
energies

Article

Continuous Control Set Model Predictive Control for an
Indirect Matrix Converter

Zhengfei Di *, Demin Xu and Kehan Zhang *

����������
�������

Citation: Di, Z.; Xu, D.; Zhang, K.

Continuous Control Set Model

Predictive Control for an Indirect

Matrix Converter. Energies 2021, 14,

4114. https://doi.org/10.3390/

en14144114

Academic Editor:

Georgios Konstantinou

Received: 4 May 2021

Accepted: 4 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
xudm@nwpu.edu.cn
* Correspondence: dizhengfei2007@mail.nwpu.edu.cn (Z.D.); zhangkehan210@163.com (K.Z.)

Abstract: A continuous control set model predictive power control strategy for an indirect matrix
converter is proposed in this paper. The load reactive power, the load active power, and the input
reactive power are controlled simultaneously. This control strategy can obtain output waveforms
with fixed switching frequency. Additionally, an optimal switching sequence is proposed to simplify
the commutations of the indirect matrix converter. To suppress the input filter resonance, an active
damping method is proposed. Experimental results prove that the proposed method features
controllable input reactive power, controllable load active and reactive power, fixed switching
frequency output waveforms, zero-current switching operations, and effectively suppresses input
filter resonance.

Keywords: indirect matrix converter; continuous control set model predictive power control; input
filter resonance suppression; optimal switching strategy

1. Introduction

A matrix converter (MC) provides a direct connection between the AC input side
and AC output side, in which DC-link capacitors are not employed. It is suitable for
many applications with difficult temperatures and pressures due to its simple and compact
topology [1,2]. MCs feature many advantages, including controllable input power factor
and bidirectional energy flow [3,4]. MCs are usually divided into indirect converters (IMCs)
and direct matrix converters (DMCs), which have the same transfer function. In recent
years, MCs have been globally discussed and studied in terms of applications, control
strategies, topologies, and trends [5–7]. Due to the non-use of DC-link capacitors, MC
control complexity has increased; disturbances in the input side affect the output side’s
power quality. Researchers worldwide have proposed many control schemes for MCs, such
as the scalar method, direct torque control, the Venturini method, direct power control,
space vector modulation (SVM), and so on [8]. Among them, SVM is a mature control
technique for MCs, in which the currents and voltages are represented with input-current
vectors and output-voltage vectors, and several fundamental vectors are used for the
desired vectors in each sampling instance. The output-voltage vector and the input power
factor can be controlled in SVM [9–11].

Currently, with the help of developed power devices and digital processors, finite
control set model predictive control (FCS-MPC) is receiving considerable attention, and
features many advantages over SVM, such as the ability to consider various constraints
and non-linearities, easier implementation and modification based on modern digital
processors, and faster dynamic response [12]. In FCS-MPC, a model-based cost function
is defined and minimized to determine the switching states and is applied to the power
device during the sampling period [13–15]. In [12], a model predictive current control was
proposed for a two-level, four-leg inverter without the modulation stage, where the optimal
switching states were determined based on the minimization of cost functions. In [13],
an FCS-MPC strategy was proposed for four-leg indirect matrix converters and validated
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using an experiment, without the use of modulators. In [14], the input reactive power
was added into the cost function of the FCS-MPC strategy, and a soft switching sequence
was applied for four-leg indirect matrix converters. In [15], a lookup table method using
FCS-MPC was proposed for matrix converters, which reduced computational burden.

However, FCS-MPC does not involve a modulation scheme, in which the optimal
switching states selected by the cost function may continue to be optimal for the following
several sampling instances; thus, the switching frequency is variable, resulting in broad
harmonics. To improve this, research considering the combination of FCS-MPC and
modulation has been conducted [16–24]. In [16], an indirect model predictive control
strategy was proposed for DMCs, in which the imposed sinusoidal current waveforms
and the reactive power were considered individually; only simulations were implemented.
In [17], a modulated model predictive control (M2PC) strategy was proposed for a DMC,
combining the advantages of the space vector modulation and classic predictive control
models. Only output currents were controlled and the input side was ignored, an important
index for assessment of the control scheme. In [18], a predictive current-error vector control
strategy was proposed for DMCs, where both output and input currents were controlled.
In [19], an M2PC strategy was proposed for a three-phase active rectifier, where a constant
switching frequency was realized based on the modulation of the current vectors, similar
as that in conventional SVM. The optimized response was extended to the overmodulation
region. In [20], an M2PC strategy with active damping was proposed for IMCs, where the
source reactive power and load currents were controlled; only simulation was implemented.
In [21], a novel M2PC strategy using voltage-error vector analysis was proposed for a DMC,
where the available voltage vectors were reduced in each prediction, leading to reduced
calculation efforts. In [22], a time-modulated, model-predictive control strategy was
proposed for a neutral point clamped (NPC) converter, which can be operated at a 20 kHz
sampling frequency. In [23], a novel M2PC strategy was proposed for a six-phase induction
motor, where SVM was used to reduce the steady-state error and improve the (x-y) currents
at high operating speeds. In [24], FCS-MPC was proposed for ac-dc matrix converters,
where the virtual space vectors were preselected to reduce the calculation efforts, and the
effect of parameter mismatch was analyzed.

Input filter resonance has been an important issue for predictive control schemes. Some
active damping methods have been introduced and applied [20,25–29]. In [25,26], an active
damping method was proposed, which is strictly limited by assuming the independent
control of input currents. In [27], another new active damping method was constructed
using modified input current references, which cannot directly be used in MPCs, since the
damping current involves high-frequency harmonics transferred from the input voltage.
In [20,28,29], the input voltage harmonics were added to the output current references, an
indirect method with limited efficacy. Additionally, the digital DC-blocker involved affects
the system dynamic response and limits parameter adjustment.

This paper proposes a continuous control set model predictive power control (CCS-
MPPC) scheme for an indirect matrix converter. Its main contributions are:

1. CCS-MPPC combines controllable load active and reactive power, controllable input
reactive power, and fixed switching frequency output waveforms. The comparison
between the existing methods and the proposed CCS-MPPC scheme can be seen in
Table 1.

2. An optimal switching sequence to simplify the IMC commutation.
3. An active damping method is implemented for the power control system. Table 2

shows a comparison between the proposed active damping technique and existing
damping methods.
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Table 1. Comparison of existing methods and the proposed continuous control set model predictive power control
(CCS-MPPC) scheme.

Method Switching
Frequency Filters Control Variables Validation Applications

Proposed
Fixed Input and output

filters
Input reactive power, load
active and reactive power

Experiment IMCCCS-MPPC
FCS-MPC in

[12–15] Variable Input filter Input and output currents Experiment four-leg inverters [12],
four-leg MCs [13–15]

M2PC in
[16–19,21–24]

Fixed Input filter Input and output currents Experiment

DMC [16–18,21], active
rectifier [19], three-level
NPC converter [22,23],

AC–DC MCs [24]

M2PC in [20] Fixed Input filter Source reactive power and
output current Simulation IMC

Table 2. Comparison of the proposed active damping technique and existing damping methods.

Method Efficiency Modified Variables Control Strategy Notice

The proposed active
damping High

Input reactive power
and load active

power
CCS-MPPC Suitable for model predictive

power control

Passive damping in
[25,26] Low Physical

implementation SVM Physical implementation

Active damping in [27] High Input current SVM Not applicable for FCS-MPC

Active damping in
[20,28,29] limited Output current M2PC [20], FCS-MPC

[28,29]

Digital DC-blocker involved
affects the system dynamic

response and limits the
parameter adjustment

Table 3 explains the symbols used in this paper.

Table 3. Symbols in this paper.

SL The load apparent power
Si The input apparent power
qs Source reactive power
P∗L Unmodified load active power reference
Q∗L Unmodified load reactive power reference
Q∗i Unmodified input reactive power reference

∆P∗L Active damping component added into P∗L
∆Q∗i Active damping component added into Q∗i

2. Indirect Matrix Converter System Model

Figure 1 demonstrates the IMC system power circuit, where the IMC includes the
inverter and rectifier stages. An LC filter connects us to the input stage, which comprises
a capacitor C f i; an inductor L f i, whose resistance is R f i; and an output filter L f o, whose
resistance is R f o. The passive load of each phase involves RL and CL.
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Figure 1. The IMC system power circuit. 
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Figure 1. The IMC system power circuit.

From Figure 1, udc is calculated with Sri and ui as:

udc =
[

Sr1 − Sr4 Sr3 − Sr6 Sr5 − Sr2
]
ui (1)

Sri =

{
0, open state

1, closed state
(2)

ii is calculated with Sri and idc as:

ii =

 Sr1 − Sr4
Sr3 − Sr6
Sr5 − Sr2

idc (3)

Additionally, idc is calculated with Six and io as:

idc =
[

Si1 − Si4 Si3 − Si6 Si5 − Si2
]
io (4)

Six =

{
0, open state

1, closed state
(5)

The valid switching states are shown in Tables 4 and 5.

Table 4. Rectifier switching states.

Vdc iA iB iC Sr1 Sr2 Sr3 Sr4 Sr5 Sr6

VAC idc 0 −idc 1 1 0 0 0 0
VBC 0 idc −idc 0 1 1 0 0 0
−VAB −idc idc 0 0 0 1 1 0 0
−VAC −idc 0 idc 0 0 0 1 1 0
−VBC 0 −idc idc 0 0 0 0 1 1
VAB idc −idc 0 1 0 0 0 0 1

Table 5. Inverter switching states.

idc Vab Vbc Vca Si1 Si2 Si3 Si4 Si5 Si6

ia Vdc 0 −Vdc 1 1 0 0 0 1
ia + ib 0 Vdc −Vdc 1 1 1 0 0 0

ib −Vdc Vdc 0 0 1 1 1 0 0
ib + ic −Vdc 0 Vdc 0 0 1 1 1 0

ic 0 −Vdc Vdc 0 0 0 1 1 1
ia + ic Vdc −Vdc 0 1 0 0 0 1 1

0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1
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The model of the input filter is:
dis
dt = 1

L f i
(us − ui)−

R f i
L f i

is
dui
dt = 1

C f i
(is − ii)

(6)

The passive load of each phase involves RL and CL. Thus, the mathematical load
model is:  dio

dt = 1
L f o

(uo − uL)−
R f o
L f o

io
duL
dt = io

CL
− uL

CLRL

(7)

3. Continuous Control Set Model Predictive Power Control Scheme

Figure 2 demonstrates the proposed power control scheme.
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Figure 2. The CCS-MPPC scheme.

Initially, filter resonance suppression updates p∗L and q∗i . Then, input reactive, load
active, and reactive power predictions generate Qi(k + 1), PL(k + 1), and QL(k + 1), which
are predicted input reactive power, predicted load active power, and predicted load reactive
power, respectively. Thus, the input and load cost functions select the optimal vectors
Vr, Vi and duty cycles dr, di, which approach their references.

Lastly, the optimal switching sequence is applied similarly to that in SVM. The pro-
posed control strategy is introduced in detail in the following subsections:

3.1. Power Predictions

The load apparent power SL is:

SL = pL + jqL = uLic
o (8)

In (8), c represents the complex conjugate.
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Based on Equations (7) and (8), the derivation of SL is obtained:

dSL
dt = duL

dt ic
o +

dico
dt uL

= (io−uL/RL)ico
CL

+
(uc

o−uc
L−R f o ico)uL
L f o

= io ico
CL
− uc

LuL
L f o

+ uc
ouL
L f o
−
(

1
CLRL

+
R f o
L f o

)
uLic

o

(9)

Define pioo, puLL, puoL, and quoL as:

pioo = ic
oio, puLL = uc

LuL, puoL = Re(uLuc
o), quoL = Im(uLuc

o)

Here, Im(·) and Re(·) are imaginary and real parts, respectively.
From Equations (8) and (10) can be obtained as

d
dt

[
pL
qL

]
= AL

[
pL
qL

]
+ BL


pioo
puLL
puoL
quoL

 (10)

where

AL = −
[

1/CLRL + R f o/L f o 0
0 1/CLRL + R f o/L f o

]
, BL =

[
1/CL −1/L f o 1/L f o 0

0 0 0 1/L f o

]
The load model is obtained with the Euler formula:

[
pL[k + 1]
qL[k + 1]

]
= ΦL

[
pL[k]
qL[k]

]
+ ΓL


pioo[k]
puLL[k]
puoL[k]
quoL[k]

 (11)

In (11), ΦL = eAL ·Ts , ΓL = AL
−1(ΦL − I)BL.

The input apparent power Si is:

Si = pi + jqi = uiic
s (12)

Based on Equations (6) and (12), the derivation of Si is obtained

dSi
dt = dui

dt ic
s +

dics
dt ui

= (is−ii)ics
C f i

+
(uc

s−uc
i−R f i ics)ui
L f i

= isics
C f i
− uc

i ui
L f i

+ uiuc
s

L f i
− ii ics

C f i
− R f iui ics

L f i

(13)

Define qiis and quis as:

qiis = Im(iiic
s), quis = Im(uiuc

s)

Thus,
dqi
dt

= Im
(

dsi
dt

)
= −

R f i

L f i
qi −

1
C f i

qiis +
1

L f i
quis (14)

Similar to Equation (11), the input side discrete state-space equation is obtained:

qi[k + 1] = Φiqi[k] + Γi
[

qiis[k] quis[k]
]T (15)

where Φi = e
−

R f i
L f i

Ts
, Γi = −

L f i
R f i

(Φi − 1)
[
− 1

C f i
1

L f i

]
.
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As shown in Figure 1, source reactive power qs can be obtained as:

qs = Im(usic
s) = Im

[(
ui + R f iis + L f i

dis
dt

)
ic
s

]
= Im

(
uiic

s + L f i
dis
dt ic

s

)
= qi + L f i

dis
dt ic

s

(16)

From Equation (16), it is obvious that qi and qs are different because of L f i
dis
dt , and

usually L f i
dis
dt can be ignored compared to uS in the LC filter. Hence, qi and qs are equal. In

addition, qs usually relies on the prediction of is, which is an indirect control. However,
from Equation (15), qi can be directly predicted with the differential equation, which
indicates better controllability.

3.2. Cost Function Optimization

The proposed control strategy assesses two cost functions related to two active vectors.
Suppose that the cost function of Vr1 is gr1, and the cost function of Vr2 (as shown in
Figure 3a, Vr1 and Vr2 are adjacent vectors) is gr2; thus

dr1 = gr2/(gr1 + gr2)
dr2 = gr1/(gr1 + gr2)

dr1 + dr2 = 1
(17)

gr = (q∗i − qi(k + 1))2 (18)

In (17) and (18), gr represents errors between the input reactive power reference and
its predicted value; dr1 and dr2 are the duty cycles of Vr1 and Vr2, respectively.

With the duty cycles dr1, dr2, the total cost function gr is:

gr = dr1gr1 + dr2gr2 (19)

In Figure 3b, the implementation of the inverter is similar to that of the rectifier,
whereas Vi0 should be added as well as two nonzero vectors. Suppose the cost function of
Vi0 is gi0, the cost function of Vi1 is gi1, and the cost function of Vi2 (Vi1 and Vi2 are adjacent
vectors) is gi2; thus, 

di0 = gi1gi2/(gi0gi1 + gi0gi2 + gi1gi2)
di1 = gi0gi2/(gi0gi1 + gi0gi2 + gi1gi2)
di2 = gi0gi1/(gi0gi1 + gi0gi2 + gi1gi2)

di0 + di1 + di2 = 1

(20)

In (20), di0, di1, and di2 are the duty cycles of Vi0, Vi1, and Vi2, respectively; and gi is:

gi = λpL(P∗L − pL(k + 1))2 + λqL(Q
∗
L − qL(k + 1))2 (21)

In (21), pL(k + 1), qL(k + 1) represent the load active power predicted value and the
load reactive power predicted value, respectively; and λpL ,and λqL are weighted factors.
With the duty cycles di0, di1 , and di2, gi is calculated as:

gi = di0gi0 + di1gi1 + di2gi2 (22)
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3.3. Optimal Switching Sequence

This paper proposes an optimal switching sequence to simplify the IMC commutation,
as shown in Figure 4.
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d0 ∼ d7 are calculated as: 

d0 = d3 = di0dr1
4

d1 = di1dr1
2

d2 = di2dr1
2

d4 = di0dr2
4

d5 = di2dr2
2

d6 = di1dr2
2

d7 = di0dr2
2

(23)

The duty cycles dr1 ∼ dr2 are calculated as:{
dr1 = 2(2d0 + d1 + d2)

dr2 = 2(d4 + d5 + d6) + d7
(24)

From Equations (23) and (24), it is obvious that the rectifier switching states change all
the time, when idc is zero, simplifying the IMC commutation strategy.

4. Input Filter Resonance Suppression

Figure 5 shows three active damping methods. The active damping method I is shown
in Figure 5a [25–27], including the virtual resistor Rvd. The second method is shown in
Figure 5b [20,28,29], where a virtual branch composed of Rvd in series with a virtual
capacitor Cvd is considered in parallel with C f i. Owing to the fundamental frequency
components contained in the damping current ivd, the effectiveness of methods I and II
is limited. The proposed active damping method is shown in Figure 5c, where a virtual
branch with a virtual voltage source of us, Rvd, and jωsL f i Is is considered. In jωsL f i Is, ωs
is the source frequency, L f i is the input filter inductance, and Is denotes the fundamental
component in is, which is calculated as [30]

Is = (P∗L + jQ∗i )us/‖us‖2 (25)Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
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From Figure 5c, ivd can be calculated as:

ivd =
ui − us + sjωsL f i Is

Rvd
(26)

where the items us and sjωsL f i Is can remove the fundamental component of ivd, and thus
the control accuracy will not degrade, and effectiveness will be improved.

The small-signal transfer function can be expressed as:

G(s) =
1

s2L f iC f i + s
(

L f i/Rvd +
(

1 + R f i/Rvd

)
C f i

)
+ 1 + R f i/Rvd

(27)

In Figure 6, the damping coefficient increases when Rvd decreases. In addition, the
high-frequency magnitude remains the same. Thus, both good filtering and damping
performance are realized.
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is is calculated as:
is = ii + iC f i + ivd (28)

Thus, the proposed method is implemented by injecting ivd into is. In this method,
CCS-MPPC controls power directly and the source current indirectly, and si is modified as:

si = uiiC
s = ui

(
iC
i + iC

C f i

)
+ uiiC

vd (29)

Therefore, the real part of uiiC
vd should be added to the reference of pi and the imaginary

part of uiiC
vd should be added to the reference of qi, that is

p∗i = P∗i + Re(uiic
vd) (30)

q∗i = Q∗i + Im(uiic
vd) (31)

Note that the proposed CCS-MPPC strategy scheme controls pL directly rather than
pi. Thus, (30) should be modified. The reference of pL can be modified as:

q∗i = Q∗i + Im(uiic
vd) (32)

Finally, the proposed method is implemented by adding the real part of uiiC
vd to the

reference of pi, and the imaginary part of uiiC
vd to the reference of qi.

5. Experimental Results

Figure 7 shows the IMC prototype designed for verification, and Table 6 shows the
experiment parameters. The digital controller is composed of an Actel ProASIC3 FPGA
and a Texas Instruments C6713 DSP [31].
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Table 6. Experimental parameters.

Vs AC voltage amplitude 141 V
C f i Input filter capacitor 22 µF
L f i Input filter inductor 5 mH
Lfo Output filter inductor 2 mH
CL Load capacitor 10 µF
RL Load resistor 20.25 Ω
fs Sampling frequency 10 kHz

λpL Weighting factor 1
λqL Weighting factor 1

Input filter resonances are divided into series (shown in Figure 8a) and parallel
resonance (illustrated in Figure 8b) [20,25–29]. The resonant frequency can be calculated
with (33) and was designed near the seventh harmonic in this experiment.

fres =
1

2π
√

LC
≈ 7(pu) (33)
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Firstly, the FCS-MPC strategy for an IMC without input filter resonance suppression
(IFRS) and the optimal switching sequence (OSS) was evaluated, with results shown in
Figure 9. In Figure 9, isA is highly distorted and THD is 38.83%, mainly related to the small
damping coefficient. In addition, usA, uLU , and ioU are affected by the large oscillations
of isA. In Figure 9, resonance needs to be suppressed in terms of power quality for the
IMC system.
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Secondly, the experimental results of FCS-MPC with IFRS are demonstrated in Figure 10.
The waveform of isA is significantly improved and its THD is 12.51%; THDs of the load
current and voltage are also improved by 7.66% and 4.48%, respectively. In addition, the
variable switching frequency phenomenon is shown in Figure 10b–d. In Figure 11, the
effects of IFRS with FCS-MPC are demonstrated. In this situation, the input reactive power
reference Q∗i is set to 0 Var, and the load active power reference P∗L and reactive power
reference Q∗L are set to 450 W and 60 Var, respectively.

Thirdly, experimental results of the CCS-MPPC strategy with IFRS and the OSS are
demonstrated in Figures 12 and 13. In this situation, the weighting factors λpL and λqL in
Equation (21) are both set to one, since pL and qL are equally important. The waveform
of isA is significantly improved and its THD is 7.45%; the THDs of uLU and ioU are also
improved by 6.59% and 3.13%, respectively. The fixed switching frequency phenomenon
is observed in Figure 12b–d. At the same time, isA is in phase with respect to usA, which
indicates qi is minimized with Equation (18). According to [30], P∗L and Q∗L should satisfy
the following Equation (34): {

P∗L = 3U∗Lm
2/2RL

Q∗L = 3π foCLU∗Lm
2 (34)

where U∗Lm is the reference of the load voltage amplitude. Thus, based on Equation (34),
U∗Lm is obtained at 77.94 V, and fo is obtained at 50 Hz. In Figure 12, the actual amplitude
of the load voltage is 75.41 V, which is 3.26% less than its reference, and the actual output
frequency is 49 Hz, which is 2% less than its reference. The reasons for this are as follows:

(1) According to Equations (8)–(21) and (34), the proposed control algorithm controls uL
and fo indirectly and controls qL and pL directly. The results should be better with
the common active load type, where the frequency and amplitude do not need to
be controlled.

(2) The effectiveness of predictive control strategies rely on model accuracy; however,
model parameter errors always exist due to the limited capabilities of measuring in-
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struments and variations of such parameters with respect to the operating conditions.
This effect can be mitigated by improving system parameter robustness [32].
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In addition, define the mean power Mp as:

Mp =
1
m

m

∑
k=1

p(k) (35)

and define the percentage mean power reference tracking error %err,p as the absolute
difference between actual value of power and its reference:

%err,p =

∣∣∣∣∣ 1
m ∑m

k=1 p(k)
P∗

− 1

∣∣∣∣∣ (36)

The comparisons between the FCS-MPC and the proposed CCS-MPPC are shown in
Table 7.
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Table 7. Comparisons between FCS-MPC and CCS-MPPC.

M qi
(Var) %err,pL

%err,qL

FCS-MPC 15.44 5.31% 7.06%

CCS-MPPC 6.63 3.29% 4.52%

Figure 14 demonstrates the waveforms of udc and idc with FCS-MPC, and CCS-MPPC
with the OSS. As shown in Figure 14a, the rectifier switching state changes when idc is not
zero (red line), and, thus, switching losses are increased. However, with the proposed OSS,
the rectifier switching state changes when idc is zero (red line) in Figure 14b, simplifying
the IMC commutation.
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Figure 14. Waveforms of idc and udc: (a) with FCS-MPC; (b) with CCS-MPPC and OSS.

Finally, the transient results of CCS-MPPC with IFRS and OSS are demonstrated in
Figures 15–20. Q∗L is changed between 60 Var and 30 Var in Figure 16, while P∗L remains
unchanged. In Figure 18, P∗L is changed between 450 W and 225 W, while Q∗i remains
unchanged. In Figure 20, P∗L is changed between 450 W and 225 W, and Q∗i is changed
between 60 Var and 30 Var at the same time. Accordingly, Figures 15, 17 and 19 show
the waveforms of usA, isA, uLU , and ioU . As indicated in Figures 15–20, isA, uLU , and ioU
demonstrate almost sinusoidal waveforms, and isA is in phase with usA, which indicates qi
is minimized with Equation (18). The dynamic responses are quick.
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Figure 20. CCS-MPPC with IFRS and OSS for the IMC, where P∗L steps between 450 and 225 W, and
Q∗i steps between 60 and 30 Var.

6. Conclusions

A continuous control set model predictive power control strategy was proposed. The
load reactive power, the load active power, and the input reactive power are controlled at
simultaneously. This control strategy can obtain output waveforms with fixed switching
frequency.

FCS-MPC does not involve a modulation scheme, in which the optimal switching
states may continue to be optimal for the following several sampling instances, and thus the
switching frequency is variable, resulting in broad harmonics. To overcome this problem, a
suitable vector modulation is added to the model predictive power control by operating at
a fixed switching frequency. The CCS-MPPC strategy firstly derives the power prediction
model for the IMC. The switching frequency is fixed using two rectifier current vectors and
three inverter voltage vectors during a fixed switching interval. The two cost functions
in CCS-MPPC differ: the rectifier stage is in relation to input reactive power, and the
inverter stage is in relation to load reactive and load active power. Additionally, an optimal
switching sequence is proposed to simplify the IMC commutation.

Input filter resonance has been an important issue facing predictive control schemes.
To mitigate this problem, an active damping method was proposed; the strategy can be
realized by adding the real part of uiiC

vd to the reference of pi, and the imaginary part of
uiiC

vd to the reference of qi.
Experimental results illustrated that the proposed control strategy features controllable

input reactive power, controllable load active and reactive power with good tracking to
their references, and fixed switching frequency output waveforms. The proposed active
damping method effectively suppresses the input filter resonance with better dynamic
response and parameter adjustment than the methods in [20,28,29].
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