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Abstract: Battery Cell design and control have been widely explored through modeling and simula-
tion. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models
are among the most popular electrochemical models capable of predicting battery performance and
therefore guiding cell characterization. On the other hand, empirical models obtained, for example,
by Machine Learning (ML) methods represent a simpler and computationally more efficient comple-
ment to electrochemical models and have been widely used for Battery Management System (BMS)
control purposes. This article proposes ML-based ensemble models to be used for the estimation of
the performance of an LIB cell across a wide range of input material characteristics and parameters
and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. struc-
tured regressors for battery energy and power predictions. The results represent an improvement
on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising
direction for battery modeling and design.

Keywords: Li-ion battery; surrogate modeling; deep learning ensembles

1. Introduction

This paper considers the task of estimating the energy and power density of LIB
designs across a range of characteristics and parameters and focuses on the problem of
obtaining these results without incurring the considerable computational costs of detailed
physical simulations in a recurrent manner. While state-of-the-art contributions such as [1]
exploit Deep Learning neural networks trained on simulated data as surrogate models for
this objective, to the best of our knowledge, no literature contribution yet has evaluated
the performance of so-called ensemble models for this task. We address this gap in the
literature by comparing state-of-the-art models with a number of ensemble surrogates.

Even though Lithium-Ion Batteries (LIB) have progressively been improved since their
market introduction in 1991 by Sony, their massive deployment requires them to be further
optimized in terms of performance, durability, and safety. From the physical point of view,
to obtain these results, in the battery design phase, it is important to reduce limitations to ion
transport, thus avoiding undesirable cell polarization effects. Consequently, an extensive
literature describes the effect each design parameter has on transport mechanisms, and
therefore on cell performance. On the one hand, the effects of several parameters (including
electrode thickness, particle size, tortuosity and discharge rate) have been investigated
by experimental methods. On the other hand, cell design has also been explored through
modeling approaches, demonstrating that model-based design can be used to reduce the
number of experiments, while accurately describing battery performance and providing
guidance for battery characterization.

In general, the battery models presented in the literature mainly fall into two cate-
gories: physics-based electrochemical models and empirical ones. In addition, the recent
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development of physics-based equivalent circuit models aims to combine the high accuracy
of physical models with the reduced computational cost of empirical ones.

Physics-based electrochemical models [2–4] use partial differential equations to de-
scribe the phenomena taking place within the battery. They can be used to forecast its
electrochemical state, and to provide accurate information about variables such as lithium
concentrations and over-potentials, which can be used to understand the phenomena
that are limiting performance or durability. For example, the widely used Pseudo-two-
Dimensional (P2D) electrochemical model developed by Doyle and Newman [5,6] is based
on porous electrode theory, concentrated solution theory, and kinetics equations. Further
electrochemical modeling approaches rely on Single Particle (SP) simplifications, in which
the properties of the electrolyte are normally ignored [7–9]. Further recent approaches
such as SPMe [10] consider electrolyte dynamics in SP models. Other possibilities include
Simplified Models building on polynomial profiles [11,12], Galerkin approximations [13],
transfer function modeling [14], and the like. Concerning limitations, a drawback of de-
tailed electrochemical models is the significant computational cost of simulations [15].
To overcome this limitation, various reduced-order models have been developed, which
are either distributed-parameter models [10,13] or lumped-parameters models [14,16].
Distributed-parameter models are normally expressed in the form of ordinary differential-
algebraic equations (DAEs), derived, for example, using the Galerkin projection methods
or Proper Orthogonal Decomposition, trying to preserve the physical meaning of all model
parameters. Lumped-parameter models, which mimic the output voltage of the battery
using electrical components such as resistors and capacitors, are described below.

Empirical models are typically either based on equivalent circuits [16,17] or on data-
driven approaches [18,19]. battery control algorithm rather than in cell design optimization
applications. They are composed of an open-circuit voltage source connected to a set of
electric elements, such as resistors and capacitors, to model the electrical behavior of a battery.
While these models are intuitive and relatively simple to use in control system design and
implementation, they do not provide insights on the internal behavior of the battery. In this
regard, new approaches have recently been explored, such as the developed distributed-
parameter ECMs [20,21], in which the models are normally expressed in the form of DAEs,
which can be solved rapidly using the proposed method with high accuracy. This represents
an improvement on existing physics-based Li-ion battery models, especially in real-time,
dynamic environments. Physics-based equivalent circuit models combine the benefits of high
accuracy physical models with the lower computational cost of empirical ones, for instance,
by combining a concise transmission line structure with partial differential equations for the
mass transport processes that describe the concentration distributions and that are solved with
the finite difference method, avoiding simplifications or approximations, thus guaranteeing
the accuracy of the results [20]. Online estimation and prediction of the Remaining Useful
Life also often use data-driven empirical methods which, however, have not been commonly
exploited for cell design purposes.

So-called ‘surrogate’ models are obtained by Machine Learning methods from data
generated by simulations. Once the training phase is completed, these models can pro-
vide estimations of battery performance indicators with a lower computational cost and
with an accuracy similar to that of physical simulators. Probabilistic surrogate models
are often used for optimization: by running the simulations at a set of points (experimen-
tal design), one obtains fast surrogates for otherwise expensive objective functions [22].
In methods such as Upper and Lower Confidence Bound [23], Expected Improvement [24],
DYCORS [25], and SOP [26], the optimization jointly performs both exploration and ex-
ploitation, looking for an optimum, while, at the same time, sampling by simulation the
most uncertain parameter regions. In this sense, surrogate optimization schemes can
efficiently leverage the ability of probabilistic surrogate model classes, from Gaussian
Processes to Sequential Radial Basis Functions, to jointly generate estimates for both the
local value and the local uncertainty of an objective function of interest. Relevant efforts
for LIB aging modeling include those based on Gaussian processes by Liu et al. [27–29].
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Contributing to the domain of such surrogates, Wu et al. [1] propose to address cell
design characterization by combining Machine Learning classifiers and regressors based
on deep feed-forward neural network models. While the first neural network is a classifier
that predicts whether a set of input design variables would result in a physically realizable
cell, the second neural network estimates the specific energy and specific power of the
design. Both neural networks are trained and validated using data from finite-element,
thermo-electrochemical simulations.

Although ensemble models are well represented in the literature, to the best of our
knowledge, no contribution yet has evaluated their performance as surrogates of phys-
ical LIB simulators. This paper addresses this gap by comparing a state-of-the-art LIB
surrogate model based on deep feed-forward networks with a set of ensemble models
integrating deep classifiers and regressors. In this sense, we demonstrate the accuracy of
composite surrogate models for the estimation of the density of power and energy of a
given LIB parameter set. The input and output parameters taken into consideration for
the electrochemical simulations are listed in Table 1. Their values are measured by propri-
etary electrochemical and physicochemical protocols for a set of proprietary electrodes in
CIDETEC, and vary between the minimum and maximum values shown in Table 1.

Table 1. Input and output parameters for both the simulators and the proposed surrogate models.
The simulated dataset consists of 1000 records with 11 input and 3 output attributes.

Variable Type Units Range

Anode/Cathode
thickness input Ln, Lp µm 45–75/60–90
porosity input εn, εp - 0.2–0.3/0.18–0.28
particle radius input rn, rp µm 3.5–8.5/8–11

Separator
thickness input Ls µm 15.0–30.0
porosity input ε - 0.35–0.45

Electrolyte
ionic conductivity input ke S/m 0.1–1.0
initial concentration input c0 mol/m3 1750–2250

Whole Cell
applied C-rate input Crate 1/h 0.33–3.0
convergence status output Boolean - N.A.
energy output E Wh N.A.
power output P W N.A.

In terms of application, the present paper does not directly focus on optimization.
Instead, as also previously done in [1], it considers surrogates that can be used to estimate
the performance of battery designs across a wide range of material characteristics and pa-
rameters. This applicative objective reduces the importance of using surrogate models that
can output estimated values and their uncertainties, for instance by exploiting techniques
such as Monte Carlo Dropout [30] and Variational Inference [31]. Consequently, in the rest
of our treatment, we limit ourselves to non-probabilistic surrogates.

The methodology we introduce and detail in the sections below is based on the general
framework put forward by [32,33], integrating and extending the Pseudo-2D surrogate pro-
posed by [1] to evaluate the performance of composite surrogate models integrating both
classification and regression. Through classification, a Machine Learning model evaluates
the convergence of the simulator, while, through regression, the algorithms predict the out-
put parameters of the Ragone plot [34] (energy and power, as per Figure 1). We extend the
state of the art in [1] by showing the advantage of adopting respectively ensemble methods
for convergence classification and structured regression for the estimation of the Ragone
parameters, rather than simpler feed-forward networks for both tasks. Furthermore, from
the methodological point of view, we apply a quantitative performance evaluation proce-
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dure that is based on K-fold validation [35] rather than on simple train/test/validation
splitting as in [1]. The accuracy of some of the ensemble surrogate models we introduce
compares favorably to that of the state-of-the-art method introduced in [1]. Furthermore,
the approach in the reference is extended by using a K-fold cross-validation method to
evaluate if the model can generalize the quality of its results.

Simulation: Run
physical P2D simulation

Classification:
Predict convergence status

Regression: Estimate
Ragone plot parameters

Figure 1. Global workflow. The methodology progresses from physical simulations to simulator convergence
classification to the estimation by regression of a specific subset of Li-ion battery parameters of interest.

2. Methods

The construction and validation of the P2D-based surrogate model have involved
several steps:

• Selection of the appropriate input and output parameters. In this regard, measurable
electrode and electrolyte transport properties are selected as input parameters, while
the parameters of the very-well known Ragone plot (energy and power) are selected
as outputs to be used for battery characterization purposes, as shown in Table 1, where
the minimum and maximum values for each of the parameters are also reported.

• Selection of electrochemical model and Design of Experiments. A proprietary P2D
model is used to generate the data set.

• Development of surrogate models. Each surrogate is composed of three models: a
binary simulation convergence classifier and two separate regression models that
estimate integrated power and energy density values from the input parameters
(see Figure 2).

• Model validation, typically carried out similarly as for the data-driven models.

2.1. Electrochemical Model and Design of Experiments

The electrochemical model used for building the data-set is expressed in terms of four
conservation relations described in Smith et al. [36] by partial differential equations and
their corresponding boundary conditions. The numerical approach considered for solving
the system of equations is based on Finite Elements Methods (FEM) for space-discretization
as implemented in the open-source FEniCS toolkit (https://fenicsproject.org/, accessed on
8 May 2021), and on Implicit Euler methods for time-discretization.

The data set is generated by running the model with the selected input variables and
their ranges presented in Table 1.

As in Wu et al. [1], in this paper, we focus on the variables that are controllable during
battery manufacturing. Among all the design variables, the electrode thickness, porosity,
and particle radius are chosen because they can be controlled within the material or the
electrode manufacturing steps. For example, electrode thickness and porosity can be
experimentally adjusted during the calendering step of the cell manufacturing process.
Separator thickness and porosity ranges are defined considering commercially available
components. In addition, the initial electrolyte concentration and ionic conductivity are

https://fenicsproject.org/
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further important tunable variables and are considered as they play an important role in
determining thick electrode performance limitations due to the dry-out of the electrolyte.
When it comes to the electrolyte, two parameters are selected for the design of experiments.
First, the ionic conductivity (ke) is selected as it can be modulated by doping salts, acids,
metals, alkali, etc. to the solvent matrix and the initial salt concentration for a similar
reason (i.e., c0). For the sake of simplicity, we have assumed that the ionic conductivity
has no dependence on the electrolyte concentration. In further developments, we envision
that this dependency will be taken into account. Finally, the applied C-rate is also selected
as an input variable, as this parameter may vary from very low values to very high ones
depending on the battery application. Constant–current discharge protocols are used as a
baseline, with the aim of the characterization of the cell in terms of energy and power during
discharge. Even so, the testing protocol could be adapted to other battery applications.
The rest of the parameters needed to simulate battery performance using a P2D model are
summarized in Table 2 and Figure 3.

Input parameters

Physical simulator

Power Convergence Energy

Input parameters

Trained
convergence

classifier

Convergence
estimate

Trained
energy regressor

Trained
power regressor

Energy estimatePower estimate

Figure 2. The general structure of the model. A simulator produces values for energy and power
density integrals, together with a convergence flag indicating the successful execution of a run, up
to a fixed end time. Run-stopping criteria corresponding to non-convergence involve, for instance,
physically meaningless negative ion density values. A classifier and two regressors learned from the
simulated data can be exploited to generate estimates. The classifier estimates whether a simulation
will produce physically unrealizable conditions, and therefore stop without completing a run. The
two regressors estimate integrated energy and power for converging runs.

(a) (b)

Figure 3. Open circuit potentials for the electrodes of the P2D model simulator. (a) Anode OCP
curve: voltage response on each stoichiometry; (b) Cathode OCP curve: voltage response on
each stoichiometry.
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Table 2. Further parameters for the P2D model simulator.

Variable Units Value

Anode/Cathode
active material volume fraction % 56/70
effective electrical conductivity S/m 3.0/2.0
maximum lithium concentration mol/m3 73,900.0/28,100.0
initial lithium concentration (100% SOC) mol/m3 59,859.0/3653.0
reference reaction rate coefficient m2.5/mol0.5 s 6.1 · 10−9/1.0 · 10−10

reference solid diffusion coefficient m2/s 1.0 · 10−14/1.0 · 10−13

open circuit potential (OCP) V Figure 3a/Figure 3b

Electrolyte
transference number - 0.4
diffusion coefficient m2/s 4.0 · 10−6

Whole Cell & Constants
Area m2 2.16 · 10−4

Universal gas constant J/K mol 8.31
Faraday constant C/mol 96,485.34

Considering the previous inputs, we generate a simulated data set by running a P2D
model implemented in Python. As previously mentioned, simulations consider a given set
of input parameter values. They propagate a set of variables describing the electrochemical
status of the battery up to a well-defined and fixed time limit. Upon both convergence
and premature termination of the simulation, Ragone energy and power estimates are
integrated as per

E =
∫ td

0 IV dt [Wh]

P =
∫ td

0 IV/td dt [W] .

where td is the discharge time. The Ragone plot [34] is commonly used to illustrate the
performance of energy storage devices, and is widely used to compare technologies catering
to specific demands. Accordingly, in this work, we generate a Ragone plot for a wide range
of electrode/cell design parameters aimed at a variety of future designs of electrochemical
energy storage devices for different usage applications. Constant currents for discharge
are used as a baseline since the Ragone plot is usually generated with a constant C-rate.
Accordingly, we do not consider variable currents.

Reasons for failures in simulating up to the specified end time include reaching
physically meaningless or non-realizable situations, such as negative values for ion concen-
trations. In these cases, the run will stop prematurely, producing only partial estimates for
the above Ragone integrals, and appropriately setting a negative convergence status flag.

2.2. Surrogate Modeling

We generate a surrogate model to reproduce the results of the P2D model simulator.
Once trained, this empirical model can approximate simulation results in a fraction of the
running time of the physical simulator, keeping the approximation errors under control.
The input parameters taken into account correspond to the inputs of simulations. As previ-
ously mentioned, the output variables include the convergence status of the simulation,
and the Ragone plot variables corresponding to energy and power integrals. The proposed
surrogate model structure is a composite one: the convergence status is modeled by a bi-
nary classifier (Section 2.2.1) and the energy and power output integrals are approximated
by regressors (Section 2.2.4).

2.2.1. Simulation Convergence Classification

We consider that, in a Pseudo-2D electrochemical model, the completion status of a
simulation can either be full (corresponding to propagation up to the intended complete
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temporal extension) or partial (corresponding to early termination). This status can depend
on several phenomena with varying degrees of complexity. Those phenomena range from
the consumption of chemical species to variations in the separator/electrode interface
resistance due to parasitic ion deposition and layering reactions. Modeling the range of
phenomena involved requires adding flexibility to the surrogate model. To that end, we
combine the prediction capabilities of committees of ML classifiers by using ensemble
methods [37].

The key hypothesis is that, by exploiting extended ensembles of classifiers, we can
implicitly learn about the different mechanisms that can stop the execution of the simulator.
The resulting composite models can then better reproduce the varying degrees of complex-
ity of the physical phenomena that lead a simulation to an early stop, thereby improving
on state-of-the-art approaches such as the one in [1].

To evaluate this hypothesis, we compare a single feed-forward network (indicated
by the ‘single’ label in subsequent tables and diagrams), corresponding to the state of
the art in [1], to a set of ensemble binary classifiers based on different approaches: a
voting ensemble composing a small number of tree-based classifiers (‘voting’), an efficient
Gradient Boosting ensemble implementation (‘xgboost’), and a stacking ensemble of models
including feed-forward networks (‘stacking’). The list of classifiers is in Table 3.

Table 3. Convergence classifier types.

Classification Model Type Label

Feed-forward deep network ‘single’
Voting ensemble ‘voting’
Gradient boosting ensemble ‘xgboost’
Deep stacking ensemble ‘stacking’

We briefly introduce each model in the present section and detail implementation
parameters in Section 3, dedicated to experiments.

2.2.2. Feed-Forward Deep Network

We start by establishing a baseline for the performance of convergence estimators,
by considering a deep learning classifier as per the state of the art in [1], as a reference
against which the performance of the rest of the models can be quantitatively evaluated.
To that end, we define a fully connected network with a single hidden layer, considering a
log-entropy loss function suited for classification [38], and an ADAMW optimizer [39] to
address possible weight decay issues [40]. The limited structural complexity of the network
corresponds to the results published in the literature.

2.2.3. Voting Ensemble of Classifiers

We build a first ensemble classifier by combining three simple models. The combina-
tion operates by basic voting among level-1 members, listed in Table 4. We describe them
briefly. A pruned decision tree is one in which sections that are not critical to reducing an
empirical loss function are iteratively eliminated. The pruning operates by considering
the Minimum Description Length principle to reduce the risk of over-fitting [41]. The
second type of level-1 model is a decision stump, a basic single-level decision tree [42]. The
third type of level-1 model considered is a random forest, in itself an ensemble of decision
trees [43] that outputs the mode of the output of the trees that compose it.

Table 4. Voting ensemble instance types.

Voting Ensemble Member Type Instances

Pruned decision tree 1
Decision stump optimized by AdaBoost 1
Random forest 1
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We then consider a Gradient Boosting implementation in XGBoost [44]. This specific
model is selected on account of its flexibility and of the robustness of available implemen-
tations, which draw on efficient linear model solvers and effective tree learning algorithms.
We complete the set of classifiers by taking into account a further model ensemble that
includes instances of the feed-forward network. In this last case, the stacking is performed
by a second-level classifier that takes as input the outputs of the first-level classification
models that compose the committee. In this sense, the predictions of the first-level models
are combined by an ensemble bagging/boosting combination mechanism that is based on
a ‘stacking’ second-level classifier.

The models considered in the set are listed in Table 5. The three level-1 instances of
the feed-forward network in the ensemble are similar in structure yet independent of one
another, in the sense that they are independently trained on non-overlapping subsets of
the data set.

Table 5. Stacking ensemble instance types.

Stacking Ensemble Member Type Instances

Feed-forward network 3
Pruned decision tree 1
Decision stump optimized by AdaBoost 1
Random forest 1

Detailed descriptions of the models, together with the results obtained on a test data
set, are reported and compared in Section 3.

2.2.4. Ragone Variable Regression

Regression is carried out separately on the integrated energy and power values
generated by the simulation. The input data set is filtered considering only the samples that
correspond to complete propagation of the model through time. The integrated energy
and power values are approximated by regressors whose functional structure has a basis in
the physical model. In particular, a polynomial structure is extended to a more general one,
by considering an exponential transformation of the ionic conductivity of the electrolyte

V̂({ϑi}i∈Θ) =
N

∑
j=0

ajϑ
j
i with aj ∈ R, ϑi ∈ {θi, exp(θi)}i∈Θ (1)

so that an estimate V̂ for one of the integrated Ragone integrals (energy or power) is
expressed in terms of a polynomial of order N of the Θ input parameters θi of the simu-
lation as well as of their exponential exp(θi). This inclusion of the exponentiation of the
parameters of the simulation is motivated by the structural form of the Butler–Volmer
equation, as well as by the solution implied by the conservation and diffusion equations in
the model. Note that, for simplicity, neither temperature nor concentration dependence
is assumed for parameters such as the ionic conductivity in the present contribution. We
plan to address this relation in future extensions of this work.

3. Results

Simulated data consists of 11 input and 3 output attributes, as detailed in Table 1. The
outputs are not temporally located, since they represent the integration of the state of a
simulation that is successfully extended until a given time limit. Concerning the available
data and parameter measurements, we observe that uncertainties from sensors and experi-
mental measurements are not considered at this stage. We believe that sensor noises are
more critical in BMS development, as they could have a big impact on the performance of
the numerical algorithms used to estimate the state variables. They can be incorporated in
treatments such as the present one by e.g., Variational Inference techniques, modifying the
output layers of the network architectures considered and the loss functions specified.
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3.1. Simulation Convergence Prediction by Classification

We partition the data set into separate training, testing and validation sets by 60/20/20%
stratified sampling without replacement. Consequently, the distribution of the simulation
convergence status is preserved in the generated sets. The data points from each set are
shown in Figure 4. We use K-fold validation [35] as a strategy for the measurement of
performance of the classification methods, with the K parameter set to 8. The input variables
are normalized by a Z-score transformation in the preprocessing step. The randomized
data are organized in batches of 32 samples to speed up the learning [45,46]. While the
validation subset is fixed, the train/test split varies by k ∈ {1 . . . K} in the K-fold validation
procedure. The values of the input simulation parameters tend to be uniformly distributed
in the input data set, with a maximum absolute value of the Pearson correlation between
variables around 0.19.

Figure 4. Simulated input data set as Ragone power/energy plot, describing an example partition of
the data into model training, testing, and validation sets by stratified sampling without replacement.
Asterisks are used to mark partial and non-converging runs. Samples in the 20% validation set
are in orange. Samples from an example training/testing 60%/20% split are depicted in green and
blue, respectively. While the validation subset is fixed, the train/test split varies by k in the K-fold
validation procedure.

To establish baseline results, we first consider a state-of-the-art single fully connected
feed-forward network as in [1]. The hyper-parameters for the surrogate are summarized in
Table 6. The number of epochs is experimentally limited to 15, observing the convergence
plots produced during the learning phase. As a consequence of the limited number
of training epochs, training time is limited to five seconds on a single Intel i7-8550U
CPU device running at 1.80 GHz. Though a GPU can be used as a learning device, the
fast convergence of the learning procedure means that learning directly on the CPU is
practically usable. The Confusion Matrix for the single feed-forward network for simulation
convergence estimation as trained with the whole training/testing set and measured on
the validation set is reported in Table 7. The results for this fully connected deep classifier
are included and compared in Figure 5.
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Table 6. Feed-forward convergence classifier configuration.

Batch size 32
Optimizer ADAMW [47]
Number of epochs 15
Loss function Mean Absolute Error
Hidden layer neurons Θ× 4
Number of hidden layers 1
Activation functions tanh
Dropout 0.2

Table 7. Confusion Matrices for a single run of the simulator convergence classification models: feed-
forward network (a), voting ensemble (b), gradient boosting ensemble (c), deep stacking ensemble
(d). The results for the single run may not be representative of the full results obtained via the K-fold
validation in Figure 5.

(a)

True convergence status

Positive Negative Total

Convergence estimate Positive 90.0 7.0 97.0

Negative 9.0 94.0 103.0

Total 99.0 101.0 200.0

(b)

True convergence status

Positive Negative Total

Convergence estimate Positive 93.0 10.0 103.0

Negative 6.0 91.0 97.0

Total 99.0 101.0 200.0

(c)

True convergence status

Positive Negative Total

Convergence estimate Positive 95.0 10.0 105.0

Negative 4.0 91.0 95.0

Total 99.0 101.0 200.0

(d)

True convergence status

Positive Negative Total

Convergence estimate Positive 92.0 7.0 99.0

Negative 7.0 94.0 101.0

Total 99.0 101.0 200.0
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Figure 5. K-fold validation accuracy densities for the simulation convergence classifiers considered
in the experiments. The curves indicate that a stacking deep ensemble (‘stacking’) can outperform a
state of the art fully connected network (‘feedforward_sota’) as well as Gradient Boosting and voting
ensembles (respectively ‘xgboost’ and ‘voting’).

A first ensemble model implements a voting committee with simple tree-based models
as described in the above Section 2.2.1. The confusion matrix is reported in Table 7, while
K-fold and validation results are summarized and compared in Figure 5.

After that, a gradient boosting ensemble classifier is configured with the hyper-
parameter values in Table 8. At each training cycle, an ensemble of decision trees with
a predefined maximum depth is improved through adding estimators for residuals to
globally optimize a given objective function [48]. In our case, the maximum depth and the
number of training cycles for the classifier are both set to two, while the objective taken
into account for the loss function minimization is a binary logistic function. The step size
shrinkage hyper-parameter used in the updating steps to prevent over-fitting is set to one,
to indicate that no shrinking should take place. The Confusion Matrix for the gradient
boosting simulation convergence estimator trained with the whole training/testing data
and validated on the validation set is reported in Table 7. The resulting performance
indicators for the gradient boosting ensemble classification model are included in Figure 5.

Table 8. Boosting ensemble classifier configuration.

Number of rounds 2
Maximum depth 2
Step size shrinkage 1
Objective function binary logistic.

Finally, we consider an ensemble convergence model operating by a second-level
classifier stacking the results obtained by first-level classifiers as per Section 2.2.1. The
Confusion Matrix for the stacking ensemble simulation convergence model is reported
in Table 7. The performance for the simulator convergence prediction of the stacking
ensemble model is again reported in Figure 5.

3.2. Regression

Regression is carried out separately on the integrated energy and power values
generated by the simulation. The input data set is filtered considering only the samples
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that correspond to the successful propagation of the model through time. For both
models, we consider 70% of the samples for training and the remaining 30% of the samples
for testing.

3.2.1. Energy

The distribution of the energy integral is shown in Figure 6. Values lower than 80 J are
considered as outliers and filtered out. By considering the correlations between the energy
and the input variables, a first simple model is proposed to predict the values of the energy
integral, Ê, in the form of Equation (2):

Ê = a · Lp + b · ec·ke + d (2)

Lp being the thickness of the positive electrode and ke the ionic conductivity of the elec-
trolyte. The resulting mean squared error and the R2 score are MSE = 32.83 and R2 = 0.848,
respectively. In order to improve these results, a more complete model is introduced, as
shown in Equation (3):

Ê = a · Lp + b · ec·ke + d · Ln + e · Crate + f (3)

where Ln represents the thickness of the negative electrode and Crate is the applied current
as a C-rate. Doing so results in a mean squared error of MSE = 19.30 and a R2 = 0.911.
Both models can be compared as in Figure 7a.

To ensure that the models have the desired accuracy and variance, some cross-
validation is needed. To avoid the possibility of high bias in cases of limited data, a
K-Fold cross-validation technique is used with K = 30, which means that the data set is
split into 30 different groups. The value for K is chosen so that each train/test group of
data samples is large enough to be statistically representative of the broader data set. The
R2 and the MSE are compared to those obtained when creating the model in Figure 7b,c.

From Figure 7b,c, it can be concluded that, in the Simple Model, around 20 out of
30 times, the R2 values are higher than 0.8, and the same number of times, the MSE is
below 25. For the Complete Model, around 20 of 30 times, the R2 is higher than 0.9 and the
MSE lower than 20. The models behave as expected and are validated by comparing these
values with the ones obtained first in the models.

Figure 6. Distribution of the integrated energy variable (output of the simulation). Histogram (left)
and box-plot (right) of the variable. As shown in the box-plot, values lower than 80 J are considered
as outliers in this distribution.
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(a)

(b) (c)

Figure 7. Results of the proposed regression models for the energy output integral (a) and histograms
of the MSE (b) and R2 (c) of 30 K-Folds performed to the model for the energy.

3.2.2. Power

The distribution of the power integral of simulation outputs is shown in Figure 8.
Values higher than 285 W can be considered as outliers, and, therefore, the dataset is again
filtered for these values. The power integral presents a significantly higher correlation with
the applied current and the thickness of the positive electrode, compared to that of other
input variables. Thus, a first simple linear regression is proposed to predict the values of
the power integral, P̂ based on the following equation:

P̂ = a · Crate + b · Lp + c (4)

with Crate the C-rate and Lp the thickness of the positive electrode. The results obtained by
optimizing the constants in Equation (4) can be observed in Figure 9a. The resulting mean
squared error and the R2 score would be MSE = 183.49 and R2 = 0.988, respectively.

As in the case of energy estimates, K-fold cross-validation is performed in the devel-
oped model, with K = 30 meaning that the dataset is again split into 30 different groups.
R2 and MSE values are compared to those obtained when creating the model. The results
for the power model are shown in Figure 9b,c.

From Figure 9b,c, it can be concluded that, 20 out of 30 times, the R2 values are above
0.985, and that, although there are instances for which the MSE’s values are high, 20 out of
30 times, this MSE is below 60.
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Figure 8. Distribution for the integrated power simulation output.

(a)

(b) (c)

Figure 9. Results of the proposed regression model for the power integral (a) and histograms of the
MSE (b) and R2 (c) of 30 K-folds performed to the model for the power integral estimation.

4. Discussion

The results above indicate that an effective way to speed up the characterization of LIB
designs involves complementing simulations with empirical, ML surrogate models learned
from simulation results [33]. In terms of computational performance, P2D simulations
using CIDETEC’s proprietary code take, on average, 20 seconds for a 1C discharge. Once
the surrogate models are trained, instead, predictions can be obtained in a few hundredths
of a second. Deep ensembles and structured regression models represent an interesting di-
rection for the development of efficient surrogate models capable of rapidly and accurately
predicting Ragone plot variables such as energy and power integrals. Those results can
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be integrated with design workflows and extended to other fields such as management
and control. In the specific case of the prediction of early termination of the simulator by
classification, the results seem to indicate that ensemble models can indeed outperform
state-of-the-art surrogates based on deep learning fully connected networks, exploiting
their flexibility in implicitly learning the multiple mechanisms that can stop the execution
of the simulator.

On the other hand, it is perhaps worth mentioning that an important point that is
sometimes overlooked [49] is that physical simulations are complemented rather than
substituted by such data-based modeling: some of the computational costs are moved in
time rather than eliminated, since some simulated data need to be generated first for the
learning to take place.

5. Conclusions and Future Work

The present contribution has introduced and evaluated composite surrogate models
for the prediction of the performance of Lithium-Ion Batteries which combine classifiers
based on deep ensembles and structured regressors for the prediction of energy and power
densities. We have compared a single state-of-the-art feed-forward network to three types
of ensemble binary classifiers for the prediction of simulation convergence. The quanti-
tative results obtained indicate that ensemble models can indeed outperform state of the
art models based on a single deep network. Furthermore, we have quantitatively vali-
dated the applicability of structured regressors to the estimation of LIB energy and power.
Future work to be considered includes analyzing feature and parameter sensitivities [50]
and the use of ML explainability/interpretability methods to ensemble models from an
electrochemical perspective. Furthermore, model and data uncertainty management [51,52]
should also be analyzed: the quantification of the risk from different sources is valuable for
the real-world applicability of the developed methodology.
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