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Abstract: The transfer functions G(s) for different types of heat exchangers obtained from their par-
tial differential equations usually contain some irrational components which reflect quite well their
spatio-temporal dynamic properties. However, such a relatively complex mathematical representa-
tion is often not suitable for various practical applications, and some kind of approximation of the
original model would be more preferable. In this paper we discuss approximate rational transfer func-
tions Ĝ(s) for a typical thick-walled double-pipe heat exchanger operating in the counter-flow mode.
Using the semi-analytical method of lines, we transform the original partial differential equations
into a set of ordinary differential equations representing N spatial sections of the exchanger, where
each nth section can be described by a simple rational transfer function matrix Gn(s), n = 1, 2, . . . , N.
Their proper interconnection results in the overall approximation model expressed by a rational
transfer function matrix Ĝ(s) of high order. As compared to the previously analyzed approximation
model for the double-pipe parallel-flow heat exchanger which took the form of a simple, cascade
interconnection of the sections, here we obtain a different connection structure which requires the
use of the so-called linear fractional transformation with the Redheffer star product. Based on the
resulting rational transfer function matrix Ĝ(s), the frequency and the steady-state responses of
the approximate model are compared here with those obtained from the original irrational transfer
function model G(s). The presented results show: (a) the advantage of the counter-flow regime
over the parallel-flow one; (b) better approximation quality for the transfer function channels with
dominating heat conduction effects, as compared to the channels characterized by the transport delay
associated with the heat convection.

Keywords: double-pipe heat exchanger; counter flow; transfer function; frequency response; steady
state; approximation; linear fractional transformation; Redheffer star product

1. Introduction

Much attention has been paid so far in the literature to the mathematical modeling of
different types of heat exchangers, and two typical approaches are usually used. The first,
relatively simple one consists in the representation of the heat exchanger in the form of
a lumped parameter system (LPS), usually expressed by the ordinary differential equations
(ODEs) which can be used to describe dynamically changing phenomena, such as flow,
pressure or temperature variations in time, without taking into account their variability
in space. In the second case, when the spatial dependence cannot be ignored or averaged
without considerable loss of the quality of the model, the heat exchanger needs to be
considered as a distributed parameter system (DPS) which is usually described by partial
differential equations (PDEs). Both ODE and PDE models are here strictly based on the
physical laws of heat transfer, and thus potentially very accurate. However, they have
some drawbacks which makes them not very convenient for practical applications such as,
e.g., control system design. The main reason for this is the fact that they do not indicate
directly the relationships between the input (controlled) and the output (manipulated)
variables of the dynamical system, which is very important from the control point of view.
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The above-mentioned feature is, in turn, typical of the system representation in the
form of a transfer function G(s), which is commonly used, e.g., in signal processing and con-
trol systems engineering [1,2]. Transfer functions for the heat exchange processes are often
given in the literature by very simple models, such as first or second order with or with-
out time delay [3–6]. Some other authors consider more sophisticated, irrational transfer
function models resulting from the PDEs describing the heat exchange phenomena [7–14].
In the current paper, we discuss the transfer function models for a typical double-pipe
counter-flow heat exchanger, and the approach taken here can be seen as intermediate
between both above-mentioned methods. As in our previous paper [15] dealing with a
similar double-pipe heat exchanger but working in the parallel-flow configuration, we
start here with its hyperbolic PDE representation, which is typical of many engineering
systems such as heat exchangers, tubular reactors, irrigation canals and gas absorbers [16].
This infinite-dimensional PDE representation results in the irrational transfer function
matrix G(s), which will serve as a reference input–output model of the heat exchanger.
Next, we use the semi-analytical method of lines (MOL) in order to transform the PDE
model into its high-dimensional ODE representation, whose single nth spatial section can
be represented by a simple rational transfer function matrix Gn(s). As will be shown for
the uniform spatial grid, we obtain this transfer function matrix in the same form as it
was for the parallel-flow mode. However, different flow regimes will result in different
section interconnections.

As shown in [15], for the parallel-flow mode the overall approximation model can be
obtained simply by the cascade interconnection of N individual sections, which results
in the high-order rational transfer function matrix Ĝ(s) given as the algebraic product of
the transfer function matrices Gn(s) for individual sections, n = 1, 2, . . . , N. In turn, for
the counter-flow configuration considered here we obtain some different section inter-
connection structure which requires the use of a more general concept of linear fractional
transformation (LFT) which plays an important role in control theory [17]. More precisely,
in order to obtain a similar compact formula describing the resultant transfer function
matrix Ĝ(s) for the counter-flow regime, we here use the Redheffer star product (RSP) [18,19],
which provides a more general framework to study various interconnections of linear
systems. The procedure of combining LFT with RSP allows them to be applied, e.g., to
the scattering theory of general differential equations, including the scattering matrix ap-
proach in quantum mechanics and quantum field theory [20,21], as well as the scattering of
acoustic and electromagnetic waves in media [22–24]. As will be shown here, by replacing
the algebraic product of the section transfer function matrices—which was used for the
parallel-flow configuration—with the RSP, we obtain the approximate, high-order rational
transfer function model for the heat exchanger, which is now valid for the counter-flow
configuration. Such a model is more accurate than the simple transfer functions mentioned
above, and it is able to approximate the dominant dynamic behavior of the original system.

2. A Double-Pipe Heat Exchanger as Distributed Parameter System

Double-pipe heat exchangers are one of the most simple and inexpensive, and are
therefore widely used in a number of process applications, such as, e.g., food, chemical, gas
and oil industries [25,26]. Depending on the direction of the flows, two different operating
modes are possible here. The parallel-flow (or co-current) mode is when the heating and
the heated fluids flow in the same direction, and the counter-flow (or counter-current)
one is when they flow in opposite directions. The first configuration was analyzed in our
article [15], and here we focus on the second case illustrated in the schematic of Figure 1. As
will be shown later, the counter-flow mode considered here is more efficient and, therefore,
used more often.
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Figure 1. Double-pipe counter-flow heat exchanger: vs, vt—shell-side and tube-side fluid velocities;
ϑs, ϑt—shell-side and tube-side fluid temperatures; ϑw—wall temperature; ϑsi, ϑti— shell-side and
tube-side fluid inlet temperatures; ϑso, ϑto—shell-side and tube-side fluid outlet temperatures; dti, dto—
inner and outer tube diameters; dsi, dso—inner and outer shell diameters; L—heat exchanger length.

2.1. Governing PDEs

The mathematical model for the considered heat exchanger, like any real system
model, should be based on some trade-off between its simplicity and accuracy. Since we
are interested in a model that would be useful from the control theory point of view, we
derive it based on some typical assumptions (see Section 2.1. in [15]). Taking into account
those simplifications, the dynamical model of the considered double-pipe heat exchanger
is governed by the following system of PDEs [7,8,14,27–29]:

∂ϑt(l, t)
∂t

+ vt
∂ϑt(l, t)

∂l
= k1(ϑw(l, t) − ϑt(l, t)), (1)

∂ϑw(l, t)
∂t

= k2(ϑt(l, t) − ϑw(l, t)) + k3(ϑs(l, t) − ϑw(l, t)), (2)

∂ϑs(l, t)
∂t

+ vs
∂ϑs(l, t)

∂l
= k4(ϑw(l, t) − ϑs(l, t)), (3)

with t ∈ [ 0,+∞) denoting the time, l ∈ [ 0, L]—the space variable, k1, k2, k3, k4—the constant
parameters depending on the dimensions and the physical parameters of the exchanger:

k1=
4ht

ρtctdti
, k2=

4dtiht

ρwcw(d2
to − d2

ti)
, k3=

4dtohs

ρwcw(d2
to − d2

ti)
, k4=

4dtohs

ρscs(d2
si − d2

to)
, (4)

where d is the diameter, ρ—the density, c—the specific heat, h—the heat transfer coefficient
(subscripts are the same as for the temperatures in Figure 1).

The initial conditions which are usually required to obtain a unique solution of the
PDEs (1)–(3) are assumed as follows:

ϑt(l, 0) = ϑt0(l), ϑw(l, 0) = ϑw0(l), ϑs(l, 0) = ϑs0(l), (5)

where ϑt0(l), ϑw0(l), ϑs0(l) ∶ [0, L] → R are the functions describing the initial tempera-
ture profiles.

Equations (1)–(5) are to this point consistent with those presented in [15], where
the double-pipe heat exchanger working in the parallel-flow mode was considered. The
most important difference which, as will be shown later, has a significant impact on the
dynamical properties and, consequently, on the efficiency of the exchanger, concerns the
form of the boundary conditions. Now we are considering the counter-flow configuration
with vt > 0 and vs < 0 (see Figure 1), for which these conditions have the following form:
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ϑt(0, t) = ϑti(t), ϑs(L, t) = ϑsi(t), (6)

with ϑti(t) and ϑsi(l) representing the inlet temperatures of the tube- and the shell-side
fluids, which can be therefore seen as the input signals to the heat exchanger system (see
Figure 2). Their variations in time influence the temperature distribution of both fluids
along the exchanger, and, consequently, their outflow temperatures,

ϑto(t) = ϑt(L, t), ϑso(t) = ϑs(0, t). (7)

which can be seen as the output signals of the heat exchanger system.

Figure 2. Spatially distributed transfer function model for the double-pipe counter-flow heat exchanger.

2.2. Spatially Distributed Irrational Transfer Functions

Assuming the boundary input signals given by Equations (6) as well as the boundary
output signals in Equations (7), the spatially distributed transfer functions for the considered
heat exchanger can be written as the following 2 × 2 matrix

G(l, s) = [
gtt(l, s) gts(l, s)
gst(l, s) gss(l, s)

], (8)

with the elements defined as

gtt(l, s) = ϑt(l, s)
ϑti(s)

=
Lt{ϑt(l, t)}
Lt{ϑt(0, t)}

, gts(l, s) = ϑt(l, s)
ϑsi(s)

=
Lt{ϑt(l, t)}
Lt{ϑs(L, t)}

,

gst(l, s) = ϑs(l, s)
ϑti(s)

=
Lt{ϑs(l, t)}
Lt{ϑt(0, t)}

, gss(l, s) = ϑs(l, s)
ϑsi(s)

=
Lt{ϑs(l, t)}
Lt{ϑs(L, t)}

,

(9)

for zero initial conditions in Equations (5). We assume here that the parameter s in the expres-
sion ϑ(l, s) indicates the Laplace transform of ϑ(l, t) in the variable t, i.e., ϑ(l, s) = Lt{ϑ(l, t)}.

The block diagram for the considered spatially distributed transfer function model is
shown in Figure 2. The temperature distribution of both fluids along the exchanger can be
therefore expressed by the following Laplace-domain equations:

ϑt(l, s) = gtt(l, s)ϑti(s) + gts(l, s)ϑsi(s), (10)

ϑs(l, s) = gst(l, s)ϑti(s) + gss(l, s)ϑsi(s), (11)

where the individual transfer functions defined by Equations (9) take the following form
(for their derivation see Section 3.2 in [14]):
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gtt(l, s) =
eφ2(s)Leφ1(s)l(φ1(s) − pss(s)) − eφ1(s)Leφ2(s)l(φ2(s) − pss(s))

eφ2(s)L(φ1(s) − pss(s)) − eφ1(s)L(φ2(s) − pss(s))
, (12)

gts(l, s) =
pts(s)(eφ2(s)l − eφ1(s)l)

eφ2(s)L(φ2(s) − ptt(s)) − eφ1(s)L(φ1(s) − ptt(s))
, (13)

gst(l, s) =
pst(eφ2(s)Leφ1(s)l − eφ1(s)Leφ2(s)l)

eφ2(s)L(φ1(s) − pss(s)) − eφ1(s)L(φ2(s) − pss(s))
, (14)

gss(l, s) =
eφ2(s)l(φ2(s) − ptt(s)) − eφ1(s)l(φ1(s) − ptt(s))
eφ2(s)L(φ2(s) − ptt(s)) − eφ1(s)L(φ1(s) − ptt(s))

, (15)

where

ptt(s) = − s2 + (k1 + k2 + k3)s + k1k3

vt(s + k2 + k3)
, pts(s) = k1k3

vt(s + k2 + k3)
,

pst(s) = k2k4

vs(s + k2 + k3)
, pss(s) = − s2 + (k2 + k3 + k4)s + k2k4

vs(s + k2 + k3)
,

(16)

and
φ1,2(s) = 1

2
(ptt(s) + pss(s)) ± 1

2

√
(ptt(s) − pss(s))2 + 4pts(s)pst(s). (17)

As in the case of the parallel-flow configuration considered in [15], we obtain here
irrational expressions containing exponential functions eφ1(s) and eφ2(s) resulting from
the convective heat transport, as well as the square root function in Equation (17) which
is typical of heat conduction phenomena. However, due to the different boundary con-
ditions representing the input signals in Equations (6), the above expressions for the
transfer functions are different from those obtained for the parallel-flow configuration—see
Equations (12)–(15) in [15].

Assuming l = L in gtt(l, s) and gts(l, s), as well as l = 0 in gst(l, s) and gss(l, s), we
can obtain the boundary transfer functions which describe the dependence of the Laplace-
transformed outflow temperatures ϑto and ϑso of both fluids on their inlet temperatures, ϑti
and ϑsi. As in Equation (8), these transfer functions can be grouped into the following matrix

G(s) = [
gtt(L, s) gts(L, s)
gst(0, s) gss(0, s)

], (18)

which will be later referred to as the boundary transfer function matrix of the exchanger.
Zero heat conduction. Assuming no heat conduction through the wall of the exchanger

(i.e., ht = hs = 0 in Equations (4)), we obtain k1 = k2 = k3 = k4 = 0 in Equations (1)–(3) and
pts(s) = pst(s) = 0 in Equations (16), and, consequently,

φ1(s) = ptt(s) = − s
vt

, φ2(s) = pss(s) = − s
vs

(19)

in Equation (17). For this case the spatially distributed transfer function matrix G(l, s) in (8)
takes the following simple form:

G(l, s) = [e−sτt(l) 0
0 e−sτs(l)], with τt(l) = l

vt
and τs(l) = l − L

vs
(20)

being the time delays of the tube- and shell-side fluids, respectively, and the boundary
transfer function matrix (18) is given by
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G(s) =
⎡⎢⎢⎢⎢⎣

e−s L
vt 0

0 es L
vs

⎤⎥⎥⎥⎥⎦
. (21)

The resulting system now consists of two independent pure time-delay subsystems
with the time delays τt(l) and τs(l), representing two fluids “traveling” along the exchanger
in opposite directions with unchanged inlet temperature profiles, ϑti(t) and ϑsi(t).

2.3. Frequency Responses

In the expressions for the transfer functions introduced in Section 2.2, s is a complex
variable which can be written as s = σ + iω where σ and ω are real numbers and i =

√
−1 is

the imaginary unit. By setting σ to zero, or, equivalently, by making the substitution s = iω
where ω ≥ 0 can be interpreted as the angular frequency, we transform these expressions
from the Laplace domain to the Fourier domain. Consequently, such a substitution allows
us to evaluate the frequency response of the system which can be then written in the
following form:

g(l, iω) = ∣g(l, iω)∣eiϕ(l,ω), (22)

where ∣g(l, iω)∣ is its modulus representing the system gain k(l, ω) for the sinusoidal input
signal with frequency ω,

∣g(l, iω)∣ =
√

Re2{g(l, iω)} + Im2{g(l, iω)} = k(l, ω), (23)

and ϕ(l, ω) is its argument which represents the phase shift between output and input
sinusoidal signals,

ϕ(l, ω) = arg [g(l, iω)] = arctan
Im{g(l, iω)}
Re{g(l, iω)}

. (24)

As can be easily seen, the modulus ∣g∣ and the phase shift ϕ depend here not only on
the angular frequency ω as in case of LPS, but also on the space variable l. Therefore, the
plots of the frequency responses can be presented here in the 3D form. Another option is to
show these responses as classical 2D plots evaluated for a fixed value of the space variable
l, e.g., for the system outputs representing in our case the exchanger outflow points—see
Equations (7). Two types of such frequency response graphs are commonly used in control
theory applications: Nyquist and Bode plots, and some examples of them obtained for the
considered counter-flow heat exchanger will be shown later in Section 4.

2.4. Steady-State Responses

The steady-state temperature profiles can be calculated by assuming the time deriva-
tives in Equations (1)–(3) equal to zero, and solving the resulting boundary value problem
with the boundary conditions (6) given by the constant inlet temperatures of both fluids,
ϑ̄ti and ϑ̄si (see [14,15]).

Another alternative way of determining the steady-state responses consists of consid-
ering them as a special case of the system frequency responses evaluated at ω = 0. Conse-
quently, they can be obtained by setting s = 0 in the transfer functions expressions (12)–(17).
Based on this idea, the steady-state temperature profiles ϑ̄t(l) and ϑ̄s(l) can be determined
from Equations (10) and (11) by assuming s = 0 and constant inlet temperatures ϑ̄ti and ϑ̄si.
As a result we obtain the following expressions:

ϑ̄t(l) = ḡtt(l)ϑ̄ti + ḡts(l)ϑ̄si, (25)

ϑ̄s(l) = ḡst(l)ϑ̄ti + ḡss(l)ϑ̄si, (26)
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with

ḡtt(l)=gtt(l, 0)=
eφ̄2L pss + eφ̄2l(φ̄2 − p̄ss)

p̄ss(eφ̄2L − 1) + φ̄2
, ḡts(l)=gts(l, 0)=

p̄ts(eφ̄2l − 1)

eφ̄2L(φ̄2 − p̄tt) + p̄tt
,

ḡst(l)=gst(l, 0)=
p̄st(eφ̄2l − eφ̄2L)

p̄ss(eφ̄2L − 1) + φ̄2
, ḡss(l)=gss(l, 0)=

eφ̄2l(φ̄2 − p̄tt) + p̄tt

eφ̄2L(φ̄2 − p̄tt) + p̄tt
,

(27)

being the steady-state spatially distributed transfer functions (12)–(15), with p̄tt = ptt(0),
p̄ts = pts(0), p̄st = pst(0), p̄ss = pss(0) and φ̄2 = φ2(0) given by (16) and (17).

The steady-state outflow temperatures of both fluids can be easily determined by
inserting l = L in Equation (25) and l = 0 in Equation (26). Finally, the steady-state
temperature profile of the wall can be then calculated from Equation (2) as

ϑ̄w(l) = k2ϑ̄t(l) + k3ϑ̄s(l)
k2 + k3

. (28)

Some examples of the steady-state temperature profiles inside the double-pipe counter-
flow heat exchanger will be shown later in Section 4.

3. Approximate Model of the Heat Exchanger

In the current section we deal with the finite-dimensional approximation of the
infinite-dimensional model of the double-pipe counter-flow heat exchanger introduced in
Section 2. For this purpose, we use the semi-analytical method of lines in order to reduce
PDEs (1)–(3) to a set of ODEs. Consequently, the irrational transfer functions G(s) pre-
sented in Section 2.2 are replaced here by their rational approximations Ĝ(s). Using the
rational transfer function model, the approximate frequency responses and the approximate
steady-state temperature profiles can easily be derived, as shown in Sections 2.3 and 2.4,
and compared with the “original” ones, i.e., with those resulting from G(s).

3.1. MOL Approximation

The principle of the method of lines (MOL) is to replace the spatial derivatives in a PDE
by their finite difference approximations. As a consequence, only the time derivatives
remain in the resulting expressions which then become ODEs [15,30–32]. In order to
obtain the MOL-based approximation model of the double-pipe heat exchanger under
consideration, we here use the finite difference method. For the considered counter-
flow mode with vt > 0 and vs < 0, we will use the backward difference approximation for
Equation (1) and the forward difference method for Equation (3). This means that we will
replace the spatial derivatives with their algebraic approximations (see [33]):

∂ϑt(l, t)
∂l

≈
ϑt,n(t) − ϑt,n−1(t)

∆ln
,

∂ϑs(l, t)
∂l

≈
ϑs,n+1(t) − ϑs,n(t)

∆ln+1
, (29)

where
ϑt,n(t) = ϑt(ln, t) and ϑs,n(t) = ϑs(ln, t) (30)

are the tube- and shell-side temperatures, respectively, evaluated at the spatial discretiza-
tion nodes ln, n = 1, 2, ..., N. Moreover, we assume here that l0 = 0 and lN+1 = L represent
the boundary nodes, and

∆ln = ln − ln−1, ∆ln+1 = ln+1 − ln, (31)

are the spatial grid sizes. In general, ∆ln can have different values for different n, which
means that the nodes can be unevenly distributed over the spatial range [0, L] .



Energies 2021, 14, 4174 8 of 17

As a result, we obtain the approximation model in the form of a system of 3N
ODEs. Single nth spatial section of the exchanger is described here by the following
three state equations:

dϑt,n(t)
dt

= −(k1 +
vt

∆ln
)ϑt,n(t) + k1ϑw,n(t) + vt

∆ln
ϑt,n−1(t), (32)

dϑw,n(t)
dt

= k2ϑt,n(t) − (k2 + k3)ϑw,n(t) + k3ϑs,n(t), (33)

dϑs,n(t)
dt

= k4ϑw,n(t) − (k4 −
vs

∆ln+1
)ϑs,n(t) − vs

∆ln+1
ϑs,n+1(t), (34)

for n = 1, 2, ..., N, where ϑt,0(t) in (32) and ϑs,N+1(t) in (33) represent the boundary inputs
in (6):

ϑt,0(t) = ϑti(t), ϑs,N+1(t) = ϑsi(t). (35)

The initial conditions (5) take here the following discrete form:

ϑt,n(0) = ϑt0(ln), ϑw,n(0) = ϑw0(ln), ϑs,n(0) = ϑs0(ln), (36)

representing the initial temperatures defined for N spatial nodes, l1, l2, . . ., lN .
Therefore, each nth spatial section of the considered ODE model can be seen as

a third-order dynamical subsystem with the following properties:

• A three-element vector ϑt,n(t) of the nth section state variables,

ϑn(t) = [ϑt,n(t) ϑw,n(t) ϑs,n(t)]T
, (37)

representing the tube-side, wall and shell-side temperatures, respectively, evaluated
at l = ln;

• A two-element vector ϑo,n(t) of the nth section output signals,

ϑo,n(t) = [ϑto,n(t) ϑso,n(t)]T = [ϑt,n(t) ϑs,n(t)]T
, (38)

made of first and third components of the section state vector (37), where ϑto,N(t) and
ϑso,1(t) can be seen as the approximations of the boundary outputs (7) representing
outflow temperatures,

ϑto,N(t) = ϑ̂to(t), ϑso,1(t) = ϑ̂so(t); (39)

• A two-element vector ϑi,n(t) of the nth section input signals, which for n = 2, 3, ..., N − 1
are given by the output signals of the adjacent sections,

ϑi,n(t) = [ϑti,n(t) ϑsi,n(t)]T = [ϑto,n−1(t) ϑso,n+1(t)]T
, (40)

and for n = 1 and n = N also by the boundary conditions (6) representing the in-
flow temperatures,

ϑi,1(t) = [ϑti,1(t) ϑsi,1(t)]T = [ϑti(t) ϑso,2(t)]T
, (41)

ϑi,N(t) = [ϑti,N(t) ϑsi,N(t)]T = [ϑto,N−1(t) ϑsi(t)]T
. (42)

The state Equations (32)–(34) together with their initial conditions (36) can be seen as
an approximate representation of the heat exchanger dynamics. Therefore, the state and
output equations for the single nth section can be compactly written, using the state (37),
output (38) and input (40)–(42) vectors in the following linear state-space form,
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dϑn(t)
dt

= Anϑn(t) + Bnϑi,n(t), ϑn(0) = ϑn0, (43)

ϑo,n(t) = Cnϑn(t), (44)

with

An =

⎡⎢⎢⎢⎢⎢⎢⎣

−(k1 + vt
∆ln

) k1 0
k2 −(k2 + k3) k3

0 k4 −(k4 − vs
∆ln+1

)

⎤⎥⎥⎥⎥⎥⎥⎦

, (45)

Bn =
⎡⎢⎢⎢⎢⎢⎣

vt
∆ln

0
0 0
0 − vs

∆ln+1

⎤⎥⎥⎥⎥⎥⎦
, Cn = [1 0 0

0 0 1
], (46)

being the state, input and output matrices for the nth section, respectively.
Comparing the section matrices in Equations (45) and (46) with those obtained for the

parallel-flow configuration (see Equation (41) in [15]), we can state that the only differences
are: the additional minus sign in front of vs (which itself is negative) and ∆ln+1 instead of
∆ln in the denominator below vs in An(3, 3) and Bn(3, 2). Therefore, assuming uniform grid
size (i.e., ∆ln+1 = ∆ln for n = 1, 2, ..., N), we obtain the same state-space representation of the
single section as for the parallel-flow mode. Consequently, the considerations regarding
the stability of the single section as a dynamical subsystem remain also the same. Since
all physical parameters in Equations (1)–(4) as well as ∆ln and ∆ln+1 in Equations (31)
are positive, the state matrix An in (45) is diagonally dominant with negative diagonal
elements which ensure the stability of the single section [15].

The main difference between the approximation models for the parallel- and the
counter-flow configurations is in the way the sections are interconnected with each other.
As will be shown later, such different interconnections result in a quite different systems,
with distinct dynamical as well as steady-state properties.

3.2. Approximate Rational Transfer Functions
3.2.1. Single Section

Assuming that the transfer functions for the single section are given by the following
2 × 2 matrix

Gn(s) = [
gtt,n(s) gts,n(s)
gst,n(s) gss,n(s)

], (47)

with

gtt,n(s) = ϑto,n(s)
ϑti,n(s)

=
Lt{ϑto,n(t)}
Lt{ϑti,n(t)}

, gts,n(s) = ϑto,n(s)
ϑsi,n(s)

=
Lt{ϑto,n(t)}
Lt{ϑsi,n(t)}

,

gst,n(s) = ϑso,n(s)
ϑti,n(s)

=
Lt{ϑso,n(t)}
Lt{ϑti,n(t)}

, gss,n(s) = ϑso,n(s)
ϑsi,n(s)

=
Lt{ϑso,n(t)}
Lt{ϑsi,n(t)}

,

(48)

and zero initial conditions, we can obtain the transfer function matrix Gn(s) in (47) from
the following well-known transformation [27],

Gn(s) = Cn(sI − An)−1Bn, (49)

which results in the following rational expressions for the transfer functions in (48):

gtt,n(s) =
btt,2,ns2 + btt,1,ns + btt,0,n

s3 + a2,ns2 + a1,ns + a0,n
, gts,n(s) =

bts,0,n

s3 + a2,ns2 + a1,ns + a0,n

gst,n(s) =
bst,0,n

s3 + a2,ns2 + a1,ns + a0,n
, gss,n(s) =

bss,2,ns2 + bss,1,ns + bss,0,n

s3 + a2,ns2 + a1,ns + a0,n
,

(50)
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with the coefficients of the numerator (b) and the denominator (a) depending on the system
parameters in Equations (1)–(4) and the spatial grid sizes ∆ln and ∆ln+1 in (31).

Assuming a uniform spatial grid with ∆ln+1 = ∆ln for n = 1, 2, ..., N, the transfer
functions given by Equations (50) are the same as those obtained for the parallel-flow mode.
As can be easily seen, the denominator polynomial is common for all transfer functions
in (50) and represents the characteristic equation of the section state matrix An in (45).
Therefore, the stability analysis performed in Section 3.1 in terms of eigenvalues of An
remains valid for the poles of Gn(s) [15].

3.2.2. N-Section Approximation Model

The approximation model for the parallel-flow heat exchanger was obtained in [15]
by the cascade interconnection of N individual sections, each described by the transfer
function matrix Gn(s), n = 1, 2, . . . , N. This interconnection schema resulted in the approxi-
mate distributed transfer function expressed simply as the matrix product of the transfer
functions of individual sections,

Ĝ(ln, s) = Gn(s)Gn−1(s) . . . G1(s) (51)

for any ln where n = 1, 2, . . . , N, and

Ĝ(s) = Ĝ(L, s) = GN(s)GN−1(s) . . . G1(s) (52)

for the special case of the approximate boundary transfer function matrix.
However, for the considered counter-flow configuration, the individual sections of

the approximation model are interconnected in a different way, as shown in Figure 3
(compare to Figure 4 in [15]). Therefore, it would be advisable to find a certain matrix
operator analogous to the classical matrix product in Equations (51) and (52), which would
correspond to the connection structure presented in Figure 3.

Figure 3. Block diagram of the approximate transfer function model for the double-pipe counter-flow heat exchanger.

After an extensive literature review, we found that the appropriate mathematical
representation of the considered approximation model can be obtained using a general
concept of linear fractional transformation (LFT) which plays an important role in control
theory [17]. More precisely, it can be shown that the interconnections of Figure 3 can be
expressed using the Redheffer star product (RSP) which is also used, e.g., in quantum
mechanics and quantum field theory [20,21], as well as in the scattering of acoustic and
electromagnetic waves in media [22–24].
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RSP of two transfer function matrices. We consider two 2× 2 transfer function matrices,

GA(s) = [
GA,11(s) GA,12(s)
GA,21(s) GA,22(s)

], GB(s) = [
GB,11(s) GB,12(s)
GB,21(s) GB,22(s)

], (53)

whose elements can be scalar transfer functions or transfer function matrices of appro-
priate dimensions. The RSP of these two matrices is given by the following 2× 2 matrix
(see [17,19,23]):

G☆

AB(s) = GA(s)☆GB(s) =
⎡⎢⎢⎢⎢⎣

G☆

AB,11(s) G☆

AB,12(s)
G☆

AB,21(s) G☆

AB,22(s)

⎤⎥⎥⎥⎥⎦
(54)

where

G☆

AB,11(s) = GB,11(s)(I −GA,12(s)GB,21(s))−1
GA,11(s), (55)

G☆

AB,12(s) = GB,11(s)(I −GA,12(s)GB,21(s))−1
GA,12(s)GB,22(s) +GB,12(s), (56)

G☆

AB,21(s) = GA,21(s) +GA,22(s)(I −GB,21(s)GA,12(s))−1
GB,21(s)GA,11(s), (57)

G☆

AB,22(s) = GA,22(s)(I −GB,21(s)GA,12(s))−1
GB,22(s), (58)

and I is the identity matrix of appropriate dimension.
Based on the above definition, it can be shown that the approximate boundary transfer

function matrix Ĝ(s) which is defined as follows:

Ĝ(s) = [
ĝtt(lN , s) ĝts(lN , s)
ĝst(l1, s) ĝss(l1, s)

], (59)

with

ĝtt(lN , s) =
ϑto,N(s)
ϑti,1(s)

=
Lt{ϑto,N(t)}
Lt{ϑti,1(t)}

, ĝts(lN , s) =
ϑto,N(s)
ϑsi,N(s)

=
Lt{ϑto,N(t)}
Lt{ϑsi,N(t)}

,

ĝst(l1, s) =
ϑso,1(s)
ϑti,1(s)

=
Lt{ϑso,1(t)}
Lt{ϑti,1(t)}

, ĝss(l1, s) =
ϑso,1(s)
ϑsi,N(s)

=
Lt{ϑso,1(t)}
Lt{ϑsi,N(t)}

,

(60)

for zero initial conditions, can be calculated as the following RSP:

Ĝ(s) = G☆

1..N(s) = G1(s)☆G2(s)☆ . . .☆GN(s), (61)

where G1(s), G2(s), . . . , GN(s) are the transfer function matrices of individual spatial sec-
tions given by Equations (47)–(50). It is also possible to use RSP for calculating the approxi-
mation Ĝ(ln, s) of the spatially distributed transfer function matrix G(l, s) introduced in
Section 2.2. However, the appropriate expressions are more complicated here than for the
case of the boundary transfer function matrix and are omitted here for the sake of space.

Another question which needs to be addressed here is the stability of the resulting
dynamical system of Figure 3. As shown in [15], for the parallel-flow mode we obtained
the approximation model in the form of a cascaded structure, which is stable if all its
sections represent stable dynamical subsystems. In the present case, we are additionally
dealing with some internal positive feedbacks which are clearly visible in the diagram of
Figure 3 as well as as the term (I −GA,12(s)GB,21(s))−1 in Equations (55) and (56), and as
(I −GB,21(s)GA,12(s))−1 in Equations (57) and (58). Therefore, an additional condition must
be met in order to ensure the stability of this feedback-based structure, and this condition
can be expressed, e.g., by the small gain theorem [34,35]. According to this theorem, the
product of the gains of the subsystems forming the feedback loop should be strictly less
than one over all frequencies, and this condition is usually met in our case. Moreover, as
shown in Chapter 3 of [36], different interconnections of stable passive dynamical systems
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again result in a stable passive system. This result remains valid also for the special case
when these interconnections are given by the RSP (see Proposition 17 in [37]).

The frequency and the steady-state responses for the considered approximation model
can be obtained in a similar manner to that presented in Sections 2.3 and 2.4, respectively.
Having determined the rational transfer function matrix Ĝ(ln, s), the approximate modulus
∣ĝ∣ and argument ϕ̂ can be calculated using Equations (23) and (24), respectively. On the
other hand, the approximate steady-state temperature profiles ¯̂ϑt(ln), ¯̂ϑs(ln) and ¯̂ϑw(ln)
can be calculated based on Ĝ(ln, 0), similarly as in Equations (25)–(28).

4. Results and Discussion

In order to demonstrate the results of the discussed approximation method, we
consider here a double-pipe heat exchanger with the following parameter values in
Equation (4): ρt = ρs = 1000 kg/m3 (water), ρw = 7800 kg/m3 (steel), ct = cs = 4200 J/(kg ⋅K)
(water), cw = 500 J/(kg ⋅K) (steel), ht = hs = 6000 W/(m2 ⋅K), dti = 0.09 m, dto = 0.1 m,
dsi = 0.15 m, L = 5 m, which result in the following generalized parameters of the
PDEs (1)–(3):

k1 = 0.0635
1
[s]

, k2 = 0.2915
1
[s]

, k3 = 0.3239
1
[s]

, k4 = 0.0457
1
[s]

. (62)

We also assume the following values for the tube-side and the shell-side fluid velocities:
vt = 1 m/s, vs = −0.2 m/s, where the negative value of vs indicates the counter-flow mode
(see Figure 1).

Consequently, the infinite-dimensional representation of the considered heat ex-
changer with the boundary inputs (6) is given by the irrational transfer functions (12)–(15),
where the parameters ptt(s), pts(s), pst(s) and pss(s) in (16) and φ1,2(s) in (17) are evaluated
using the numerical values of k1, k2, k3 and k4 in (62). These irrational transfer functions
will be considered as a reference for the approximate rational transfer functions of different
orders, i.e., transfer functions evaluated for different numbers N of spatial sections.

Assuming, for example, that the spatial domain [0, L] is divided into N = 100 uniform
spatial sections, we obtain the following grid size:

∆ln = L
N

= 0.05 m for n = 1, 2, . . . , N, (63)

and, consequently, the following matrices of the state-space model in (45) and (46):

An ≈
⎡⎢⎢⎢⎢⎢⎣

−20.0638 0.0638 0
0.2934 −0.6194 0.3260

0 0.0459 −4.0459

⎤⎥⎥⎥⎥⎥⎦
, Bn =

⎡⎢⎢⎢⎢⎢⎣

20 0
0 0
0 4

⎤⎥⎥⎥⎥⎥⎦
, Cn = [1 0 0

0 0 1
], (64)

with the negative real eigenvalues of An:

s1,n ≈ −20.0648, s2,n ≈ −0.6140, s3,n ≈ −4.0503, (65)

which mean that the single section can be seen as an exponentially stable dynamical subsystem.
The transformation (49) results in the following elements of the section transfer func-

tions matrix Gn(s):

gtt,n(s)= 20s2+93.3061s+49.818
s3+24.7291s2+96.076s+49.9012

, gts,n(s)= 0.0832
s3+24.7291s2+96.076s+49.9012

,

gst,n(s)= 0.2696
s3+24.7291s2+96.076s+49.9012

, gss,n(s)= 4s2+82.7327s+49.6316
s3+24.7291s2+96.076s+49.9012

,

(66)

with the poles equal to the eigenvalues in Equation (65).
Up to this point, the construction of the approximation model is almost identical to the

parallel-flow heat exchanger considered in [15]. In particular, assuming the same physical
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parameters of the exchanger, we obtain the same state-space and transfer function matrices
for the single section of the approximation model.

The main difference between the approximation models for the parallel- and the
counter-flow regimes consists in how the sections are interconnected to each other. As
we recalled in Section 3.2.2, for the parallel-flow operation the cascade interconnection
was applied resulting in the approximation model given by the ”usual“ matrix product
of the section transfer function matrices—see Equations (51) and (52). For the considered
counter-flow configuration we need to apply the RSP of the section transfer function
matrices, which is given by Equations (61) and (53)–(58). It can be easily shown that the
gains k(ω) = ∣g(iω)∣ for all the transfer functions in (66) are strictly less than one over all
frequencies, which results in the stability of their feedback interconnections, and which,
consequently, ensures the stability of the resulting approximation model. Such different
interconnection of the sections entails quite different dynamical properties of the resulting
model, as compared to the previously analyzed one. This difference will be reflected,
among others, in their different frequencies and steady-state responses.

4.1. Frequency Responses

Some examples of the three-dimensional frequency response plots for the so-called
hyperbolic systems of balance laws, showing their dependence on both the angular fre-
quency ω and the single space variable l, were presented in our work [14]. However, as
mentioned in Section 2.3, taking into account the control task we are usually interested in
the classical 2D Nyquist and/or Bode plots evaluated at the system outputs, which in our
case of the counter-flow heat exchanger are situated at l = L (outflow temperature ϑto) and
at l = 0 (outflow temperature ϑso). Therefore, below we compare such classical frequency
plots resulting from the irrational transfer functions G(s) introduced in Section 2.2, and
from their rational approximations Ĝ(s) analyzed in Section 3.2.

Figure 4 presents the Bode (Figure 4a) and Nyquist (Figure 4b) plots of the frequency
responses resulting from the boundary transfer function gts(L, s) of the considered double-
pipe heat exchanger working in the counter-flow regime. We can see on these plots both
the reference frequency response gts(L, iω) resulting from the irrational transfer function
gts(L, s) given by Equation (13) for l = L, as well as the frequency responses obtained from
its rational approximations ĝts(lN , s) for different numbers N of uniform spatial sections.
As in the case of the parallel-flow exchanger considered in [15], we can also notice here
some oscillations in the Bode diagram of Figure 4a, which can be observed as the “loops” on
the Nyquist plot of Figure 4b. These oscillations are due to the resonance-like phenomena
taking place inside the exchanger, which are confirmed both by the mathematical models
as well as by the laboratory experiments (see [38]).

When it comes to the differences between the frequency responses gts(L, iω) for the
parallel- and counter-flow modes, one can see that the phase shift is significantly smaller
here than it was for the parallel-flow mode—see Figure 5a,b in [15]. The phase shift does
not exceed π rad for ω → ∞ here, which can be observed both on the phase diagram of
the Bode plot, as well as in the Nyquist plot which lies completely in the fourth and third
quadrants of the complex plane and does not enter the second and first quadrants, as was in
the parallel-flow mode. As is commonly known, a large phase shift and the associated time
delay between the input (control) and the output (controlled) signals has a negative effect
on the feedback control. Therefore, it can be stated that, from the control theory viewpoint,
the counter-flow configuration is more preferable than the parallel-flow one. Another
even more significant advantage of this configuration comes from the more favorable
steady-state operating conditions (i.e., temperature profiles), which will be analyzed later
in Section 4.2.
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(a) Bode plot (b) Nyquist plot

Figure 4. Frequency response gts(L, iω) of the irrational transfer function model of the double-pipe counter-flow heat
exchanger vs. frequency responses ĝts(lN , iω) of its approximate rational transfer function models for different values of N.

Moving on to the approximation quality, it should be clear from the results of Figure 4
that the larger the number of spatial sections, and, consequently, the order of the approxi-
mation model, the better the mapping of the original frequency responses.

Moreover, in order to correctly reflect the above-mentioned oscillations, a relatively
high-order rational model is needed which is able to approximate these high-frequency
peculiarities [15].

Figure 5 shows the frequency responses obtained for the transfer function channel
gss(0, s) of the counter-flow heat exchanger. As easily seen, the dominating time-delay
nature of this channel which is related to the convective heat transport results in the original
frequency response having no limit at infinity. As a consequence, the approximation
task is even more difficult here than in the previous case. The approximation models
ĝss(l1, s) of increasing order try to mimic the reference frequency response, but the rational
approximation is possible here only over a certain finite frequency band—see results of [39].

(a) Bode plot (b) Nyquist plot

Figure 5. Frequency response gss(0, iω) of the irrational transfer function model of the double-pipe counter-flow heat
exchanger vs. frequency responses ĝss(l1, iω) of its approximate rational transfer function models for different N.
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Due to the symmetry of the system, the frequency responses of the two other boundary
transfer function channels, gst(0, s) and gtt(L, s), which are not shown here, are similar to
the ones obtained for gts(L, s) and gss(0, s), respectively.

4.2. Steady-State Temperature Profiles

The steady-state temperature distribution of both fluids and the wall of the exchanger
were calculated from the spatially distributed steady-state transfer function model G(l, 0)
given by Equations (25)–(28), as well as from its approximations Ĝ(ln, 0) of different orders
discussed in Section 3.2.2. The temperature profiles obtained for the following constant
inlet fluid temperatures: ϑ̄ti = 100 ○C, ϑ̄si = 50 ○C are shown in Figure 6.

(a) Entire exchanger length (b) Enlarged part of (a)

Figure 6. Steady-state responses ϑ̄(l) of the irrational transfer function model of the double-pipe counter-flow heat
exchanger vs. steady-state responses ¯̂ϑ(ln) of its approximate rational transfer function models for different N. Fluid inlet
temperatures: ϑ̄ti = 100 ○C, ϑ̄si = 50 ○C.

As confirmed by the presented results, the steady-state temperature distribution of the
fluids and the wall is more favorable for the counter-flow configuration considered here
than for the parallel-flow one (see Figure 7 in [14]). The outlet temperature ϑso of the heated
fluid is closer here to the inlet temperature ϑti of the heating fluid, and the more uniform
difference between ϑ̄t(l) and ϑ̄s(l) contributes to the more uniform heat transfer rate. In
addition, the greater uniform temperature difference between the two heat exchanging
media reduces the effects of thermal stresses in the material of the exchanger (see [14,15]).

When it comes to the results obtained from the approximate transfer function models,
it can be seen on the temperature plot of Figure 6a that the larger the number N of spatial
sections, the more overlap the original steady-state profiles ϑ̄t(l), ϑ̄s(l) and ϑ̄w(l) by their
approximations ¯̂ϑt(ln), ¯̂ϑs(ln) and ¯̂ϑw(ln), respectively. For details of the steady-state
approximation results, the enlarged part of the Figure 6a is shown in Figure 6b.

5. Conclusions

Continuing the research whose outcome is presented in our paper [15], in the current
work we have shown some new results concerning the approximate rational transfer
function model for the double-pipe heat exchanger, now operating in the counter-flow
configuration. This model can be used, e.g., in the control system design procedure using
the conventional, relatively simple control algorithms provided for LPSs, without recourse
to sophisticated, infinite-dimensional control approaches dedicated for DPSs.

As confirmed by simulation, the considered counter-flow configuration is better than
the parallel-flow one. This is mainly due to the more preferable steady-state temperature
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conditions, although the better dynamic properties expressed by a smaller phase shift
between the input and output signals are also important from the control theory viewpoint.
We have also shown that subsystems with different approximation properties depending
on the dominant physical phenomena can coexist within the same dynamical system.

To mention the disadvantages of the presented approach, it should be noted that
the obtained approximation model can be of very high order—especially for the transfer
function channels gtt(s) and gss(s) dominated by transport delays. Therefore, it would
be recommended in the next step to perform some model reduction methods in order to
obtain lower-order models.
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