objective optimization, Figures 11–14 show the Pareto frontiers for P E 

, 
dP P  , 

dP E P  , and 
dE P   . It can be noticed that with the increases of  , the 

P  and 
dP  increase, while the E  first increases and then decreases. With the increase 

of 
dP , the P  decreases, the   increases, and the E  first increases and then decreases. 

The deviation indexes obtained by different decision-makings are smaller than those 

obtained by single-objective optimization, and which is the same as that obtained by 

quadru-objective optimization. When taking P ,  , and E  as the objective functions, 

the deviation index obtained by the Shannon entropy solution is smaller. When taking P

,  , and 
dP  as the objective functions, the deviation index obtained by the LINMAP so-

lution is smaller. When taking P , E , and 
dP  as the objective functions, the LINMAP 

and TOPSIS solutions get the same deviation indexes, and the optimization results are 

more desirable than those obtained by the Shannon entropy solution. When taking  , E

, and 
dP  as the objective functions, the deviation index obtained by the TOPSIS solution 

is smaller and the result is better. 
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For bi-objective optimization, Figures 15–20 show the Pareto frontiers for P  , 

P E , 
dP P , E  , 

dP  , and 
dE P . It can be noticed that the  , E , and 

dP  de-

crease with the increase of P , the E  and 
dP  decrease with the increase of  , and the 

dP  decreases with the increase of E . The indexes obtained by different decision-makings 

are smaller than those obtained by single-objective optimization, and the conclusion is the 

same as that obtained by tri- and quadru-objective optimization. When taking P  and   

or taking 
dP  and   as the objective functions, the deviation index obtained by the LIN-

MAP solution is smaller. When taking P  and E  or taking   and E  as the objective 

functions, the deviation index obtained by the Shannon entropy solution is smaller. When 

taking P  and 
dP  or taking E  and 

dP  as the objective functions, the deviation index 

obtained by the TOPSIS solution is smaller and the result is better. 

By comparing the deviation indexes obtained under various conditions, the results 

show that the solution obtained by MOO is more desirable, and the deviation indexes are 

smaller. In addition, when the LINMAP solution is optimized with P ,  , and 
dP  as the 

objective functions, the deviation index is 0.1247, the contradiction obtained is the small-

est, and the result is the best. In practical applications, the optimal plan can be selected 

from the Pareto frontier, and the design can be optimized according to the actual require-

ments of the decision-maker. 

5. Conclusions 

Through FTT analysis, this paper performs the performance analyses of the irreversi-

ble AC under the maximum dP  criterion when the WF’s SHs are nonlinear variable with 

its temperature. The results of the  , maximum specific volume ratio and pressure ratio 

obtained under the maximum dP  criterion are compared with those under the maximum 

P  criterion. Based on NSGA-II, when the compression ratio is the optimization variable 

and the P ,  , E , and 
dP  are the optimization objectives, the single-, bi-, tri-, and 

quadru-objective optimization results are obtained. The optimal solution is obtained by 

comparing the deviation indexes of LINMAP, TOPSIS, and Shannon entropy solutions. It 

can be noticed that: 

(1) There is an 
dP

  to maximize the 
dP . With the cycle maximum temperature ratio in-

creases, the 
dP

  and 
dP

  corresponding to the 
dP  will increase. With the increases 

of HTL, FL, IIL, the 
dP

  and 
dP

  corresponding to the cycle maximum 
dP  will de-

crease. 

(2) Under the maximum dP  criterion, the   will be higher and the size will be smaller. 

(3) Compared with single-objective optimization, MOO has less contradictions and con-

flicts. Comparing the results of single-, bi-, tri-, and quadru-objective optimization, 

when the LINMAP solution is optimized with P ,  , and 
dP  as the objective func-

tions, the contradiction is smaller and the result is more perfect. 
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Nomenclature 

B  Heat transfer loss coefficient ( W / K ) 

pC  Specific heat at constant pressure ( J/ (mol K) ) 

vC  Specific heat at constant volume ( J/ (mol K) ) 

E  Ecological function ( W ) 

k  Adiabatic index (-) 

m  Molar flow rate ( mol / s ) 

P  Power output ( W ) 

dP  Power density ( 3W / m ) 

Q  Heat transfer rate ( W ) 

R  Gas constant (-) 

 Temperature ( K ) 

Greek symbol  

  Compression ratio (-) 

  Thermal efficiency (-) 

c  Irreversible compression efficiency (-) 

e  Irreversible expansion efficiency (-) 

  Friction coefficient ( kg / s ) 

  Entropy generation rate ( W / K ) 

  Cycle maximum temperature ratio (-) 

Subscripts  

in  Input 

max  Maximum value 

out  Output 

dP  Max power density condition 

  Max thermal efficiency condition 

0  Environment 

1 4 , 2s , 4s  Cycle state points 

Superscripts  

 Dimensionless 

Abbreviations 

AC Atkinson cycle 

FL Friction loss 

T


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FTT Finite time thermodynamics 

HTL Heat transfer loss 

IIL Internal irreversibility loss 

MOO Multi-objective optimization 

PC Performance characteristics 

SH Specific heats 

WF Working fluid 
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