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Abstract: The current flexibility of the energy market requires operating steam turbines that have
challenging operation requirements such as variable steam conditions and higher number of startups.
This article proposes an advanced control system based on the Nonlinear Model Predictive Control
(NMPC) technique, which allows to speed up the start-up of steam turbines and increase the energy
produced while maintaining rotor stress as a constraint variable. A soft sensor for the online
calculation of rotor stress is presented together with the steam turbine control logic. Then, we
present how the computational cost of the controller was contained by reducing the order of the
formulation of the optimization problem, adjusting the scheduling of the optimizer routine, and
tuning the parameters of the controller itself. The performance of the control system has been
compared with respect to the PI Controller architecture fed by the soft sensor results and with
standard pre-calculated curves. The control architecture was evaluated in a simulation exploiting
actual data from a Concentrated Solar Power Plant. The NMPC technique shows an increase in
performance, with respect to the custom PI control application, and encouraging results.

Keywords: steam turbine startup; nonlinear model predictive control; rotor stress control

1. Introduction

In the current energy market, renewable sources and flexible power plants are increas-
ingly exploited in order to meet the energy demand of increasingly connected cities [1],
where smart grids are going to become a consolidated reality [2,3]. In this context, the
design of new power plants must aim at increasing the level of flexibility, with a resulting
multitude of challenges in terms of degradation of the components, restrictions related
to the environmental impact, and required level of workforce specialization. For these
reasons, the design of Steam Turbines (STs) nowadays must take into account frequent dis-
continuous operations. For instance, in the case of Concentrated Solar Power Plants (CSPP),
the inlet steam highly depends on the weather conditions [4], while in industrial power
generation, the discontinuity is related to the scheduling of the electricity production, opti-
mized according to the prices of energy media (natural gas and electricity) that vary on an
hourly or daily basis. One of the most important aspects related to discontinuous operation
is the need to enforce protection against stress induced by thermal transients, which, due to
the continuous changes in the steam conditions, can lead to faster aging of the turbine and,
in extreme cases, to component failure due to nucleation and propagation of cracks. While
almost every ST component is affected by thermal stress aging, transient thermal stresses in
rotors often represent the factor determining the minimum allowable start-up time and the
maximum allowable production during start-up. The start-up optimization is carried out
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through several different steps. The first one usually takes place during the design phase
of the machine itself, e.g., through a proper design of the rotor critical locations, which are
mostly affected by peak stress. During the design phase, load curves are also optimized
by exploiting accurate process models evaluating the specific plant components to which
they are connected. The last phase for the start-up design and optimization is represented
by the control logic design, which is typically implemented through Proportional Integral
Derivative (PID) controllers. In more advanced control systems, which are described later
on, the control approaches are based on predictive methodologies considering the machine
thermal dynamics or on particular heuristics.

Thermal stress phenomena have been extensively studied in literature, mostly by
focusing on their effects and on measurement procedures for early identification of aging
phenomena. These are of crucial importance especially for critical components, such as
rotors, where cracks after nucleation can rapidly propagate due to vibration phenomena
that in normal conditions do not affect rotor integrity. In addition, low cycle fatigue damage
cannot be directly detected with non-destructive methodologies. Indirect measurements of
the most severe effects of thermal stress are often associated with vibrational phenomena
on the machine axis. Most often, the effects of excessive machine stress can only be verified
after dismantling the machine. Non-destructive tests are not always capable to highlight
issues on the rotor and often cracks can be found only after the rotor is taken out of service.

The management of the machine thermal stress is a rather complex operation and,
from the control point of view, is faced through a sequence of steps. In more recent years,
these operations have been automated, thanks to a wider use of sensors, which have led
to in-depth studies of their behavior through increasingly reliable models. An example
of automated pre-warm is described by Badami et al. [5], in which a fuzzy logic-based
supervisor has been designed to speed up the rotor warming phase, while taking into
account the rotor stress conditions before the cold start of the machine.

The literature highlights two main complementary methods for the control of the
rotor thermal stress, which concern either the limitation of the inlet steam flow—common
in every steam plant—or the regulation of the temperature of the inlet steam, available
only in specific plants. In Combined Cycle (CC) systems, the outlet steam temperature
of the Heat Recovery Steam Generator (HRSG) can be adjusted by the direct control of
the gas generator. However, this kind of operation shows the disadvantage of forcing the
gas turbine to lower efficiency operating conditions. De-superheating of inlet steam by
attemperators is also a possible solution for limiting the thermal stress in STs, at the cost of
increasing installation costs. For these reasons, a common control strategy aims at adjusting
the Heat Transfer Coefficient (HTC) or the inlet steam mass flow. As a first approximation,
we can divide the work related to the start-up control into three categories: The first one
refers to the modeling of the thermal behavior of the machines and/or connected systems,
the second one is linked to the offline calculation of turbomachinery and related system
load curves, while the third one concerns the startup online control with/without thermal
stress related logic.

Some examples of works related to modelling topics are presented by Carnero et al. [6],
which introduce a soft-sensor application aimed at monitoring the ST stress, by exploiting
heat transfer equation to model the thermal dynamics in the rotor. Sun et al. in their
paper [7] present a soft sensor that models the rotor temperature through transfer func-
tion and the damage due to thermal stress through polynomials. Rusin et al. [8] propose
two modelling methodologies based on Green’s function, Duhamel’s integral and Neu-
ral Networks (NN). These approaches can be used to solve the inverse problem aimed
at optimizing the operation of steam machines and are also exploited in a similar way
by Banaszkiewicz et al. [9,10]. Dominiczak et al. [11] apply NNs for the prediction of
temperature and stress in the ST critical points.

Offline optimization approaches have been proposed by Casella et al. for optimizing
the load curve of a real CC Power Plant (CCPP) through models developed in Modelica and
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Dymola [12]. Faille et al. [13] followed a similar approach with the objective of minimizing
the start-up time.

A brief review of online control applications aimed at speeding up the startup of STs
show three main classes of methodologies: (i) PID controllers, (ii) Artificial Intelligence
(AI)-based techniques, and (iii) Model Predictive Control (MPC). Sun et al. [14] present
a controller based on polynomials and PID aimed at extending the life of the machine,
limiting its cumulative damage. Boulos et al. [15] propose three different control methods
based on pure PID controller, Fuzzy-PID, and a Fuzzy Logic controller, applied to the
startup of a CCPP by acting on the load rate. Matsumoto et al. [16] introduce a complex
system based Fuzzy Logic and NNs to control the schedule of the power plant load curve
as a function of the current status of the machines and the HRSG. MPC architectures have
been widely studied for startup applications. Excellent examples are proposed by Nakai
et al. [17], who describe a MPC based on linear programming and models based on heat
conduction equations. Gallestey et al. [18] present a linear MPC strategy that integrates
Fatigue Crack-Growth Models to the aim of extending the residual lifetime of the machine
with consequent relevant economic benefits for a power plant application. Shirakawa
et al. [19] describe a multi-objective MPC, which integrates several components of a power
plant of 600 MW by including the thermal dynamics of the involved STs and by exploiting
a complex system of NN models and thermal equations as well as a Genetic Algorithm
(GA) for optimization. Larsson et al. extend the MPC application by using different
nonlinear components models of a CCPP [20], with a simulation approach implemented
in Modelica. D’Amato et al. [21,22], present several excellent works, in which MPC is
applied to the startup of turbomachines, by exploiting heat equations and linearization
procedures to implement an MPC strategy in Programmable Logic Controllers (PLCs). Rua
et al. compared a linear and a nonlinear formulation of MPC to optimize the startup of a
combined cycle while taking into account stress limits on the walls of the high-pressure
steam drum and the steam turbine rotor [23].

Once the turbine has been correctly started, the management of the variability of the
inlet steam conditions and the tracking of the power setpoint are often performed through
PI control techniques, fuzzy PID [24], robust control [25], and in some cases through MPC
techniques [26].

An in-depth analysis of the aforementioned works shows two possible methodologies
for implementing an effective control system for the ST startup, PID controllers and MPCs.
The former ones ensure good performance and usually lower modeling and implemen-
tation efforts, with some shortcomings related to the inability of the PID controllers to
anticipate any control actions to avoid stress overshoots and problematic operating points.
On the other hand, the MPC-based strategies naturally manage all the constraints of the
machine and, thanks to the model-based approach, can predict its dynamic behavior. This
capability makes the control actions effective by allowing anticipation and avoidance of
numerous undesired phenomena. Although MPC appears the best-performing strategy, it
shows some heavy limitations related to the online calculation of the control action, which
requires calculation times that are often not compatible with PLC platforms.

The present research work is part of this context, as it aims at identifying and overcom-
ing the most relevant bottlenecks in the application of MPC for controlling the ST power
startup through a local point of view of the phenomenon of the thermal transient, in which
the controller focuses on the steam turbine. In particular, this article presents a Nonlinear
MPC (NMPC), which aims at maximizing the energy produced during the power startup
of STs, by integrating a series of nonlinear models that describe the temperature dynamics
in different sections of the rotor as well as the thermodynamic and mechanical behavior of
the machine. The modelling scheme implements hybrid methods based on heat equations
and empirical numerical models for predicting specific internal quantities. The NMPC
optimizes the power load curve during the startup, through a tracking formulation of
the optimization strategy, in which the maximum power reference is received from the
Distributed Control System (DCS) of the plant. In particular, this article presents several
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novelties. In the first place, it compares the standard baseline curves for steam turbine
start-up with the application of a PI architecture including the soft sensor calculating the
rotor stress. Later this PI architecture is compared with the NLMPC application showing
the benefits of this control procedure. It also has to be remarked that while other works aim
at the application of MPC strategies to the whole plant, here the focus lies on the control of
the single steam turbine. The application of these procedures to a CSP case through real
data is of particular interest.

The paper is organized as follows. Section 2 describes the modeling methodologies
and validation procedures for the models obtained. Section 3 provides a brief introduction
on PID and NMPC control and describes the structure of each implemented controller
and the associated technical solutions. Section 4 discusses the results of the simulation
studies for the implemented controllers by comparing their performances and providing
guidelines for tuning the NMPC control parameters. Section 5 provide final comments to
the obtained results and some concluding remarks.

2. Steam Turbine Modelling Approach and Rotor Stress Monitoring

The first fundamental step to define an effective control strategy for optimizing the
ST start-up is to design a tool capable of monitoring the thermal state of the machine.
As previously mentioned, the stress can only be measured using particularly invasive
hardware measuring instruments, which must be designed to work at rather high tem-
peratures and pressures, with all the consequent technical difficulties (e.g., pyrometers,
which also require a temperature/stress conversion system while strain gauges are usually
unsuitable for rotating equipment). These issues have been overcome through an approach
called “soft-sensing”, which allows extrapolating, through suitable algorithms, detailed
information from the sensors that are normally installed on the machine. This section
describes an instrument called the Rotor Stress Monitor (RSM) [27], depicted in Figure 1,
which is used to this purpose and whose calculation steps are described in detail in the
next sections.
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The RSM algorithm allows calculating the current stress, its current limit, and the
temperatures of the rotor based on:

• The state of the generator breaker that connects the electric generator to the network;
• The state of the ST startup;
• The rotor speed;
• The inlet, outlet, and wheel chamber pressures;
• The temperature of the steam in the inlet;
• The ST casing temperature;
• Some parameters describing the dependence of the rotor temperature on material

properties, limits on pressures, temperatures, speeds, and coefficients to calibrate
stress values.

The Reduced Order Model (ROM), at the core of this soft sensor, despite its limited
computational cost, is suitable to develop the MPC strategies. The description of the model
features is organized into threes subsections focused on:

• Calculation of rotor temperature;
• Calculation of rotor thermal stress;
• Derivation of boundary conditions for the thermal model.

2.1. Thermal Model

In order to correctly evaluate thermal stresses, the model must satisfy the minimum
requirements in terms of accuracy. However, it is also extremely important for the model
to take into account maximum computational cost requirements set by common control
industrial hardware e.g., PLCs. Therefore, standard detailed calculation procedures (such
as the one used during rotor design phase) based on the 2D and 3D Finite Element Model
(FEM) implementing rotor detailed geometrical description are not suitable for control
purposes. Such models, which are used to explore the effect of complex thermal transient
scenarios, must be simplified into Reduced Order Models (ROM).

In the present case, the selected approach is based on the assumption that the ro-
tor geometry can be approximated through a cylindrical axisymmetric model so that
the thermal model can be described (in cylindrical coordinates) by the following partial
differential equation:

ρcp
∂T
∂t

=
1
r

∂

∂r

(
kr

∂T
∂r

)
(1)

Subjected to the following boundary conditions:
∂T
∂r

∣∣∣
r=0

= 0

−k ∂T
∂r

∣∣∣
r=Rext

= HTC(t) · [T|R=Rext − Tbulk(t)]
(2)

where T is the rotor temperature, function of radius r and time t, HTC(t) is the HTC as
a function of time, Tbulk is the steam temperature, ρ is the rotor density, Cp is the rotor
local heat capacity (function of temperature), and K is the rotor local thermal conductivity
(function of temperature). It can be observed that:

• The main assumption is that the rotor geometry can be described by an infinitely
extended cylinder excluding the dependency from the axial coordinate;

• Local variations of material properties are taken into account leading to a non-linear
heat transfer equation with a non-homogeneous material;

• Since HTC and Tbulk are time-dependent the model is suitable to complex heat tran-
sient scenarios.

For the solution of the problem, an explicit finite difference scheme (backward Euler)
has been selected with N radial locations and a spatial discretization of ∆r = ri+1 − ri. As
a consequence:

T(i+1)
j = f

(
T(i)

j , T(i)
j−1, T(i)

j+1, . . .
)

(3)
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As well known the stability of this numerical scheme depends on the selected time
discretization ∆t. Partial derivatives in space and time are discretized as follows:

∂T
∂t

=
T(i+1)

j − T(i)
j

∆t
(4)

∂T
∂r

=
T(i)

j+1 − T(i)
j

∆r
(5)

The choice of an explicit method is driven by the fact that in this way, a non-linear
solver is not necessary to evaluate rotor radial temperature distribution from step to step.
In any case, this poses a limit on the maximum allowable timestep length that has been
explored considering the thermal diffusivity of the material of interest for this kind of
analysis. In addition, the limit to the timestep length poses challenges for the development
of the control scheme (which are later explained). Noticeably, after numerical discretization,
the nonlinear partial differential equation can be reconducted to a general control scheme:

T(j+1) = A(j) · T(j) + B · ϕ
(

T(j)
N , HTC(j), T(j)

bulk

)
(6)

A(j) ∈ Rn×n is a tri-diagonal matrix wherein the non-zero elements are expressed
as follows:

a(j)
i,i = 1− ∆t

(∆r)2 α
(j)
i− 1

2

(
1− ∆r

2ri

)
− ∆t

(∆r)2 α
(j)
i+ 1

2

(
1 +

∆r
2ri

)
(7)

a(j)
i−1,i =

∆t

(∆r)2 α
(j)
i− 1

2

(
1− ∆r

2ri

)
(8)

a(j)
i+1,i =

∆t

(∆r)2 α
(j)
i+ 1

2

(
1− ∆r

2ri

)
(9)

where α(j) = k(j)(
ρj ·c(j)

p

) is the thermal diffusivity evaluated at the node j. ϕ is the heat flow

transferred by convection to the cylinder:

ϕ = a(j)
N+1 · HTC(j) 2∆r

k
(T=T(j)

N )

(
T(j)

bulk − T(j)
N

)
(10)

The previous expressions highlight a linear dependence of the cylinder temperature
state on the heat flow (such as also highlighted by Nakai et al. [17]). The creation of a purely
linear control system based on this model is basically compromised by the fact that heat
flow is a non-linear combination of disturbance (bulk temperature), system state (last node
temperature), and control (HTC). In addition, as the rotor surface temperature approaches
bulk temperature, the effect of a control action on HTC becomes less relevant.

2.2. Rotor Stress Models

The temperature field can be exploited to obtain the cylinder stress approximating
the actual rotor stress. For this specific case, a generalized plane strain assumption is
suitable, leading to the following expression for the Von Mises stress σeqv as a function of
temperature T(r):

σeqv =

∣∣∣∣ βE
1− υ

(
T(R)− 2

R2

∫ R

0
Trdr

)∣∣∣∣ (11)

where β is the thermal expansion coefficient, E is the Young modulus, and ν is the Pois-
son ratio.

Equation (11) provides an estimate of the equivalent stress on the cylinder external
surface and is suitable for the identification of crack nucleation (a similar expression
can be obtained also for rotor core stress and can be used for detecting crack nucleation
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and propagation). The effect of centrifugal stress is not taken into account here, as it
does not depend on the temperature field, but can be included in an additional term for
control purposes.

The stress integral expression can be numerically approximated according to the
following linear relation:

σeqv = C · T =
[

c1 c2 . . . cn
]T ·

[
T1 T2 . . . Tn

]
(12)

where:
C =

βE
1− υ

[
− (∆r)2

R2 − 2r2∆r
R2 . . . − 2rN−1∆r

R2 1− ∆r
R

]
(13)

Moreover, the maximum allowable stress for the rotor can be expressed as a function
of the local cylinder temperature in order to take into account the typical degradation
of steel strength with temperature. Usually, a polynomial approximation is suitable for
this purpose. In addition, the coefficients of the polynomial can be updated from start to
start in accordance with the expected start-up severity and frequency (for instance, in CSP
applications the cold start-up, being the most severe and also less frequent, is usually set
up with a high maximum allowable stress limit).

In any case, an actual rotor geometry holds different critical locations, unlike the
considered cylinder model, where stress values are amplified. Amplification factors for
stress need to be calculated through a dedicated 2D thermo-mechanical Finite Element
Analysis (FEA). These factors can be used to properly tune and align the results of the
simplified cylindrical model to those of a real rotor geometry (examples of this kind of
procedure are given for example in [9,28]). Typically, critical rotor locations are represented
by fillets in the proximity of the first stage and bucket tail grooves, where differential
expansion drives complex stress conditions and even local plasticization. An example is
shown in Figure 2, where the contour plots of Von Mises equivalent stress are shown for an
axis-symmetric simulation, at the load step where the stress peak is reached.
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Two set of tuning functions are created to enable a good correspondence between
Finite Element Models and Rotor Stress Monitor. Many shapes of increasing complexity can
be chosen for the tuning functions that adjust the inputs and the outputs of the previously
explained Reduced Order Model. The performance of the adjustment procedure on tuning
functions can be evaluated by testing campaigns: In other words, collecting the response
of the system to a stepwise and/or ramp increase of heat flow is able to give relevant
indications on the behavior shown in more complex scenarios. A simple example of the
response to a testing mission before and after the tuning procedure is shown in Figure 3,
where the stress evaluated by FEA in the most critical location is also plotted. Here it can
be seen how the chosen tuning function setup is able to match the stress response to a ramp
increase of heat flow within a 5% error. At the same time, we chose to keep a conservative
margin (~30%) for the response of the system to a step heat flow increase.
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2.3. Power and HTC Calculation

The thermo-mechanical FE transient simulation, used to assess ST components’ reli-
ability and strength, involves, during the pre-processing phase, a detailed calculation of
HTCs and bulk temperatures. These calculations take into account the thermodynamic
behavior and geometry of the specific ST and, in the most complex scenario, may also
involve Computational Fluid Dynamics (CFD) evaluation with all the geometrical details
of the specific ST. These kinds of calculations need to be included in a simplified form for
rotor stress monitoring and control purposes through simplified thermodynamic transfer
functions. Such functions basically summarize the thermodynamic behavior of the turbine
and enable the HTCs calculation, bulk temperature, or ST output power for the location
where the stress has to be evaluated. The need for simplified calculations lies in the compu-
tational constraint of a User Control Panel implementation. Typically, polynomial transfer
functions are capable to model, with sufficient precision, the HTCs variation corresponding
to the operation field of the rotor. A typical scenario occurs when the influence of controlled
and un-controlled extraction can be considered negligible for the determination of the ST
condition during start-up, and HTC, power W, and bulk temperature can be approximated
by polynomial functions of ST inlet and outlet pressure, inlet temperature, and wheel
chamber pressure (the steam pressure after the group including the control stage and the
control valve), as follows:

HTC = f (Pin, Pwch, Pout, Tsteam) (14)

W = h(Pin, Pwch, Pout, Tsteam) (15)

Tbulk = TB(Pin, Pwch, Pout, Tsteam) (16)
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3. Rotor Stress Control Strategies

This section focuses on the main aspects of PID and MPC strategies in order to
introduce the NMPC approach aimed at optimizing the ST power startup and limiting the
related rotor stress.

3.1. Background on PI and MPC Control Strategies

The PID controller is the most widespread control algorithm in industry, exploited
in more than 90% industrial controllers [29], due to its simple implementation and its
effectiveness. Its main characteristic lies in the use of an error-driven philosophy typical
of the Model Free control approach [30]. Its implementations may differ depending on
the specific application and its realizations have been widely studied in the literature and
applied to industrial cases.

The success of PID control strategy is closely linked to factors related to its simplicity
as well as to the effectiveness and large availability of efficient and ready-to-use PID
controller products. PID is one of the first techniques developed in the field of control
engineering, as it was possible to implement it through mechanisms (such as in the case of
the Centrifugal governor, the first ST controller that was based on proportional control)
or through simple electromechanical circuits and, afterwards, through analog and digital
electronics. Its effectiveness also relies on the immediacy of the control action, a necessary
feature in the case of low-level control loops (closer to the machines or basic processes such
as pressure, flow, level control, etc.). Last but not least is the effectiveness of the control
action on processes that work in almost stable operating points, in which the performances
achievable through a PID controller are usually quite satisfactory.

The positive aspects of the PID controller are, however, counterbalanced by a series
of disadvantages that make it not always the ideal choice for process control. In the first
point, PIDs are a Single Input Single Output (SISO) and can act on a single manipulable
variable. Multi Input Multi Output (MIMO) control can be obtained through complex
control methodologies such as the decoupling of the system dynamics [31] or other more
complex logics [32]. However, the most complex aspect, which is widely analyzed in the
literature [33], is the tuning of its parameters. The most common approaches are based on
standard Ziegler–Nichols (ZN) methods [34], relays [35], and several analytic rules [36].
Auto-tuning methods and approaches based on offline simulation are particularly studied
and deepened in literature [37]. Furthermore, AI through Artificial Neural Networks
(ANN), Fuzzy Logic, and Evolutionary Algorithms have been widely explored [38].

The MPC is an advanced control technique developed in the refinery and petrochem-
ical industry context in the 1970s, and subsequently deepened in the academic world
starting from an initial diffidence and skepticism that allowed, firstly, the definition and
stabilization of the theoretical foundations of this methodology and, subsequently, its con-
sistent evolution and research advancement. The foundations of this control technique lie
in three basic ideas: (i) The prediction of future behavior of the controlled process, through
adequate mathematical models; (ii) the optimization of the control path aimed at minimiz-
ing a specific cost function and satisfying process and actuators operative constraints; and
(iii) the action on the controlled process through a receding control horizon that implements
a closed loop control strategy by manipulating only the current manipulable variable, such
as introduced by Propoi [39].

The ideas behind the first applications, based on Dynamic Matrix Control (DMC) [40]
and the Identification-Command (IDCOM) software [41], were extended in two funda-
mental works of Clarke et al. [42,43] and then unified by Garcia et al. in 1989 in their
seminal paper [44]. The numerous works in the literature have shown, over time, from an
academic point of view, the effectiveness and limitations of this control approach, which
is now considered to be the standard for the control of MIMO systems, not only in the
industrial context, in which it is obviously widely used [45–48]. Some novel interesting
examples of MPC methodologies application related to the energy management or power
generation have been presented by Camacho et al. in their work [49], in which a hybrid
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NMPC regulates the outlet temperature of a solar collector field in order to optimize the
operating condition of a solar cooling plant, by Kong et al. in their article [50] that presents
a nonlinear economic MPC approach to maximize the energy produced by wind turbines
over all the operating points in variable speed conditions, and by Darwish et al., who
presented an integration of Dual-mode MPC and Generalized Predictive Control (GPC) for
optimizing the startup of a steam power plant [51].

In deeper detail, the MPC strategy requires three well-defined elements in order to
achieve satisfactory control performances:

• A sufficiently accurate process model, i.e., the core of the MPC approach, whose
complexity must balance two counteracting issues related to the accuracy of the short-
long term dynamic predictions and the computation burden required to simulate
it. In the literature, several realizations of the process models are proposed, starting
from linear state space models, linear or nonlinear autoregressive exogenous models
(ARX) [52], and Hammerstein Wiener models [53], which are considered the standard
for industrial process modelling, up to ANNs [54,55], which are less widespread
in control applications but particularly effective in modelling nonlinear behavior.
Furthermore, the modelling objective it is not only related to the future behavior
prediction, but also to the estimation of the current state of the controlled process,
which might not be accessible or measurable.

• A cost function describing one or more indexes to be optimized. Such cost function
depends on the specific task and in general is related to energy description of the
system, economic costs, or particular specific mathematical relationships. From this
point of view, the MPC can fundamentally be a single or a multi objective optimiza-
tion problem.

• A set of constraints aimed at describing the operative boundaries of the system,
including the process itself as well as actuators and related subsystems.

The combination of these three elements defines the complexity of the MPC and,
consequently, the difficulty in solving the optimization strategy in real-time. The term
“linear MPC” is used when the operating models and constraints of the process to be
controlled are linear, and when the cost function is linear or quadratic. The term “non-
linear MPC” is adopted when one of the first two elements is nonlinear and/or the cost
function can be described by a Taylor series of a degree higher than two.

The typical MPC closed loop architecture is depicted in Figure 4, where its different
elements are divided in functional blocks: (i) The real controlled process/plant; (ii) the state
observer (sometimes included within the MPC); and (iii) the MPC block. More in detail, the
MPC block includes a mathematical formulation of the optimization problem, including
constraints and process/plant dynamics, an objective function and an optimizer, which
includes a set of optimization algorithms and routines tailored for the specific application.
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The MPC solves in real-time an optimization problem that in the linear case can be
described as: 

min
u

J
(
xt, Np, Nc

)
x(k + 1)= Ax(k) + Bu(k)

y(k)= Cx(k) + Du(k)
x(0)= x0

∆u(k)= u(k)− u(k− 1)

ymin≤ y(k) ≤ ymax

umin≤ u(k) ≤ umax

∆umin≤ ∆u ≤ ∆umax

∆ymin≤ ∆y ≤ ∆ymax

Hy + Vu≤W

(17)

where x ∈ Rn, u ∈ Rm, and y ∈ Ro are, respectively, the state, the inputs, and the outputs
of the controlled system; A ∈ Rn·n, B ∈ Rn·m, C ∈ Ro·n, and D ∈ Ro·m are the matrices
of the system dynamics; x0 is the initial state at the control step k = 0; and H, V, and W
are suitable matrices. Np and Nc are, respectively, the prediction horizon and the control
horizon. Such concepts are graphically described in Figure 5, where the prediction horizon
Np is the length of the time window in which the future process dynamic is simulated,
and the control horizon Nc is the number of degrees of freedom to solve the optimization
problem). The prediction horizon is usually longer than the control horizon Np ≥ Nc.
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As far as the cost function is concerned, in the case of a scalar objective function,
the two most widely known formulations are reported in Equations (18) and (19). In
particular, Equation (18) describes the cost formulation of a receding horizon for a generic
optimization problem:

J
(

xt, Np, Nc
)
= xT(t + Np

)
PX
(
t + Np

)
+

t+Np−1

∑
k=t

xT(k)Qx(k) +
t+Nc−1

∑
k=t

uT(k)Su(k) (18)

The matrices P ∈ Rn·n, Q ∈ Rn·n, and S ∈ Rm·m are assumed to be symmetric positive
definite in order to formulate a convex optimization problem.
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Equation (19) describes a typical cost formulation of a receding horizon for an output
tracking task problem, extensively reviewed by Rawlings [56], in which the output of the
controlled system must asymptotically follow an available output reference yr:

J
(

xt, Np, Nc
)
=

t+Np

∑
k=t

eT
r Wrer(k) +

t+Nc

∑
k=t

uT(k)Su(k) + ∆uT(k)W∆u∆u(k) (19)

where er is the output tracking error, defined as:

er(k) = y(k)− yr(k) (20)

Furthermore, in this case, the matrices Wr ∈ Ro·o, Wu ∈ Rl·l , and W∆u ∈ Rl·l are as-
sumed to be symmetric positive definite in order to formulate a convex optimization prob-
lem. Once the cost function is defined, the problem is completed with a set of constraints
on the inputs, outputs, the velocity of the output ∆y(k), and other specific constraints
Hy + Vu ≤W.

The formulated optimization problem is sequentially solved in each control instant for
a receding horizon by means of appropriate optimization algorithms. The MPC algorithm
steps can be summarized as follows:

1. At the control timestep t, MPC reads the measurements and the estimate of the current
state x0 = x(t) of the process. The initial state defines the simulation starting point of
the controlled process;

2. The optimization algorithm solves, in real time, the formulated problem for a predic-
tion horizon of Np time steps ahead, generating a control sequence u, which minimize
the objective function J(xt, Np, Nc), while respecting the constraints:

u =
[

u(1) u(2) · · · u(k) · · · u(Nc)
]

(21)

3. The MPC acts on the controlled system, by implementing the first calculated control
move u(1). The MPC keeps in memory the remaining control sequence (k = 2, · · ·Nc)
as a warm start of the optimization of the next control step.

4. In the next control step, the MPC strategy comes back to step 1, by implementing a
closed loop control, since the applied action on the controlled process is optimized
starting from the measurement or the estimate of its current state.

The MPC formulation can be naturally extended to the more complex nonlinear case,
which can be generically summarized as follows:

min
u

J
(

x, u, Npred

)
= min

u

t+Np−1

∑
k=t

J(x(k), u(k), k) + E
(
x
(
t + Np

))
x(k + 1)= f (x(k), u(k), k)

y(k)= h(x(k), u(k), k)
x(0)= x0

g(x(k), u(k), k)= 0

l(x(k), u(k), k)≤ 0

r
(
x
(
t + Np

))
≤ 0

(22)

where J(x(k), u(k), k) is a generic nonlinear objective function, x is the process state, u is the
vector of the manipulated variables, E

(
x
(
t + Np

))
is the terminal cost, Np expresses the

length of the prediction horizon, f and h are nonlinear functions describing the dynamic of
the process state and output, g, l, r are nonlinear functions describing the constraints on
the system, and r

(
x
(
t + Np

))
≤ 0 is named terminal constraint.

The nonlinear nature of the optimization problem leads to several issues from the
computational burden point of view, which particularly differentiates the NMPC from the
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linear MPC case. Firstly, nonlinear optimization problems are not always characterized
by convexity, and this fact does not ensure either the achievement of a global minimum,
or in some cases, the convergence of optimization algorithms to a feasible solution. In the
case of “simple” nonlinear problem, the main issue is calculating a solution in real-time,
while ensuring a certain grade of optimality. For this reason, NMPC is less widespread and
applied with respect to linear MPC. Some applications are found for slow processes, whose
dynamics are compatible with calculation times. A good formulation often helps in rapidly
solving the optimization problem, otherwise it is still possible to implement sub-optimal
strategies [57] where the problem is feasible. A possible trade-off solution is offered by
the so-called Real-Time Iteration approach [58], which implements a formulation of the
optimal problem and of the optimization routines that are a “middle ground” between the
linear and the nonlinear case. In cases where the real-time solution of the optimum problem
is in any case not feasible, a further approach is offered by the use of methodologies called
Explicit MPC, in which the optimum problem is solved offline on a discretization of the
operating space of the system and is finally translated through piecewise control functions
used for the online control. Interesting examples are presented by Tavernini et al. who
developed an Explicit NMPC aimed at controlling antilock braking systems, implemented
and tested through the Hardware-in-the-loop approach [59]; Escaño et al. applied a similar
approach that combines a reduction technique based on functional principal component
analysis and a fuzzy system that interpolates the output of piece-wise affine controllers [60].

3.2. PI Based Rotor Stress Controller

A preliminary implementation using a rotor stress monitor as a basis for turbine
control can be obtained through a PI control strategy. The main idea behind this control
approach is using an outer control ring with a first PI to create a stress set-point from
turbine power current value and current set point. This set point is limited in accordance
with the maximum allowed stress. The stress set-point and the stress current value are
used by an inner PI in order to determine the wheel chamber pressure set-point that is
compliant with the desired stress limit.

This kind of architecture is able to grant good results in terms of both production
increment during start-up and stress limit compliance. An example is shown in Figure 6
where a fully cold start-up for a power gen application based on a PI rotor stress controller
is compared with a standard start-up curve. In this case, the full steam header conditions
allow highlighting the great advantage that can be achieved by exploiting dedicated rotor
stress controller with respect to the standard startup procedures based on pre-calculated
power references. In the specific case study, it is possible to increase the energy produced
during the startup by over 15–20%.

At the same time, stress overshoot might appear as PI controllers are subject to fine-
tuning errors. Since the effect of possible mistuning introduces the need for safety factors on
the maximum allowed stress, the need of different control routines is justified (as explained
in the next sections).

3.3. Nonlinear Model Predictive Rotor Stress Controller

The NMPC approach, shown in Figure 7, has been developed in the Matlab/Simulink
environment and consists of three main software components:

• The rotor stress monitor, i.e., the soft sensor presented in Section 2, which estimates
the thermal status, focusing on the temperature of the rotor discretized in N points.
The soft sensor is used as a state observer within the NMPC approach, externally
installed in PLC platform as an integral part of the steam turbine governor. The block
calculates the state of the machine, starting from some relevant inputs: The internal
and external case temperature, the pressure and the temperature in the steam header,
and the wheel-chamber and outlet pressures.

• The NMPC algorithm, which calculates a reference control action for the pressure in
the wheel chamber.
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• A PI controller, which directly acts on the inlet valve by following the reference from
the NMPC algorithm. This particular control architecture aims at overcoming the
issues related to the nonlinear behavior of the valve system, without including it in
the modelling strategy formulated within the NMPC software.
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Figure 7. Architecture of the startup control system.

The tailored NMPC application consists of 4 main blocks depicted in detail in Figure 8:

• A Startup Selector for selecting the parameters related to the maximum allowable stress
according to the casing temperature and type of startup (cold, warm, hot).

• A Disturbance Predictor and a Max Pressure Predictor, which estimate, respectively,
the future steam temperatures and the pressure available at the header. The steam
temperature acts on the thermal dynamics as a non-controllable variable (disturbance).
The predicted future header pressure is necessary to estimate its maximum constraints
within the problem formulated in the NMPC. In deeper detail, the future predictions
are calculated starting from the related current through a linear extrapolation. The
linear extrapolation is saturated between a minimum and a maximum allowable value.
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• The Optimizer, the main block of the NMPC algorithm, which implements the opti-
mization problem, routines, and specific logics for calculating the control action. The
optimization problem, formulated for a receding horizon problem, is described by the
following equations:

min
u

t+Npred

∑
k=t

1
P2

max

(
Pre f (t + k)− P(k)

)T
WP

(
Pre f (t + k)− P(k)

)
+

1
u2

max
∆uTW∆u∆u

∆u= u(k)− u(k− 1)

T(k + 1)= A(k)T(k) + Bϕ(k)
σ(k)= C(k)T(k)
T(0)= T0

ϕ(k)= c(k) ·HTC(k)(Tbulk(k)− TN(k))
HTC(k)= f1(u(k), Tbulk(k), pin(k), pout(k))

P(k)= f2(u(k), Tbulk(k), pin(k), pout(k))
σmin(k) ≤ σ(k) ≤ σmax(k)
umin(k) ≤ u(k) ≤ umax(k)
Pmin ≤ P(k) ≤ Pmax

(23)

where Npred is the prediction horizon in samples, u is the manipulated variable, the pressure
in the wheel chamber, Pre f is the turbine mechanical power reference received from the
DCS of the system that takes into account the current limits of the steam generation system,
WP and W∆u are, respectively, the weight for the reference tracking and the variation of the
control action, f1 and f2 are nonlinear functions, which describe the relationships between
the main thermodynamic variables of the ST and HTC and the generated mechanical power
P, respectively, and σmin and σmax are respectively the minimum and maximum limits of
the stress, designed in function of the specific mission of the turbine.
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The control sequence u =
[

u1 u2 · · · uNX

]
is calculated with a blocking strat-

egy, in which the NX calculated variables are spatially distributed along the prediction
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horizon (such as shown in Figure 9) and linearly interpolated in the intermediate points
with a sampling time Ts, which also discretizes the dynamics of the thermic rotor model.
With respect to standard blocking strategies, which concentrate the control action in the
beginning of the control horizon, the presented approach aims at limiting the peak of stress
for the whole prediction horizon, in order to overcome issues related to the infeasibility of
the optimization problem due to a short control horizon.
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The presented formulation is characterized by a large number of constraints mainly
due to the evaluation of machine dynamics every Ts for the aforementioned stability issues.
In order to reduce the computational burden, two strategies have been implemented within
the NMPC algorithm. The first one concerns the decimation of the number of power and
stress constraints evaluation along the prediction horizon. The second one concerns the
scheduling of the optimizer with a frequency lower than the frequency relative to the
model simulation sampling time.

In detail, the decimation of evaluation of stress constraints is motivated by the
fact that the stress dynamics follow the thermal ones and are therefore slow. For this
reason, it is possible to evaluate the constraints every kcdTs seconds, where kcd is the
decimation parameter:

σmin ≤
[

σ(k) σ(k + kcd) · · · σ(k + nkcd) · · · σ
(

Npred

) ]
≤ σmax (24)

The power constraints are evaluated in the same way, as their dynamics are bound by
the limitation on the wheel chamber pressure, which is in turn limited by stress-derived
limits. A well-tuned decimation parameter kcd, allows a considerable reduction of the
number of constraints on stress and computational costs.

The second strategy implements the decimation of the frequency of the optimizer
respect to the NMPC frequency fc:

fc =
1
Tc

; Tc = Ts (25)
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The optimizer is scheduled with a frequency fopt multiple of the NMPC schedul-
ing frequency:

fopt =
1

Topt
; Topt = kmpc-periodTc (26)

A well-tuned kmpc-period parameter allows overcoming the limitation concerning the
fact that the optimizer computational cost is not compatible with the controller frequency.

The optimizer routine is based on the SQP algorithm [61]. In particular, in this work,
two different implementations have been used: The Matlab fmincon routine used as a
benchmark, and a tailored Sequential Quadratic Programming (SQP) approach, which is
license-free as it was ad-hoc developed.

3.4. Tailored SQP Algorithm

SQP is a state-of-the-art algorithm that allows solving general nonlinear optimization
problems in the form: 

min f (x)
c(x) = 0
b(x) ≤ 0

(27)

where f (x), b(x), c(x) are generic non-linear functions. Nonlinear optimization is an
NP-hard problem, namely it is computationally expensive to solve. The basic idea of SQP
is to form quadratic sub-problems that are computationally easier and iteratively solve
them in order to converge to a solution of the global problem. The approach followed is
similar to the one proposed in [62].

Let:
L(x, σ, λ) := f (x) + σ′ · c(x) + λ′ · b(x) (28)

be the Lagrangian of the problem. Let H(x) be the Hessian of L(x, σ, λ) as a function only
of x at some fixed values of (σ, λ). Let ∆ f be the gradient of the function f and Jb, Jc
the Jacobians of the functions b, c. The sub-problem to solve at iteration k is formulated
as follows:

min 1
2 d′ · H(xk) · d + ∆ f (xk) · d
Jc(xk) · d + c(xk) = 0
Jb(xk) · d + b(xk) ≤ 0

(29)

The expression is a quadratic problem in the variable d, positive definite since H(xk) is
kept positive definite. The solution dk to the quadratic sub-problem provides the direction
of improvement at the next iteration of the original problem solution:

xk+1 = xk + dk (30)

To improve the convergence, the step length α is calculated in order to update
the solution:

xk+1 = xk + α · dk (31)

where α is computed by optimizing a merit function.
If stopping conditions or constraints violation are satisfied, the current solution is

given as output. Otherwise, a new iteration is performed. This algorithm converges to a
minimum of the objective functions [62] and performs fast iterations, since the quadratic
sub-problem is convex at every iteration: Convex quadratic problems can be solved in
polynomial time. For this purpose, an active set method has been exploited; the problem
is iteratively solved starting from a feasible initial solution calculated with the simplex
method. At every iteration, a sub-problem taken only on some equality (active) constraint
is solved through QR matrix decompositions [63]. The solution is then iteratively updated
in a way that preserves feasibility. This procedure converges in polynomial time to the
optimum of the quadratic sub-problem.

With respect to the fmincon routine, the tailored algorithm manages the tolerance on
constraints, solutions, and jacobian in a different way. The algorithm tries to converge
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starting from a minimum allowed tolerance and increasing it of a factor if it is not respected
at the end of the number of allowed iterations.

In order to make this algorithm implementable on a PLC platform in the future,
the algorithm has been developed in the Matlab environment and the opportunity of
translating it into the PLC native language through the PLC Coder Toolbox has been tested.
As many Matlab routines (such as the fmincon function, the linear(quadratic) solvers, etc.)
cannot be directly translated by the PLC Coder, in their place, the above tailored algorithms
have been coded and used. The SQP implementation has been tested with respect to Matlab
fmincon for several problems and showed similar or sometimes even better performances.
In particular, the two algorithms behave similarly on instances of the nonlinear problem
arising from the NMPC. With respect to the fmincon routine, the tailored SQP algorithm for
PLC platforms is currently 8–10 times slower.

4. Results

Extensive simulation studies have been performed, through which the performance
of the proposed NMPC approach has been compared to the selected benchmark based
on the PI Controller as well as to a second benchmark based on the standard procedures
for power startup, based on pre-calculated load curves. In order to assess the validity of
the NMPC approach, all the control approaches have been simulated by using real data
related to a Low-Pressure (LP) ST with a rated power of 45 MW, an inlet steam pressure
of 1–22 Bar, an inlet steam temperature of 180–380 ◦C, and a rated speed 3000 RPM. The
external radius is assumed to be equal to 29.5 cm in the equivalent cylindrical model
and the rotor is assumed to be made of ferritic-martensitic heat resisting forged steel for
power generation applications. Even if material properties cannot be disclosed, similar
results can be obtained assuming material properties of A470 class 8 whose data are easily
available, for example in the NIMS database. It has to be remarked that these material
properties are not fundamental to quantify the goodness of the control strategy (a start-up
performed with a worse-performing rotor material determines a longer start-up but does
not invalidate the control strategy performance). The machine is discontinuously operated
in a CSPP, where the steam characteristics vary as a function of the weather with numerous
starts per year. The specific case study is related to a cold startup of a typical winter day,
during which the steam does not reach the full header conditions in terms of mass flow and
enthalpy with respect to the maximum potential of the plant. The steam characteristics are
depicted in Figure 10: The top diagram shows the pressure on the steam header (in blue),
the temperature of the inlet steam (red line), and the internal and external temperatures of
the LP machine casing (green and orange lines, respectively); the central diagram depicts
the rotor speed, while the bottom diagram shows the startup command (blue line) and the
state of the generator breaker (orange line). For confidentiality constraints, the time axes
are dimensionless.

The control performance has been evaluated through three main indexes, related
to the maximum percentage stress overshoot, the generated mechanical energy during
the startup, and the computing time. Firstly, the performance of PI controller has been
evaluated with respect to the standard startup procedures, starting from a brief discussion
related to the controller parameter selection. In a second phase of the work, extensive
tests have been performed on the NMPC approach, in order to evaluate the performance
sensitivity related to the main controller parameter.

4.1. PI Control Results

In order to assess the performances of the PI based controller, it is important to verify
the sensitivity of this kind of controller to a possible mistuning of its gain parameters.
It has to be remarked that during commissioning the gain parameters of power PI are
usually modified to obtain the desired control performances. In this scenario, the control
architecture should have pre-set values enabling a faster commissioning. A sensitivity
analysis based on a Design of Experiments approach solves this kind of problem with the
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main objective of identifying the optimal gain values of the internal stress PI. In more detail,
the controller has been initially tuned through a proprietary site procedure similar to ZN
methodologies, adapted to the constraints of the site itself. In addition, a sensitivity analysis
was carried out on the performance, in terms of generated energy and stress overshoot, as
the controller parameters varied, in a large neighborhood of the operative point identified
by the site procedures, in order to verify the robustness of the methodologies applied to
the specific case. The results of the sensitivity analysis are shown in Figure 11 where the
energy production and the maximum percentage overshoot are shown.
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The results of the DoE show that the peak production also corresponds to the maxi-
mum stress overshoot. The results show that the overshoot peak cannot be fully eliminated
unless heavily scarifying the performances through a very large integral coefficient of
the PI Controller. The solution requires introducing an additional safety factor on the
maximum allowable stress for the turbine rotor, in order to limit the stress reference on the
PI controller, with a consequent limited reduction of the energy production during start-up.
An example of this behavior is shown in Figures 12 and 13 where the PI intervention can
be clearly identified between 48–65% of the simulation time tsim.

In particular, in Figure 12, the top diagram shows the equivalent rotor stress in the
core (red), the rotor skin stress (blue), the maximum between core and skin stress (green),
and the maximum allowable rotor stress in violet. The bottom figure shows the steam
temperature in black, the temperature of the external and internal casing (dashed lines in
orange and yellow), and the temperature of the rotor in different point of the radius (from
blue in the core to red in the skin). In Figure 13, the top diagram shows the controlled steam
pressure in the wheel chamber (blue) and the available pressure in the header (orange).
The bottom figure shows the rotor speed in blue and the mechanical power in the turbine
shaft normalized with respect to the rated power.
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4.2. DOEs NMPC

This section presents the outcomes of the main tests on the NMPC, which were aimed
at evaluating the performances of this approach related to both energy production and
startup speed up and viability in terms of computing time. In particular, the extensive
test campaign mainly focuses on balancing the control performances and the heavy com-
putation burden of NMPC, with the objective of finding an optimal configuration of its
parameters. Among the different tests that have been performed, we present here the main
results related to the sensitivity analysis with respect to control, optimizer, and formulation
parameters (namely, cost function parameters). In particular, the following parameters
are considered:

• Time-related parameters Nx, Npred, kmpc-period, in which, when kmpc-period > 1 (the
optimizer is not scheduled every control step), the control action is kept constant
through a sample and hold strategy;

• Main optimizer parameters Nx, MaxIter and TolCon;
• Cost function weights, Wp and W∆u, where W and W∆u have been varied according to

the relationships: W∆u = αW, Wp = W;

The abovementioned tests are summarized through three different figures. In the
figures, the energy is normalized with respect to the maximum energy produced resulted
in the specific DoE related to the NMPC application to the case study. Figures 14 and 15
are related to the first test campaign. In particular, Figure 14a shows the maximum
calculation time as a function of the prediction horizon and the number of calculated
variables Nx, which highlights an evident link between the hyperparameters involved and
the calculation time. The calculation time appears to be very sensitive to the prediction
horizon and slightly less sensitive to the number of variables calculated. Figure 14b shows
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the produced energy as a function of the varied parameters, in particular highlighting a
great sensitiveness to the frequency of the optimizer and an increasing sensitivity with
respect to the prediction horizon and the number of calculated freedom degrees when
the optimizer is more frequently scheduled (kmpc-period ∈ [1, 32]). Figure 15 shows the
percentage stress overshoot as a function of the varied parameters. In particular, the graph
shows that the overshoot depends only on the optimizer scheduling frequency, due to the
fact that a sample and hold strategy for a less frequent optimizer activity is not efficient.
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Figures 16 and 17 show the results related to the second test campaign, where Nx,
MaxIter and TolCon are varied. In particular, Figure 16a,b shows the mean calculation
time as a function of the main optimizer parameters, highlighting that it is substantially
dependent on Nx and less dependent on the number of iterations. As the tolerance on the
constraints increases, the calculation time decreases in terms of both average and maximum
time, as the optimizer relaxes the constraints more. Figure 17a shows the produced energy
in function of the varied parameters, which is dependent on the tolerance on the constraints
TolCon. With a number of maximum iterations MaxIter equal to 1, the surface shows a
dependence also on Nx. Figure 16b shows the percentual stress overshoot in function of
the varied parameters, and in particular, that overshoot mainly depends on the tolerance
constraints and slightly on Nx.



Energies 2021, 14, 3998 23 of 30

Energies 2021, 14, x FOR PEER REVIEW 24 of 31 
 

 

as a function of the main optimizer parameters, highlighting that it is substantially de-
pendent on 𝑁௫ and less dependent on the number of iterations. As the tolerance on the 
constraints increases, the calculation time decreases in terms of both average and maxi-
mum time, as the optimizer relaxes the constraints more. Figure 17a shows the produced 
energy in function of the varied parameters, which is dependent on the tolerance on the 
constraints TolCon. With a number of maximum iterations MaxIter equal to 1, the surface 
shows a dependence also on 𝑁௫. Figure 16b shows the percentual stress overshoot in func-
tion of the varied parameters, and in particular, that overshoot mainly depends on the 
tolerance constraints and slightly on 𝑁௫. 

  
(a) (b) 

Figure 16. DoE with variable 𝑁௫, MaxIter and TolCon: (a,b) Average computing time in function of 
the varied parameters. 

  

(a) (b) 

Figure 17. DoE with variable 𝑁௫, MaxIter and TolCon: (a) Produced energy in function of the varied 
parameters; (b) stress overshoot in function of the varied parameters. 

Figure 18 shows the results related to the third test campaign, which investigates the 
effect of the cost function weighs on the control performance. Figure 18a depicts the mean 
computing time in function of the varied parameters, while Figure 18b shows the pro-
duced energy. The test shows that both computing time and produced energy highly de-
pend on 𝛼 (and, therefore, on 𝑊୼௨). 

Figure 16. DoE with variable Nx, MaxIter and TolCon: (a,b) Average computing time in function of
the varied parameters.

Energies 2021, 14, x FOR PEER REVIEW 24 of 31 
 

 

as a function of the main optimizer parameters, highlighting that it is substantially de-
pendent on 𝑁௫ and less dependent on the number of iterations. As the tolerance on the 
constraints increases, the calculation time decreases in terms of both average and maxi-
mum time, as the optimizer relaxes the constraints more. Figure 17a shows the produced 
energy in function of the varied parameters, which is dependent on the tolerance on the 
constraints TolCon. With a number of maximum iterations MaxIter equal to 1, the surface 
shows a dependence also on 𝑁௫. Figure 16b shows the percentual stress overshoot in func-
tion of the varied parameters, and in particular, that overshoot mainly depends on the 
tolerance constraints and slightly on 𝑁௫. 

  
(a) (b) 

Figure 16. DoE with variable 𝑁௫, MaxIter and TolCon: (a,b) Average computing time in function of 
the varied parameters. 

  

(a) (b) 

Figure 17. DoE with variable 𝑁௫, MaxIter and TolCon: (a) Produced energy in function of the varied 
parameters; (b) stress overshoot in function of the varied parameters. 

Figure 18 shows the results related to the third test campaign, which investigates the 
effect of the cost function weighs on the control performance. Figure 18a depicts the mean 
computing time in function of the varied parameters, while Figure 18b shows the pro-
duced energy. The test shows that both computing time and produced energy highly de-
pend on 𝛼 (and, therefore, on 𝑊୼௨). 

Figure 17. DoE with variable Nx MaxIter and TolCon: (a) Produced energy in function of the varied
parameters; (b) stress overshoot in function of the varied parameters.

Figure 18 shows the results related to the third test campaign, which investigates the
effect of the cost function weighs on the control performance. Figure 18a depicts the mean
computing time in function of the varied parameters, while Figure 18b shows the produced
energy. The test shows that both computing time and produced energy highly depend on
α (and, therefore, on W∆u).
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4.3. Guidelines for Controller Parameters Tuning and Discussion of Results

The analysis clarifies the main dependence relationships between the NMPC parame-
ters and the resulting performance. As mentioned before, three main aspects have to be
considered: (i) The performance in terms of produced energy; (ii) the overshoot of stress;
and (iii) the computation burden.

In first place, the energy produced depends on a decreasing proportion of the fre-
quency of scheduling of the optimizer, the maximum number of iterations MaxIter, the
number of control freedom degrees Nx, and the length of the prediction horizon Npred. In
more detail, the energy is substantially dependent on the frequency of scheduling of the
optimizer: The less frequently the optimizer is scheduled, the less the controller is capable
of optimizing the starting curve of the machine. The produced energy is also partially
dependent on the combination of the maximum number of iterations and the number
of Degrees of Freedom (DOFs) of the control. For a low number of maximum iterations
(i.e., MaxIter = 1), the produced energy highly depends on the number of control DOFs.
The greater Nx, the greater the amount of produced energy, since fewer iterations are,
however, balanced by a greater number of variables, which allow better optimization of the
control action. For a maximum number of iterations greater than 3, it is possible to obtain
the maximum possible energy during start-up (if the tuning of the other parameters is
optimal). Finally, the prediction horizon Npred slightly affects the produced energy, due to
the accuracy of disturbance predictions, which is less accurate for a long prediction horizon.
The computational cost mainly depends on the length of the time horizon Npred, on the
number of future variables that are controlled Nx, and, finally, on the parameter W∆u, which
weights the variation of control action between consecutive control steps. The tolerance
on constraints TolCon has a role on the sensitivity analysis but only when this is rather
high, resulting in a decreased computational cost. In deeper details, high values of Npred,
Nx, and W∆u lead to higher computational costs. In conclusion, these four parameters
must be carefully tuned for first. The length of the prediction horizon must cover the rise
time of the stress in order to predict and identify the peak of stress, and, at the same time,
it is necessary to balance the counteracting calculation time. Ultimately, this important
parameter depends on the construction material of the machine and its size. Once the
abovementioned parameters are tuned, the required computation burden—in terms of
maximum computation time—can be balanced by tuning the frequency of the schedul-
ing of the optimizer. The maximum percentage stress overshoot mainly depends on the
scheduling frequency of the optimizer and on the tolerance of the optimization algorithm
on constraints. The overshoot is almost linearly dependent on the two parameters.

An example of fine-tuned NMPC controller application is shown in Figures 19–21.
More in detail, the simulation is performed with a sampling time Ts = 2 s, a prediction
horizon of 40 min (Npred = 1200 samples) and a number of control steps equal to Nx = 5.
The optimizer within the NMPC has been scheduled every kmpc-period = 4 periods, equal
to 8 s, to guarantee an adequate margin for the computation time. Figure 19 shows on
the top diagram the stress during start-up (blue in the core, red in the skin of the rotor,
green the maximum stress) and the stress limit (in purple). The middle diagram depicts the
temperature of the steam in the header (black), the temperature of the external and internal
casing (dashed lines in orange and yellow), and the rotor temperature in each radial node
(from blue in the core to red in the skin). The bottom diagram shows the state of the
generator breaker (blue) and the start-up state (black). Figure 20 shows, in the top diagram,
the pressure on the header (yellow) and the regulated pressure in the wheel chamber (blue).
The middle diagram shows the rotor speed (blue) and the generated mechanical power
(orange). Figure 21 depicts the computing time of the scheduled optimizer in the NMPC.
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Figure 21. Example of application of NMPC to the startup of a LP turbine, computing time.

The simulation shows several interesting results. The control mission shows two
singular behaviors: The first one occurs around 11–17% of simulation time, when a peak in
the rotor stress is observed, which is due to the speed startup and is not controllable by the
NMPC that acts on the power startup. The second one occurs around 47–53% of simulation
time, when the NMPC effectively regulates the wheel chamber pressure in order to limit
the thermal stress conditions in the rotor without overshoots on the rotor stress behavior.

The comparison between the NMPC and PI control strategies shows several interesting
results. Table 1 summarizes the main numerical results for the three case studies: (i) PI
Rotor Stress Controller; (ii) PI Rotor Stress Controller with anti-overshoot; and (iii) well-
tuned NMPC. All the case studies refer to the control of the steam in CSPP application, in
which the steam header condition is dependent on the weather condition, and rarely reach
the full header capacity in terms of temperature and pressures. The results are reported in
terms of two different indexes: The Normalized Percentual Integral Absolute Error (NPIAE)
and the Normalized Production Capability (NPC) that describes the ratio between the
produced energy in the case of controlled rotor stress scenario and the maximum theorical
energy production. The NPIAE is a normalized version of the IAE index to overcome
confidentiality data issues related to the intellectual property.

NPIAE = 100

∫ tend
to
|Pmax(t)− Psi (t)|∫ tend
to
|Pmax(t)|

(32)

NPC = 100
Esi

Emax
(33)

where Psi (t) is the power produced at the time t for the presented i-th control scenario, Pmax
is the power produced in a scenario with uncontrolled rotor stress, to and tend, respectively,
are the initial power startup time and the instant in which the startup ends, and Esi

and Emax are, respectively, the energy produced in the i-th controlled scenario and the
uncontrolled scenario.

Table 1. Control results. Comparison between proposed approaches (PI RSC and NMPC).

Case Study NPIAE NPC

PI RSC with overshoot 4.77 95.23
PI RSC no overshoot 5.30 94.70

Tuned NMPC 2.49 97.51

In particular, the NMPC allow one to totally avoid the stress overshoot, which in
some control applications, can result in poor or dangerous behaviors, while through the
PI controller it is not possible to eliminate the overshoot unless one adequately limits
the stress reference with safety factors (as in the second scenario). Safety factors in fact
limit the energy production during the startup. Another fundamental aspect concerns the
production of energy during the startup. The PI controller application shows encouraging
results, considering the simplicity of the control implementation. In conditions of perfectly
tuned NMPC and PI controllers, in the presented case study, the NMPC allows one to
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produce about 2.3% more energy than the PI-based rotor stress controller. In turn, the
controller allows one to increase energy production by over 15–20% compared to what can
normally be obtained with pre-calculated load curves.

In general, PI tuning is a difficult task in practice, which is performed by field engineers
who usually exploit conservative tuning methodologies. NMPC tuning can be performed
offline through an automatic simulation campaign, with relevant savings of commissioning
time. In this context, NMPC overcomes not only several issues related to overshoot
managing, but also the PI controller mistuning issues, resulting in superior performance.

5. Conclusions

In this paper, an extensive presentation of a Nonlinear Model Predictive Control
approach has been presented and compared with respect to the standard control method-
ologies for speeding up the power startup of steam turbines. The NMPC approach includes
a detailed thermodynamical model of the machine that allows to identify with a great
accuracy the thermal behavior of its rotor, in particular focusing on the equivalent stress.

A final analysis of the obtained results and the comparison of the proposed advanced
control approach to standard ones show that relevant improvements can be achieved by
using NMPC architecture. Firstly, the NMPC—when well-tuned with offline procedures—
guarantees a total rejection of the stress overshoots and superior performances in terms of
produced energy, with respect to both start-up through pre-calculated curves and the PI
controller. In order to prove the effectiveness of the proposed approach, the application to
a specific case study was presented regarding the startup of steam turbines in concentrated
solar power plants, characterized by particularly variable steam conditions. For this specific
application, when the PI controller action is tuned to eliminate stress overshoots, the NMPC
gains about 2.3% in terms of energy produced during the startup, on top of the 15–20%
output power gain that can be obtained through a standard PI control scheme aimed at
thermal stress containment with respect to standard start-up curves.

The only bottleneck in applying NMPC methodologies when starting small machines
is the calculation time, which currently does not guarantee application on PLC platforms,
except through complex distributions of the optimization calculation on consecutive control
cycles. Real-Time Iteration architecture may overcome these issues and will be the object of
future developments of this topic.

Future work will aim at developing an adaptive blocking strategy, based on the current
thermal state and the stress of the machine. In particular, the strategy can be effectively
adjusted through Fuzzy Logic-based methodologies that can vary both the number of
DOFs and their concentration over time in order to favor a better optimization of the
starting curve in its initial moments and a further reduction of the calculation times. A
further increase in performance can be obtained by improving the disturbance models
that forecasts the steam characteristics at the inlet of the turbine, along the prediction and
control horizons of the NMPC. An accurate model of the available steam energy at the inlet
is necessary to improve the MPC performances, as it allows one to obtain less restrictive
and conservative control curves. Furthermore, a broader point of view on the startup issues
faced in a global way could allow to further increase the performance. On the one hand,
the control system can be extended to the generation of steam itself, with enormous benefit
on the synchronization of the machines and the plant, at the cost of a higher computational
burden. On the other hand, the modeling work can be extended in the same point of view,
with a greater number of details and consequent precision of the predictions of the vapor
characteristics. AI techniques, e.g., Recurrent Neural Networks-based architectures, can
undoubtedly improve the prediction of future disturbances and make the start-up curve
less conservative. Interesting examples are systems based on concentrated solar thermal
technology, in which AI methodologies can certainly benefit from the use of AI techniques
for prediction of steam characteristics based on weather data and the condition of the solar
field plant, in order to improve not only the management of connected STs but also the
overall performance.
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