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Abstract: This paper describes a simple method of approximating hysteresis changes in electrical
steel sheets. This method is based on assumptions that flux density or field strength changes are
a sum or a difference of functions that describe one curve of the limiting hysteresis loop and a
certain ‘transient’ component. Appropriate formulas that present the flux density as functions of
the field strength and those that present inverse dependencies are proposed. An application of
this approximation requires knowledge of the measured limiting hysteresis loop and a few minor
loops. Algorithms for determining changes in the flux density or field strength are proposed and
discussed. The correctness of the proposed approximation of hysteresis changes was verified through
a comparison of measured hysteresis loops with the loops calculated for several different excitations
of the magnetic field occurring in dynamo and transformer steel sheets. Additionally, an example of
the application of the proposed approximation of hysteresis changes is discussed in the paper. The
proposed approximation of hysteresis changes is recommended for numerical calculations of the
magnetic field distribution in dynamo and transformer steel sheets.

Keywords: electrical steel sheets; field strength; flux density; hysteresis models; magnetic hysteresis

1. Introduction

The hysteresis phenomenon is a characteristic feature of any magnetic circuit contain-
ing a ferromagnetic material. This phenomenon is related to a certain delay in changes
in the magnetic flux density in relation to changes in the magnetic field strength in this
material. The hysteresis mechanism is quite well known [1–7]; however, the formulation of
an appropriate mathematical model based on the knowledge of the phenomena describing
the magnetization process is still a complex issue. Therefore, for many decades, intensive
research has been carried out to develop a hysteresis model that would be sufficiently
accurate and useful in the field calculations of ferromagnetic materials.

On a micro scale, the study of magnetization processes is often based on the Landau–
Lifschitz–Gilbert equation, which describes the behavior of a single magnetic dipole in an
external magnetic field [4–6,8]. The original equation formulated by Landau–Lifschitz was
modified by Gilbert to take into account the damping conditions of the magnetic moment
rotation, which in the steady state will occupy a position along the direction of the magnetic
field strength. As stated in a previous study [9], the calculation results obtained on the basis
of the Landau–Lifschitz–Gilbert equation “can be averaged to provide hysteresis curves
of material”. However, it should be mentioned that hysteresis curves of ferromagnetic
materials are also often described by different empirical fitting procedures.

The best known models, which are based on energy relationships, are the Stoner–
Wohlfarth and Jiles–Atherton models. The former presents the magnetization process
as rotations of magnetic moments of non-interacting single-domain particles [10–12]. To
take into account the interaction of particles, the concept of the effective field has been
introduced, which is the sum of the field strength of the external magnetic field and the
product of the magnetization and a certain dimensionless mean field parameter [4,8,10–13].
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The resultant magnetization vector in the Stoner–Wohlfarth model is a sum of the magne-
tizations of single particles aligned along specified directions. However, displacements
of the domain wall are not considered. The application of this model for macroscopic
samples must specify a certain number of directions for a particular ferromagnetic material.
Therefore, computation times are relatively long, and they depend directly on the number
of specified directions.

The assumption that the energy supplied to a sample of an isotropic polycrystalline
material is a sum of the change in the magnetostatic energy and hysteresis loss is the basis
for the Jiles–Atherton model [5,9,11,12]. This model requires five physical parameters
to describe hysteresis curves. However, in many instances, these parameters must be
modified to obtain an effective representation of the measured waveforms. One difficulty
is the determination of an anhysteretic curve because this curve is a theoretical curve. The
Jiles–Atherton model is used in modelling relatively narrow hysteresis loops. Frequently,
the model parameters should be determined for almost each amplitude of the field strength.
This causes a certain inconvenience when using this model; nevertheless, this model and
its modifications are still used [14–25].

The phenomenological Preisach model assumes that a considered ferromagnetic
material consists of particles (hysterons), which are magnetized to a positive or negative
saturation. A characteristic feature of this model is the Preisach triangle consisting of the
following two parts: the first part refers to positively magnetized particles, and the second
part refers to negatively magnetized particles. A certain distribution function, whose
determination is time-consuming, describes how many hysterons are located at particular
points of the Preisach triangle. This model enables the creation of any hysteresis or minor
loop, depending on an appropriate distribution function. However, long calculation
times and dependence on the degree of Preisach triangle discretization are significant
disadvantages of this model. The Preisach model is still modified and often used in
different applications [26–36].

Hysteresis models formulated with the use of special operators, the so-called ‘play’
and ‘stop’ hysterons, are also phenomenological [37]. These types of models were devel-
oped by Matsuo et al. [38–41]. Some hysteresis models are based on certain differential
equations that relate the magnetic field strength to the magnetic flux density. However,
these equations do not result directly from the mechanism of phenomena occurring in the
magnetization process. The Hodgdon model belongs to this category [11,42]. The deter-
mination of functions occurring in the Hodgdon model is time-consuming and requires a
series of tests. Note that slight changes in the parameters of these functions significantly
affect the shape of the calculated hysteresis loops.

There are other, less known hysteresis models in the literature. One of them is the
Globus model, which assumes that the behavior of the entire ferromagnetic sample can
be reduced to one spherical grain [12]. This group also includes the hysteresis model
developed by Chua [11]. In this model, the resultant magnetic field strength is the sum
of the field strength resulting from the hysteresis-free magnetization curve and the field
strength dependent on the derivative of the magnetic flux density versus time; in fact, the
Chua model is a dynamic model. To describe changes in electrical steel sheets, the Pry and
Bean domain model is also applied [43,44].

Calculations of the magnetic field distribution in electrical steel sheets often require
consideration of the hysteresis phenomenon. These sheets are used in the construction
of the magnetic cores of transformers, rotating machines, and other electrical devices. In
many scenarios, a certain model of the hysteresis phenomenon must be considered when
calculating the magnetic field distribution and hysteresis loss of a tested magnetic circuit.
Instead of one unambiguous relationship, these models propose different dependencies
between the flux density and field strength as the hysteresis changes. However, the
formulation of a suitable mathematical hysteresis model based on the hysteresis mechanism
is still a relatively difficult problem. Some magnetic hysteresis models refer to the so-called
dynamic hysteresis loop, which considers the effects of eddy currents on changes in
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flux density. However, in many proposals, eddy currents are considered using separate
differential equations [45,46].

It should be clearly emphasized that the purpose of this paper is not to formulate
a new hysteresis model but rather to present a proposal for approximation of hysteresis
changes; this approximation should be easily applicable to equations describing the mag-
netic field distribution. In calculations, the area of the magnetic field is divided into several
dozen or even more thousand elementary segments. Owing to the nonlinear nature of
electrical sheets, the magnetic flux density in individual segments changes in different
ways. Therefore, the hysteresis phenomenon should be included in all elementary segments
concerning a considered ferromagnetic material.

2. Approximation of Flux Density Changes

Each hysteresis model briefly discussed in the previous chapter has advantages and
disadvantages. However, note that any model of the magnetic hysteresis should have the
following properties:

• Easy determination of model parameters;
• Possibility of calculations for excitations using a constant component;
• Possibility of formulating an inverse model indicating the field strength as a depen-

dence on the flux density;
• Relatively simple numerical algorithm;
• Short times for numerical calculations;
• Easy application of the selected hysteresis model to equations describing the magnetic

field distribution.

Irreversible displacements of domain walls are the main cause of the hysteresis phe-
nomenon in soft magnetic materials; these displacements are caused by changes in field
strength in a sample of ferromagnetic materials. When the field strength values are low,
then the magnetization process is reversible. However, for most soft ferromagnetic materi-
als, particularly for electrical steel sheets, the effect of the reversible magnetization can be
neglected. Notably, in a high-value range of the field strength, the magnetization process is
also reversible, but then this process refers to reversible rotations of magnetization vectors
towards the external magnetic field.

It follows from the nature of the hysteresis phenomenon that any point P with coor-
dinates (H0, B0) inside the limiting hysteresis loop moves along a certain trajectory to the
bottom or upper limiting curve depending on changes in the field strength (Figure 1). This
means that the difference B0 − Bb(H0) between the initial flux density B0 at point P and the
flux density value Bb(H0) on the bottom limiting curve determined for H0 should decrease
to zero if the field strength H increases. Therefore, the difference B0 − Bb(H0) can be treated
as an ‘initial value’ of the certain transient component of changes in the flux density of
point P moving to the bottom limiting curve Bb(H).

In this paper, the subscripts B and H concern parameters which are related to changes
in the flux density or magnetic field, respectively; subscripts b and u refer to the bottom or
upper curve of the hysteresis loop, respectively, and the subscript r is used if the magnetic
flux or field strength increases, otherwise the subscript d is used; for example, the parameter
aBur relates to the case when the flux density B is a function of the field strength, u refers
to the upper curve of the limiting hysteresis loop, and r is used when the flux density
increases; in turn, the parameter aHbd relates to the case when the field strength H depends
on the flux density, b refers to the bottom curve of the limiting hysteresis loop, and d is
used when the field strength decreases.
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Figure 1. Typical hysteresis loop of electrical steel sheets; Bres—residual flux density, Hc—coercive
field.

Using some analogy to transient states occurring in electrical circuits, where the
transient component of a certain quantity decreases and its changes are described by means
of an exponential function, the flux density changes of point P(H0,B0) can be described as
follows when the field strength H increases:

Br(H) = Bb(H) + ∆Br exp[− kBr(H)(H − H0)], (1)

where Bb(H) is the bottom curve of the limiting hysteresis loop, ∆Br = B0 − Bb(H0), H0 and
B0 denote the coordinates of point P(H0,B0), and kBr is an attenuation coefficient of the
transient component when H increases.

The second component of Equation (1) is a certain pseudotransient component of
the changes in flux density. The coefficient kBr(H) affects the ‘dynamics’ at which point
P moves to the bottom limiting hysteresis curve. Generally, this coefficient is a nonlinear
function of H.

When H decreases, the difference Bu(H0) − B0 between the flux density value Bu(H0)
on the upper limiting curve, determined for H0, and the initial flux density B0 at point P
should decrease to zero. Therefore, the difference Bu(H0) − B0 can be treated, similarly
to previously, as a certain initial value of the transient component of changes in the flux
density of point P moving to the upper limiting curve Bu(H). In this case, the change in the
flux density Bd(H) of point P can be approximated as follows:

Bd(H) = Bu(H)− ∆Bd exp[ kBd(H)(H − H0)], (2)

where Bu(H) denotes the upper limiting curve, ∆Bd = Bu(H0) − B0, and kBd(H) is an
attenuation coefficient of the transient component when H decreases.

Note that for decreasing values of the field strength H, the difference H-H0 is negative.
To apply this description of hysteresis changes, the limiting hysteresis loop must be

measured for a considered electrical sheet. Here, when only the coercive field, residual flux
density, and saturation flux density are known, curves of the limiting hysteresis loop can be
approximated using, for example, an arctg function which considers the abovementioned
parameters.

The coefficients kBr and kBd depend on the position of point P(H0,B0). Owing to the
nature of the hysteresis phenomenon, the derivative dBr/dH on the trajectory of point
P(H0,B0) for increasing values of H is in the range (aBur,aBbr), where aBur describes the
value of this derivative when point P(H0,B0) is situated on the upper limiting curve Bu(H)
(Figure 1), and aBbr denotes this derivative when point P(H0,B0) is situated sufficiently close
to the bottom hysteresis curve, i.e., to the curve to which it moves when H increases. Thus,
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aBbr is equal to the derivative dBb/dH of the bottom curve at point Pr (Figure 1). The value
aBur is determined based on several measured symmetrical hysteresis loops. Denoting the
derivative dBr/dH, whose value depends on the position of the point P(H0,B0) as aBr, it
can be expressed as follows:

dBr

dH
= aBr = aBur + (aBbr − aBur) (dBr)

pB , (3)

where dBr = dB1/(dB1 + dB2) (Figure 1).
If the field strength H increases and the initial position of point P is close to the upper

limiting curve Bu(H), then aBr is almost equal to aBur because dBr is close to 0. In turn, when
point P is close to the bottom curve Bb(H), dBr tends to 1, and aBr is almost equal to aBbr.
This means that point P moves along the bottom limiting curve Bb(H); these are extreme
cases resulting from Equation (3).

The dimensionless exponent pB affects changes in aBr, and it should be selected in
such a manner that the differences between the calculation results and real transients are
the lowest; frequently, this exponent is higher than 1. The exponent pB has higher values
when the shape of the hysteresis loop is similar to a rectangle. Note that the exponent pB
should have the same value independently on the field strength changes.

To calculate the flux density value Br(H) for the next increasing field strength H, it is
necessary to determine the value of the coefficient kBr based on the flux density B obtained
from the previous solution. Assuming that the coefficient kBr has a constant value in a
sufficiently small neighborhood of the value H0, then, based on Equation (1), the following
relationship can be expressed for H = H0:

dBr(H0)

dH
=

dBb(H0)

dH
− kBr(H)∆Br (4)

Because the derivative dBr(H0)/dH, determined for H0, is equal to aBr, the coefficient
kBr(H) is determined using the following expression:

kBr(H) =
dBb(H0)

dH − aBr

∆Br
. (5)

The coefficient aBr for point P(H0,B0) is calculated based on Equation (3), and then the
coefficient kBr(H) is determined using Equation (5). The value of this coefficient is inserted
into Equation (1), and for the next H, the new flux density Br(H) is calculated.

Denoting the derivative dBd/dH, whose value also depends on the position of the
point P(H0,B0), as aBd (similar to aBr), it can be written for decreasing field strength as
follows:

dBd
dH

= aBd = aBbd + (aBud − aBbd) (dBd)
pB (6)

where dBd = dB2/(dB1 + dB2), aBbd is the value of derivative dBd/dH if the point (H0,B0) is
situated on the bottom limiting curve Bb(H), and aBud is equal to derivative dBd/dH when
the point P(H0,B0) is located sufficiently close to the upper hysteresis curve (point Pd in
Figure 1). For example, Figure 2 shows the dependencies of the parameters aBr and aBd on
H for B0 = 0 determined for dynamo sheet M530-50A and transformer sheet M120-27S; for
this value of B0, the field strength can change in the range (−Hc,Hc). Note that the curves
shown in Figure 2 are similar; however, the ranges of the field strength and flux density
changes are different.
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Figure 2. Dependencies of parameters aBr and aBd on the field strength H0 for B0 = 0: (a) dynamo sheet M530-50A; (b)
transformer sheet M120-27S.

Similarly, to calculate the flux density value Bd(H), according to Equation (2), for the
next decreasing field strength H, it is necessary to determine the coefficient kBd based on
the flux density B obtained from the previous solution. Assuming that the coefficient kBd
has a constant value in a sufficiently small neighborhood of the value H0, then, based on
Equation (2), the following relationship can be written for H = H0:

dBd(H0)

dH
=

dBu(H0)

dH
− kBd(H)∆Bd. (7)

The derivative dBd(H0)/dH, determined for H0, is equal to aBd, so the coefficient kBd(H)
is determined as follows:

kBd(H) =
dBu(H0)

dH − aBd

∆Bd
. (8)

The coefficient aBd for point P(H0,B0) is calculated based on Equation (6), and then
the coefficient kBd(H) is determined using Equation (8). The value of this coefficient is
inserted into Equation (2), and for the next decreasing value H, the new flux density Bd(H)
is calculated.

Note that the coefficients kBr and kBd are not selected a priori, but they are numerically
determined for the values aBr and ∆Br or aBd and ∆Bd determined in the previous calculation
step. Before calculations, the value of the exponent pB must be selected; the main criterion
is the comparison between calculated minor loops for several ranges of the field strength
changes and the corresponding measured loops.

It is worth noting that the parameter aBbd is equal to parameter aBur; it significantly
simplifies the procedure of parameter determination of the proposed approximation of
hysteresis changes. Numerical calculations performed for different electrical sheets and
different excitations indicate that satisfactory results are obtained assuming that parameters
aBur and aBbd are equal to zero; then, Equations (3) and (6) simplify to the following form:

aBr = aBbr (dBr)
pB , aBd = aBud (dBd)

pB . (9)

With such a simplification, it is only necessary to determine the value of the parameter
pB and to introduce the functions describing the limiting hysteresis loop of a considered
electrical steel sheet into the calculation algorithm. It is advantageous when it can be
assumed that the coefficients kBr and kBd have constant values for any external excitations;
then, the calculation times are shorter, but differences between the measured and approxi-
mated flux density values are greater than in the case when these coefficients change their
value depending on H.

The distances between point P and the limiting hysteresis curves are determined
for initial point P(B0,H0). Depending on changes in H, aBr and aBd are calculated. Next,
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the coefficients kBr or kBd are determined, and a new value of the flux density Br or Bd is
calculated. The algorithm for determining changes in flux density is shown in Figure 3.
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The curves of the limiting hysteresis loop (described by appropriate analytical func-
tions or presented by means of array functions) of the considered steel sheet should be
introduced into the algorithm. The coefficient aBur (aBbd is equal to aBur) is determined
on the basis of several measured minor loops, or these coefficients are assumed to be
equal to zero. The parameter pB is selected by comparing several measured loops with
approximated curves. Depending on changes in the field strength, the flux density value
Br(H) or Bd(H) is determined for the new value of H. Note that the proposed approximation
requires determining the limiting hysteresis curves and only two parameters aBur and pB,
unlike, e.g., the Jiles–Atherton model for which five parameters must be determined.

3. Approximation of Field Strength Changes

In numerical calculations particularly involving magnetic field distributions in elec-
trical steel sheets, an inverse approximation H = f (B) of the hysteresis loop is frequently
applied. In those calculations, the vector potential is an unknown variable in the equa-
tion system describing the magnetic field distribution. In this approximation, the bottom
limiting hysteresis curve in the approximation B = f (H) becomes the upper limiting curve
Hu = f (B), and conversely, the previous upper hysteresis curve becomes the bottom limiting
curve Hb = f (B). Any point P with coordinates (B0,H0) inside the inverse limiting hysteresis
loop will move along a certain trajectory to the bottom or upper limiting curve depending
on changes in the flux density B (Figure 4). This means that the difference Hu(B0)−H0
between the field strength value Hu(B0) (on the upper hysteresis curve) and the initial
field strength H0 at point P decreases to zero if the flux density B increases. Similar to
approximation B = f (H), the difference Hu(B0) − H0 can be treated as an ‘initial value’ of
the certain transient component of changes in the field strength of point P moving to the
upper limiting curve Hu(B).
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When B increases, the equation describing field strength changes can have the follow-
ing form:

Hr(B) = Hu(B)− ∆Hr exp[− kHr(B − B0)], (10)

where Hu(B) is the upper curve of the limiting hysteresis loop (as a function H = f (B)),
∆Hr = Hu(B0) − H0, and kHr denotes an attenuation coefficient of a ‘transient’ component
when B increases (Figure 4). The second component of Equation (10) is a certain pseudo-
transient component of the changes in field strength.

When B decreases, the difference H0 − Hb(B0) between the initial field strength H0 at
point P and the field strength value Hb(B0) on the bottom limiting curve Hb(B) (determined
for B0) should decrease to zero. Therefore, the field strength H for decreasing values of B
can be expressed as follows:

Hd(B) = Hb(B) + ∆Hd exp[kHd(B − B0)], (11)

where Hb(B) is the function describing the lower curve of the limiting hysteresis loop,
∆Hd = H0 − Hb(B0), and kHd can be considered an attenuation coefficient of a ‘transient’
component when B decreases.

Similar to the previous equations, the coefficients kHr and kHd are first dependent on the
position of point P(B0,H0). The derivative dHr/dB is in the range (aHur,aHbr) for increasing
values of B. The parameter aHur is equal to the value of the derivative dHu(B0)/dB when
the initial point P(B0,H0) is located on the upper limiting curve Hu(B), and the parameter
aHbr is equal to the derivative dHr(B0)/dB when the point P(B0,H0) is sufficiently close to
the bottom curve Hb(B). Similar to the previous derivations, the value of aHbr is determined
based on measurements of several symmetric hysteresis loops.

Assuming that aHr is equal to the derivative dHr/dB, the coefficient aHr can be ex-
pressed as follows:

dHr

dB
= aHr = aHbr + (aHur − aHbr) (dHr)

pH , (12)

where dHr = dH1/(dH1 + dH2) (Figure 4). Note that in this approach, H0 − Hb(B0) is
identically dH1, and Hu(B0) − H0 is identically dH2.

If B increases and the initial position of point P is close to the bottom limiting curve
Hb(B), then aHr is almost equal to aHbr because dHr is close to 0. In turn, when point P is
close to the upper limiting curve Hu(B), then dHr tends to 1 and aHr is almost equal to aHur;
then, point P moves along the upper curve Hu(B). The exponent pH in Equation (12) is less
than 1, and it should be experimentally determined for a tested electrical steel sheet.
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To calculate the field strength Hr(B) for the next increasing flux density B, it is necessary
to determine the value of the coefficient kHr based on the value H obtained from the previous
solution.

Assuming that kHr has a constant value in a certain sufficiently small neighborhood of
the flux density B0, then based on Equation (10), the following relationship can be obtained:

dHr(B0)

dB
=

dHu(B0)

dB
+ kHr∆Hr. (13)

The derivative dHr(B0)/dB is equal to aHr; thus, the coefficient kHr can be calculated
as follows:

kHr =
aHr − dHu(B0)

dB
∆Hr

. (14)

The value aHr for the point P(H0,B0) is determined based on Equation (12), and the
next value of the coefficient kHr is calculated using Equation (14). This value is considered
in Equation (10), and a new field strength value Hr(B) is calculated for the next value B.

When B decreases, the coefficient aHd can be expressed as follows:

dHd
dB

= aHd = aHud + (aHbd − aHud) (dHd)
pH , (15)

where dHd = dH2/(dH1 + dH2) and aHbd is equal to the derivative dHd/dB when point
P(H0,B0) is located on the bottom limiting curve Hb(B).

To calculate the field strength Hd(B) for the next decreasing flux density B, the coeffi-
cient kHd should be determined based on the field strength H obtained from the previous
solution. Assuming that the coefficient kHd has a constant value in a sufficiently small
neighborhood of the value B0, then, based on Equation (11), the following relationship can
be written for B = B0:

dHd(B0)

dB
=

dHb(B0)

dB
+ kHd(B)∆Hd. (16)

In this case, the derivative dHd(B0)/dB is equal to aHd, so the coefficient kHd can be
determined as follows:

kHd =
aHd −

dHb(B0)
dB

∆Hd
. (17)

In this approximation, the parameters aHbr and aHud are also equal to each other (similar
to the previous approximation); however, they cannot be omitted as in the approximation
B = f (H). In practice, they are equal to the reciprocal of the nonzero parameter aBur occurring
in Equation (3).

The distances between point P and the limiting hysteresis curves are calculated for the
given position of point P(B0,H0). The coefficients aHbr and aHud are determined depending
on the flux density changes, and aHr and kHr or aHd and kHd are calculated. This enables
the calculation of a new field strength value Hr or Hd. The dependencies of parameters aHr
and aHd on B for H0 = 0 are shown in Figure 5. Analogous to Figure 2, the curves shown in
Figure 5 are similar in shape; however, the ranges of changes in both the flux density and
field strength are different. The algorithm to determine the field strength changes is similar
to that shown in Figure 6.
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Figure 6. Algorithm to determine changes in the field strength.

Similar to the algorithm concerning the previous approximation, the curves of the
limiting hysteresis loop in version H = f (B) should be introduced into this algorithm. As
previously said, the coefficient aHbr (aHud is equal to aHbr) is equal to the reciprocal of the
nonzero parameter aBur occurring in Equation (3). The parameter pH is determined by
comparing several measured loops with approximated curves. Depending on changes in
the flux density, the field strength Hr(B) or Hd(B) is determined for the new value B.

4. Properties of the Proposed Approximation Methods

Figure 7 shows a family of first-reversal curves calculated for increasing and decreasing
values of the field strength in transformer sheet M120-27S (magnetization along the rolling
direction); qualitatively similar curves have the non-oriented dynamo sheet M530-50A, the
difference mainly concerns coercivity values. Regardless of the initial position of point P,
the trajectories of points tend to the bottom or upper limiting curve; this conclusion refers
to both approximations.
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Figure 7. Family of the first-reversal curves of transformer sheet M120-27S: (a) increasing values of the field strength;
(b) decreasing values of the field strength.

Examples of minor loops for different changes in the field strength calculated using
the approximation B = f (H) are shown in Figure 8a. For comparison, Figure 8b shows
minor loops determined based on the inverse approximation H = f (B) for the same range of
changes in both the field strength and flux density. The shapes of the presented hysteresis
loops vary slightly; however, the average values of both the field strength and flux density
should be the same. Note that the inverse approximation H = f (B) is formulated similarly
to the basic approximation B = f (H) and is not created by transforming the dependencies
involving the basic approximation.
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Figure 9 shows examples of minor loops when H has a constant component. Regard-
less of the initial point P1 or P2, the minor loops should be the same in steady states. The
minor loops reach a final course after several cycles of changes in the field strength. Note
that the minor loops can be determined using both the Preisach and Jiles–Atherton models;
however, the latter model must be extended to calculate minor hysteresis loops. Each
trajectory of point P (Figures 1 and 4) is uniquely defined by the initial location of point P;
thus, the first Madelung’s rule is considered to be satisfied [47,48]. The second Madelung’s
rule states that each hysteresis loop should be closed (so-called ‘return-point-memory’).
Corresponding minor hysteresis loops must be symmetrical with respect to the coordinate
system center. However, this scenario occurs only in the steady state of hysteresis changes
(Figure 8) because minor loops drift gradually to these closed loops [30,31]. The closed
minor loops calculated for the assumed field strength or flux density changes should be
the same independent of the starting point (Figure 9); this means that the third Madelung’s
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rule, the so-called congruency property, is fulfilled. Additionally, the fourth rule is satisfied
because the hysteresis loops are symmetrical with respect to the coordinate system center
for alternating changes in the flux density.
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5. Examples of Approximations and Applications
5.1. Approximations of Hysteresis Changes

Dynamo and transformer steel sheets are typical ferromagnetic material character-
ized by the hysteresis loop. Depending on assumed unknowns occurring in equations
of the magnetic field distribution, the basic hysteresis model or its inverse version is ap-
plied. However, note that the calculation results of the hysteresis changes should be the
same using both versions of the hysteresis model. Numerical calculations of hysteresis
changes were performed for the non-oriented dynamo sheet M530-50A and grain-oriented
transformer sheet M120-27S.

The dynamo sheets M530-50A are produced as non-oriented steel sheets; however,
most of these sheets have some anisotropic properties [49]. In turn, transformer sheets
M120-27S are typical grain-oriented sheets. Owing to the occurrence of the Goss texture,
these sheets have different magnetic properties in individual directions on the sheet plane.
Therefore, a different hysteresis loop should be considered for each magnetization direc-
tion. This is significant in calculations of the magnetic field distribution at the corners of
transformer cores and in areas where the columns connect to the transformer yokes.

It was assumed that the parameters aBur and aBbd concerning both considered sheets
were equal to zero in the approximation B = f (H). However, in the inverse approximation
H = f (B), the parameters aHbr and aHud were equal to 3000 A/Tm and 1500 A/Tm for the
dynamo and transformer sheet, respectively. The hysteresis changes were approximated
for several assumed maximum values Hmax of the field strength, selecting appropriate
values of the parameters pB and pH (Table 1). It is worth noting that the parameter pB in the
approximation B = f (H) has the same value, regardless of the value Hmax, while the value
of the parameter pH depends on the value Hmax, especially when the flux density is close
to the saturation value.

Table 1. Values of parameters pB and pH.

Electrical
Sheet

Angle
(Degrees)

Hmax
(A/m) pB pH

Hmax
(A/m) pB pH

Hmax
(A/m) pB pH

M530-50A any 70 3.0 0.15 105 3.0 0.20 300 3.0 0.4
M120-27S 0 8 2.5 0.02 12 2.5 0.025 80 2.5 0.2
M120-27S 45 60 1.0 0.08 100 1.0 0.10 300 1.0 0.2
M120-27S 90 60 2.0 0.30 100 2.0 0.40 300 2.0 0.9
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Figure 10 shows symmetrical hysteresis loops calculated using the basic and inverse
approximation. Additionally, for comparison, the measured hysteresis loops are also
presented in Figure 10.
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Figure 10. Symmetrical hysteresis loops for some assumed values of the field strength: (a) the dynamo sheet M530-50A;
(b) the transformer sheet M120-27S for the rolling direction; black line—measured loops, red and blue lines—calculated
loops using the basic or inverse approximation of the hysteresis loop.

The hysteresis loops of transformer sheets have a ‘classical’ shape when the magneti-
zation processes occur along the rolling direction or near that direction (Figure 10b). When
the magnetization process takes place at an angle greater than 45 degrees relative to the
rolling direction, the shapes of the hysteresis loops vary considerably with respect to the
classical hysteresis loop. In the corners and the so-called T-joint points in magnetic circuits
of the three-phase transformer, the magnetization processes run along directions other than
the rolling direction. Figure 11 shows hysteresis loops of the mentioned transformer sheet
measured and calculated for the 45◦ direction and for the transverse direction.
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Figure 11. Hysteresis loops of transformer sheet M120-27S: (a) for the 45◦ direction; (b) for the transverse direction; line
markings as in Figure 10.

The key meaning in the proposed approximation of hysteresis changes is to deter-
mine the exponents pB or pH by comparing the calculated changes in the flux density or
field strength with the corresponding measured hysteresis loops. The assumption of the
exponents pB and pH other than those given in Table 1, has an influence on the shape of
minor loops. Figure 12 shows the minor loops of the transformer sheet, determined for the
exponents whose values differ by 20% with respect to the values given in Table 1.



Energies 2021, 14, 4110 14 of 18

Energies 2021, 14, x FOR PEER REVIEW 13 of 17 
 

 

  

(a) (b) 

Figure 10. Symmetrical hysteresis loops for some assumed values of the field strength: (a) the dynamo sheet M530-50A; 
(b) the transformer sheet M120-27S for the rolling direction; black line—measured loops, red and blue lines—calculated 
loops using the basic or inverse approximation of the hysteresis loop. 

  
(a) (b) 

Figure 11. Hysteresis loops of transformer sheet M120-27S: (a) for the 45° direction; (b) for the transverse direction; line 
markings as in Figure 10. 

The key meaning in the proposed approximation of hysteresis changes is to deter-
mine the exponents pB or pH by comparing the calculated changes in the flux density or 
field strength with the corresponding measured hysteresis loops. The assumption of the 
exponents pB and pH other than those given in Table 1, has an influence on the shape of 
minor loops. Figure 12 shows the minor loops of the transformer sheet, determined for 
the exponents whose values differ by 20% with respect to the values given in Table 1. 

  
(a) (b) 

Figure 12. Hysteresis loop of transformer sheet calculated for different values of the exponent: (a) pB; (b) pH; black dashed 
lines—limiting hysteresis loop, black solid lines—values of the coefficients according to Table 1, red and blue solid lines—
values of the coefficients higher or lower 20% according to values in Table 1, respectively. 

Figure 12. Hysteresis loop of transformer sheet calculated for different values of the exponent: (a) pB; (b) pH; black
dashed lines—limiting hysteresis loop, black solid lines—values of the coefficients according to Table 1, red and blue solid
lines—values of the coefficients higher or lower 20% according to values in Table 1, respectively.

Using the described approximation of the hysteresis changes, the flux density and
field strength changes for other ferromagnetic materials can be calculated. For exam-
ple, Figure 13 shows the hysteresis loops of Mn-Mg ferrite and ferromagnetic material
ЮН14ДK24, which is applied in hysteresis motors.
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5.2. Application Notes

In modeling magnetic phenomena, the time consumption is a significant problem. On
the one hand, this problem concerns determination of the model parameters; on the other
hand, how long are calculation times for the assumed changes in the field strength or flux
density. In the proposed approximation, it is necessary to know the limiting hysteresis loop
and to assume the value of the exponent the pB or pH, which can be obtained after a few
comparisons of the calculated minor hysteresis loops with the measured loops. It should be
noted that the Preisach model requires the determination of the so-called grain distribution
function, and in the Jiles–Atherton model five parameters must be assumed, whose values
depend on changes in the field strength. The requirement to know the limiting hysteresis
loop and a few minor loops is unquestionable because a comparison between calculation
and measurements results should be the basic criterion for assessing the correctness and
usefulness of the proposed approximation of the hysteresis changes.



Energies 2021, 14, 4110 15 of 18

Calculation times of a single hysteresis loop are comparable. On the one hand, a com-
parison between these times using different models is not justified, because errors between
the calculation and measurement results depend, inter alia, on the assumed number of
calculation steps. On the other hand, it is more important how long the calculation times
are when a hysteresis model is included in a large-dimensional system of matrix algebraic
equations describing the magnetic field distribution. Often the computation time is of
secondary importance as it is more important to obtain the convergence and accuracy of
the solution.

Taking into account the magnetic hysteresis in the equations of the magnetic field
distribution is a much more difficult issue than introducing the nonlinear but unambiguous
magnetization characteristics, especially since the area of the magnetic field is divided
into at least several dozen elementary segments. Very often, the finite element method
is used, which is based on the differential form of the Maxwell equations. In this case,
the hysteresis model is taken into account after each stable solution of the equation sys-
tem of the field distribution. The equivalent reluctance network method is beneficial to
introduce dependencies approximating hysteresis changes into equations of the magnetic
field distribution [46,51]. This method is based on the Maxwell equations in integral form,
and consequently, the components of the field strength and flux density, and not their
derivatives, are unknowns in these equations. It allows easy replacement of the flux density
components with the appropriate field strength components or vice versa.

If the distribution of a one-dimensional magnetic field is considered, e.g., in the cross-
section of a transformer sheet, then the flux density Bn in an n-th elementary segment can
be expressed as follows:

Bn(H) = tnBnr(Hn) + (tn − 1)Bnd(Hn). (18)

where tn = 1 when H increases, Bnr is the relationship in form of Equation (1), show-
ing changes in the flux density for increasing H, and Bnd is the relationship in form of
Equation (2), when H decreases in the n-th segment.

The flux densities off all elementary segments can be written in the following form:

B(H) = T. · Br(H) + (T − 1). · Bd(H). (19)

where T is the column vector of elements tn, H is the column vector of field strength
components Hn, and symbol * denotes the multiplication of two column vectors, and the
vectors Br(H), Bd(H) have the form:

Br(H) = Bb(H) + ∆Br. · exp[−kHr(H − H0)], (20)

Bd(H) = Bu(H)− ∆Bd. · exp[kHd(H0 − H)]. (21)

Functions of the ‘exp’ type mean that each element of the column vectors kHr(H − H0)
and kHd(H0 − H) is an argument of an exponential function.

After each stable solution of the equation system of the magnetic field distribution, it is
checked how the field strength changes in individual segments relating to a given electrical
sheet. If a certain component of the field strength stops increasing and starts to decrease,
then the corresponding element tn of the column vector T takes the value zero. The
proposed method of approximation of hysteresis changes was used in calculations of the
eddy current distribution, taking into account the magnetic hysteresis in the cross-section
of the transformer core [52].

It should be noted that to calculate the field distribution during rotational magnetiza-
tion, vector hysteresis models should be used. An example of a hysteresis vector model is
described, inter alia, in [53]. In this approach, the surface of a considered electrical steel
sheet is divided into an assumed number of specified directions, and in each direction, a
certain hysteresis loop is assigned. In this case, the hysteresis assigned to each direction
differs from the hysteresis of the whole sample of the tested sheet.
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6. Conclusions

The aim of the article is not to formulate a new hysteresis model that would be
associated with the magnetization process on a micro scale but to propose a description
of hysteresis changes that can be relatively easily introduced into the equations of the
magnetic field distribution. Therefore, it seems that a comprehensive comparison of the
proposed approximations with the existing hysteresis models based on the physics of this
phenomenon is not substantively justified.

The proposed method, which enables the approximation of hysteresis changes in
electrical steel sheets, has several advantages in relation to other hysteresis models. The
changes in flux density, as a function of the relationship and inverse relationship of the
field strength, are determined using simple expressions. This makes it possible to relatively
easily take into account the hysteresis phenomenon in calculations of the magnetic field
distribution in electrical steel sheets. Note that the described method enables satisfactory
results in modelling the hysteresis changes occurring in transformer sheets for directions
other than the rolling direction to be obtained, unlike existing hysteresis models.

To apply the proposed method, the limiting hysteresis loop of a particular electrical
sheet should be known. Additionally, some minor loops must be measured to correctly
select the attenuation coefficients of ‘transient’ components. In some scenarios, these coeffi-
cients can have constant values; this shortens the calculation times. It is worth emphasizing
that if it is possible to assume aBur = aBbd = 0 in the approximation B = f (H), then only the
value of the exponent pB must be determined, while for the inverse approximation H = f (B),
the exponent pH should be dependent on the assumed maximum value of the flux density.

The performed numerical calculations demonstrate that the proposed method enables
the approximation of the hysteresis changes for different types of electrical steel sheets
with sufficient accuracy for engineering research; these sheets may have both narrow and
relatively wide hysteresis loops.
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