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Abstract: This paper proposes an intelligent seamless transition controller for smooth transition
between grid-connected (GC) and standalone modes of distributed generation (DG) units in the
grid. The development of this seamless controller contributes to two main processes in the transition
modes: the synchronization process and an islanding process. For the synchronization process, the
stationary reference frame phase-locked loop (SRF-PLL) associated with the voltage source inverter
(VSI) is modified using the frequency, voltage deviation, and phase angle information. Furthermore,
the islanding process is classified as intentional and unintentional islanding scenarios for achieving
efficient transition control. Here, the intentional islanding process is achieved with the information
that is available in the system due to the planned disconnection. For the unintentional islanding
process, a fuzzy inference system (FIS) is used to modify the conventional droop control using
the information of change in active power, voltage, and frequency. To identify the action of the
proposed approach during the transition process, numerical simulations are conducted with the
hardware-in-loop (HIL) simulator by developing a 10 kWp three-phase grid-connected DG system.
The results identified the efficient control of the VSI for both islanding and grid connection processes.
In the islanding conditions, the proposed controller provides advantage with less detection and
disconnection time, and during synchronization, it instantly minimizes the phase-angle deviation to
achieve efficient control.

Keywords: transition control; seamless transition; islanding detection; grid synchronization; phase-
locked loop

1. Introduction

The increasing renewable energy installations has led to the formation of distributed
generation networks (DGs), which tend to support the grids by sharing the load and
reducing the peak demand on the grid [1]. The DGs also make the consumer more
independent and the system more reliable with their ability to operate in a centralized
and decentralized manner [2]. For being able to operate in multiple operating states, the
inverter needs to be able to perform seamless transition between the states without causing
any form of transient response or lead the system to frequency desynchronization, which
may lead to mass blackout and can severely damage the components connected in the
network.

While operating in the centralized mode of operation, the grid is connected with the
DGs, and the voltage and frequency of the DGs are in synchronization with the grid [3].
The DGs supply power to the local load and remaining power is either stored into the
energy management system or injected into the utilities [4]. However, in case of grid
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abnormalities [5], the DGs try to recover the system as per the grid codes, and on failure
to attain, the grid is disconnected from the DGs along with its local load [6–9]. The DGs
are required to maintain the operation as per the grid parameters and satisfy the local
load, and at the same time, it must be capable enough to reconnect back to the grid as it
returns online.

For achieving the fast and reliable transition between the modes, various techniques
have been presented in the literature. Conventionally, a switch-based mechanism was
introduced in which a static switch is used to change the controller with the change in
mode of operation [10,11]. However, the use of static switches caused concern, as the
time between the disconnect and reconnect period may act as a source of transition for
the operating voltage. Furthermore, in [12,13], a single control structure is used for the
dual mode of operation. The outer loop acts as a reference current generator in grid-
connected (GC) mode, whereas it acts as a voltage regulator for the standalone (SA) mode
of operation. It is better than the static controller; however, voltage overshoot may cause
reduced efficiency and reliability while operating in standalone mode [14–17].

Furthermore, in [18], a staircase-based frequency variation technique implemented
using proportional integral (PI) controller effectively reduces the total harmonic distortion
(THD). However, the problem with the PI controller remains due to the presence of steady-
state error for a stationary frame [19]. To overcome the issue, a proportional resonant
(PR)-based control scheme for indirect current control is presented in [20]. Although the
PR controller resolves the drawback of the PI controller, for grid voltage distortion, the
response speed for the controller is affected and causes delay in the average power-based
current reference generation. To maintain the response speed, a stationary reference frame
proportional resonant control is proposed in [21]. It overcomes transient responses and
helps in providing active and reactive power control to overcome the varying output
voltage and power.

Furthermore, a robust hierarchical control system is proposed [22] in order to over-
come the issues with previous controllers. The voltage controller is designed with variable
structure elements for mitigation of voltage disturbance. It also utilizes the power-sharing
abilities of a droop-based controller. However, the variable element structure introduces
harmonics in the system and causes a delay in transient response. To overcome the transient
response delay, a model predictive control (MPC)-based technique is proposed in [23]. The
MPC provides a stable output that is easy to design and has low cost for implementation.
For all the literature identified in this research [24], the control techniques faced drawbacks
while achieving fast and efficient synchronization and disconnection, especially during the
unintentional islanding condition. Furthermore, most of the literature faced issues due
to the deviation of voltage and frequency crossing the predefined limits during transient
conditions.

To overcome the drawbacks during the transition process, this paper develops an
intelligent control algorithm for smooth transition while keeping all the concern parameters
under check. The proposed controller is motivated toward the following aspects:

• Provide faster and efficient grid synchronization without compromising for both
phase-angle and frequency deviations.

• Reduce the preparation time of the disconnection controller by estimating and adjust-
ing the phase and voltage of the VSIs.

• Improve the operating condition of the system with a fuzzy controller during the
transition process, especially under transients in the system operation.

The details of these aspects are further discussed as follows: In Section 2, the system
configuration of the grid-connected DG unit is discussed, and the model of the VSI is
derived. In Section 3, the control aspects associated with the control of VSIs are discussed.
Based on these control models, the islanding detection, control, and grid resynchronization
process are achieved through various modifications and by developing the intelligent
control approaches in Section 4. The numerical simulations are developed in Section 5 to



Energies 2021, 14, 3979 3 of 21

assess the performance of the developed modifications and intelligent controller, and the
discussion is concluded in Section 6.

2. System Configuration and Model Derivation

The general overview of a three-phase grid-connected distributed generation (DG) unit
with a resistive-inductive (RL) load is shown in Figure 1. This configuration has a primary
energy source with a DC-DC boost converter and a three-phase voltage source inverter
(3-φ VSI) connected at the point of common coupling (PCC) through an LC filter and RL
load. The switch S1 at the grid side of the system is used to achieve the grid-connected and
standalone operation of the DG unit. An ideal three-phase voltage source is considered
as the main grid with Rg and Lg components per phase. The major challenge with this
configuration is to maintain voltage and frequency at the PCC and coordinate the operation
of reclosures and protective relays for safe and quick disconnection of DGs from the utility
during the grid-side abnormalities with compliance to the grid standards [25,26]. This
operation also involves automatic reconnecting, or intervention of the operator to reclose
the DG connection with the grid after the abnormality is cleared. All these operations
require the system to be equipped with an accurate islanding detection mechanism [27–29]
and a robust and smooth seamless transition control infrastructure.
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Figure 1. Configuration of three-phase grid-connected distributed generation unit with RL load.

To identify the state-space representation of the configuration in Figure 1 for stan-
dalone and grid-connected modes, a simplified network is developed, as shown in
Figure 2. The equations governing these modes of operation are derived as

vinv,abc = RiI,abc + L diI,abc
dt + v0,abc

iI,abc = C dv0,abc
dt + iL,abc + ig,abc

(1)

where vinv,abc is the vector representation of the output voltage at each phase of the inverter,
iI,abc is the vector representation of the output current at each phase of the inverter, L is
the filter inductance, v0,abc is the voltage at the PCC, C is the filter capacitance, iL,abc is the
current flowing through the three-phase RL Load, and ig,abc is the three-phase grid current.
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Furthermore, the state-space representation in (1) is simplified for the grid-tied mode
by formulating the stationary reference frame, αβ, as a fact that grid impedance is less than
the base impedance. Here, v0 is equal to vg, and without the loss of generality, the modified
formulation is given as

vinvα = RiIα + L diIα
dt + vgα

vinvβ = RiIβ + L
diIβ

dt + vgβ

. (2)

Therefore, by considering the Laplace domain for nominal values of the filter compo-
nents, the ideal model of the system is given as

G̃Pi,αβ =
iI,αβ

vinv,αβ − vg,αβ
=

1
sL0 + R0

(3)

where G̃Pi is the model representation that can be controlled with a current control loop.
The above equation provides an aspect of implementing model-based control with the
grid-connected mode of the configuration in Figure 1.

Furthermore, for an islanded or standalone mode of operation, the v0 is equal to the
load voltage, and its stationary frame representation is given as

vinvα = RiIα + L diIα
dt + vCα

vinvβ = RiIβ + L
diIβ

dt + vCβ

. (4)

For an islanded operation, the main objective is to maintain the load voltage. Hence,
the system model based on the inverter output voltage and the voltage across the filter
capacitor is derived as

G̃Pv =
vC,αβ

vinv,αβ
=

1
s2C0L0 + sR0C0 + 1

(5)

where G̃Pv identifies the model representation of the plant that can be controlled with the
voltage control loop. The details of the control methodology associated with the VSI, and
the development of the intelligent transition system are discussed in the further sections.

3. Control Development for Voltage Source Inverter

As per the details provided in Section 2, the control model of a three-phase inverter is
developed. The inverter needs to be capable enough to adject the output frequency and
voltage based on the changes observed from the setpoint in the droop controller. The value
of current and the voltage for each phase is measured locally and then transformed in the
dq frame of reference, as represented in Figure 3. The transformation facilitates an effortless
implementation of the control mechanism.Energies 2021, 14, x FOR PEER REVIEW 5 of 21 
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3.1. Reference Frame

The dq transformation operates in two stages: initially, the abc parameters are con-
verted into an αβ frame, which is further transformed into a dq rotating frame of refer-
ence [30]. The transformation aids the system control by converting the rotation frame
components into a stationary frame. This reduces the complexity of the controller, and the
implementation of a decoupled linear controller can be enabled.

As per Figure 3, the rotating angle between the dq frame with respect to the αβ frame
is represented by a rotating angle, which is denoted by θ. The value of the q axis is fixed to
zero for locking the stationary frame with the rotating frame.

The mathematical representation of the abc→ αβ transformation can be expressed as:

[
xα

xβ

]
=

√
2
3

[
1 −1/2 1/2
0 √3/2 −√3/2

] xa
xb
xc

. (6)

Furthermore, the αβ→ dq transformation is expressed as:[
xd
xq

]
=

[
sinωt −cosωt
cosωt sinωt

][
xα

xβ

]
(7)

where x is a representation of the value to be transformed.

3.2. Phase-Locked Loop

The phase-locked loop (PLL) is configured based on the dq transformation [31]. The
phase angle and the frequency of the inverter are measured using PLL. A conventional
PLL consists of a reference signal, phase detector, and filter unit. Whereas in synchronous
reference frame phase-locked loop (SRF-PLL), the components are similar with the insertion
of a dq transformation block by keeping the q-axis value zero, the phase is locked with
the rotating frame of reference, as represented in Figure 4 [31,32]. The signal is fed to the
PI controller and further added with the frequency frame of reference. By integrating
frequency over the time step, value of the phase angle can be achieved, which is fed back
to the dq transformation block to close the loop. If the q-axis is driven at zero, then the
desired frequency is achieved, whereas the other parameters obtained can be used for
further control.

1 
 

 
Figure 4. Layout of synchronous reference frame phase-locked loop. 

 

Figure 4. Layout of synchronous reference frame phase-locked loop.

3.3. Droop Implementation

The droop controller is implemented to identify the change in the measure and
reference value, as represented in Figure 5 [33]. The active (P) and reactive (Q) power are
calculated from the vd, vq and id, iq, which are measured locally and transformed. The
expression for P and Q calculations are as follows:

P = vdid + vqiq (8)

Q = vqid − vdiq. (9)



Energies 2021, 14, 3979 6 of 21

Energies 2021, 14, x FOR PEER REVIEW 6 of 21 
 

 

 

Figure 4. Layout of synchronous reference frame phase-locked loop. 

3.3. Droop Implementation 

The droop controller is implemented to identify the change in the measure and ref-

erence value, as represented in Figure 5 [33]. The active (P) and reactive (Q) power are 
calculated from the 𝑣𝑑 , 𝑣𝑞 and 𝑖𝑑 , 𝑖𝑞, which are measured locally and transformed. The 

expression for P and Q calculations are as follows: 

𝑃 = 𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞 (8) 

𝑄 = 𝑣𝑞𝑖𝑑 − 𝑣𝑑𝑖𝑞. (9) 

 

Figure 5. Layout of droop implementation. 

3.3.1. Frequency Setpoint 

The P and Q values are fed to the droop controller to obtain the operating voltage 

and frequency. The conventional grid used to have the operating frequency fixed at the 

nominal value [34–36]. However, with the improvement in the grid, the nature of the fre-

quency has become dynamic. The frequency setpoint is chosen based on the battery state 

of charge (SOC). The frequency (𝑓𝑠𝑜𝑐) dependency on SOC is represented by the equation: 

𝑓𝑠𝑜𝑐 =  {

0.018. 𝑆𝑂𝐶 + 0.96                           (𝑓𝑆𝑂𝐶 < 0.2)
0.008

60
. 𝑆𝑂𝐶 + 1.004 −

0,008.80

60
            (0.2 < 𝑓𝑆𝑂𝐶 < 0.6)

0.018. 𝑆𝑂𝐶 + 0.86                            (𝑓𝑆𝑂𝐶 > 0.6)

 (10) 

Furthermore, Figure 6 represents the SOC dependency. The slopes determine the bat-

tery SOC. The steep slope represents that the condition is critical, and the battery is charg-

ing and discharging at a faster rate. 

Figure 5. Layout of droop implementation.

3.3.1. Frequency Setpoint

The P and Q values are fed to the droop controller to obtain the operating voltage and
frequency. The conventional grid used to have the operating frequency fixed at the nominal
value [34–36]. However, with the improvement in the grid, the nature of the frequency has
become dynamic. The frequency setpoint is chosen based on the battery state of charge
(SOC). The frequency ( fsoc) dependency on SOC is represented by the equation:

fsoc =


0.018.SOC + 0.96 ( fSOC < 0.2)

0.008
60 .SOC + 1.004− 0.00880

60 (0.2 < fSOC < 0.6)
0.018.SOC + 0.86 ( fSOC > 0.6)

(10)

Furthermore, Figure 6 represents the SOC dependency. The slopes determine the
battery SOC. The steep slope represents that the condition is critical, and the battery is
charging and discharging at a faster rate.
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For making the controller more robust, a control loop with fo is formulated. The
frequency of change in active power is also considered for determining fo. The active
power change counters the frequency change during power exchange. Hence, the frequency
change is damped to protect the system from power imbalance. The expression can be
denoted as:

f0 = fSOC + fdP (11)

where fdp is the frequency change during the power exchange.

3.3.2. Voltage Controller

After the SRF-PLL and obtaining the frequency setpoint, the voltage control with
power sharing needs to be considered. A feedforward control is considered with current,
and the voltage of each phase is transformed to the dq frame. The current reference i∗d
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and i∗q are formulated by feeding the PI controller with vd and vq. The reference can be
mathematically represented as:

i∗d = i∗0d + c f
dvd
dt
−ωC f vq (12)

i∗q = i∗0q + c f
dvq

dt
−ωC f vd (13)

v∗d = vd − kp(i∗d − id)− ki
i∗d − id

s
+ ωL f iq (14)

v∗q = vq − kp

(
i∗q − iq

)
− ki

i∗q − iq

s
+ ωL f id (15)

where c f and L f represent the capacitance and inductance of the filter, respectively. The
voltage references are denoted by v∗d and v∗q . The signals are again transformed from dq to
abc per phase of the inverter. The frequency setpoint is incorporated to attain the desired
frequency and voltage for the inverter.

3.3.3. Virtual Impedance

To overcome the resistive nature of low voltage, a virtual impedance is added into
the system. Adding up physical inductance to the power system is a bulky and expensive
solution; hence, to avoid that and attain a desired inductive behavior, a decoupled current is
multiplied with the required inductance value [37,38]. The voltage references after adding
the virtual impedance are expressed as follows:

v∗d,v = v∗d −ωLviq (16)

v∗q,v = v∗q −ωLvid (17)

where the virtual reactance is denoted by Lv.

3.3.4. Voltage Compensation

The voltage compensation reduces the losses that a power system may suffer due to
the existing line connection. The voltage compensator is designed similar to the virtual
impedance where the amount of voltage drop is added to the voltage setpoint. The
expression for the voltage drop is as:

∆vd = id.Rl (18)

∆vq = iq.Rl (19)

where the line resistance is represented by Rl . The derivative value is added to the setpoint,
and the dq reference value can be mathematically represented as:

vre f ,d = vd − kp(i∗d − id)− ki

(
i∗d − id

)
s

+ ωL f iq + ωLviq + id.R (20)

vre f ,d = vq − kp

(
i∗q − iq

)
− ki

(
i∗q − iq

)
s

+ ωL f id + ωLvid + iq.R. (21)

4. Seamless Transition Control

The need for a robust and smooth seamless transition control infrastructure has been
emphasized in the previous sections. In this section, the development of this seamless
controller will be achieved with two main processes, which can be listed as the synchro-
nization process and an islanding process. The synchronization process of the seamless
controller implements relevant loops of voltage and phase synchronization to reconnect
the islanded DG with the grid. Furthermore, the islanded process has two aspects: an
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intentional islanding and an unintentional islanding. During the intentional islanding,
the controller has sufficient information of the planned disconnection and minimizes the
transients during the process. In contrast, during an unintentional islanding condition, the
process is abrupt with unforeseen events. Here, the controller must impose fast actions to
minimize the damages in the system.

4.1. Transition from Grid-Connected to Standalone Mode

The main challenge of this transition process is to maintain the voltage and frequency
levels within the predefined limits of grid standards [39,40]. Generally, for an islanded
system, the inverter power output moves along the droop curve, and the setpoint of
frequency f0 depends on the SOC of the Energy Storage System (ESS) in the system.
Hence, as the DG is disconnected from the grid, the frequency shifts immediately to the
setpoint, especially during a significant amount of incoming power, which results in large
disturbances. However, when the system is reconnected in the grid, it either feeds power
into the system or receives the power from the grid to satisfy the loads. Here, the frequency
either decreases or increases depending on the power exchange, and when the equilibrium
between both the points is reached, the system achieves steady state.

4.1.1. Intentional Islanding

This section develops the controller to prepare the DG for a disconnection during an
intentional islanding case. The disconnection process is explained based on the P/F and
V/Q droop curve characteristics, as shown in Figure 7a–d, respectively.

In Figure 7, the intentional and unintentional islanding conditions based on P/ f droop
curve characteristics are shown to identify the the change in operating points, especially the
frequency setpoints f01 and f02 of the DG system before and after the disconnection process.
Here, f01 is the interconnected system setpoint, and f02 is the original frequency setpoint
of the system. Initially, before the disconnection process, the DG interconnection receives
active power as per the load requirement, but after the disconnection process, the power
flow in the system changes, which results in a sudden decrease of the frequency. Here, the
frequency setpoint is estimated through the derivative of the active power and through the
SOC of the ESS. Generally, the setpoint estimated through the SOC is developed for longer
periods of disconnection and cannot be changed. However, during intentional islanding,
the derivative of active power can be planned through the frequency change while the DG
is operating in the grid-connected mode. This reduces the frequency change, and the droop
curve alters, as shown in Figure 7.

Similarly, the V/Q droop curve characteristics during the intentional and uninten-
tional islanding conditions are shown in Figure 7 to identify the change in the voltage
setpoints v01 and v02 of the DG system before and after the disconnection process. Here,
v01 is the interconnected system voltage setpoint, and v02 is the original voltage setpoint
of the DG system. As the DG is islanded, the system holds an inherent voltage setpoint
depending upon the state of the system, and it jumps back to the original setpoint due
to the influence of line voltage compensations and virtual impedance. This phenomenon
is expected to create a significant disturbance based on the reactive power required to
restore the voltage during the fault ride-through process. This can be further minimized by
relatively controlling the reactive power sharing in the system prior to the DG disconnec-
tion [41,42]. To achieve this, the voltage and frequency deviation with the droop control
needs to be implemented for creating a power flow between the connected DGs. This
indicates that an additional deviation is provided to the voltage and frequency setpoints
to manipulate the line active and reactive power regardless of the other parameters in the
system. The control loops shown in Figure 8 set the line active and reactive power to zero
for the intentional islanding condition. In both these cases, the line power is fed to a PI
controller, which provides the voltage and frequency deviations until the line power is set
to zero.
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4.1.2. Unintentional Islanding

This section develops the controller to prepare the DG for a disconnection during an
unintentional islanding case. This process is implemented with a fuzzy inference system
(FIS), which overcomes the drawback of fixed droop gain with the conventional control in
the systems dynamic performance. The FIS achieves the flexibility in the droop gain by
incorporating both the magnitude and derivative of the active power exchange ∆P in the
system [43,44]. The inverse relation of these parameters with the droop gain is expressed as

∆ f = −kp∆P (22)

∆V = −kq∆P. (23)

From (22), it is identified that the frequency deviation ∆ f is proportional to the product
of exchanged active power ∆P and the droop gain kp. Similarly, the voltage deviation ∆V
is proportional to the product of exchanged reactive power and the droop gain kq. These
equations indicate that under a constant droop gain, the system is more unstable for large
active and reactive power deviation. Hence, an effective pairing of the droop gain with
the fuzzy controller will stabilize the deviation and its derivative. The details of the fuzzy
controller for seamless disconnection from the grid are discussed in the further sections.

Fuzzy Droop Controller: The details of the FIS and their application to power system
and power electronic applications are widely discussed in the literature [45–49]. The basic
block representation of the FIS process in the development of the droop controller is shown
in Figure 9.
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Figure 9. Basic block representation of the fuzzy inference process.

The process of developing a seamless control action with the fuzzy droop controller is
achieved in three steps: fuzzy sets, rule development, and defuzzification. In the first step,
the fuzzy sets are created to map the membership functions in a range of 0 to 1 between
both the inputs and the output variables. In this condition, the active power exchange
and its derivative are input variables for the development of the fuzzy controller. Here, a
small low-pass filter is used with the derivative input of the active power exchange. This
is to filter the distorted values under the derivative function of the unstable active power
measurements. Furthermore, the droop gains are obtained as the outputs of the controller.
The mapping between the inputs and outputs with the membership functions i.e., the fuzzy
sets, are shown in Figure 10.
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The fuzzy set of active power input shown in Figure 10a is developed with five
membership functions, and the range of each membership function represents the power
exchanged. Each membership function in the fuzzy set is termed as big negative (BN),
low negative (LN), zero (Z), low positive (LP), and big positive (BP). Furthermore, it can
be identified that the membership functions overlap with each other; this signifies that
the variable does not have a single truth value but lays over multiple regions. Sometimes,
this value can either be LN, BN, or both. In this case, the degree of correspondence to
the value of the function plays a major role. To estimate the degree of correspondence, a
value of interest is inserted to the horizontal axis of the function, and the derivation of a
projected value is approximated at the upper boundary of the matching function. Similarly,
for the derivative of the active power, the fuzzy set created with five membership functions
is shown in Figure 10b. The membership functions are termed as a big negative change
(BNC), low negative change (LNC), zero change (ZC), low positive change (LPC), and
big positive change (BPC). Furthermore, the fuzzy set for droop change is developed with
four membership functions as shown in Figure 10c, and each of those are termed as zero
(Z), low change (LC), medium change (MC), and big change (BC).

In the second step of developing the seamless controller, the fuzzy rules are established
to determine the control action for each input sample. These rules are framed in such a
way that the fuzzy output enhances the dynamic response of the system during sudden
power changes while maintaining the system stability. The generalized rule set for fuzzy
droop control with reference to the membership functions of active power and derivative
of active power are tabulated in Table 1. For a condition where both ∆P and d∆P are
zero, the droop gain is set high to induce the power change. As the DG operation reaches
equilibrium, and d∆P starts to decrease, the droop gain is reduced to maintain the system
stability. Furthermore, the output membership rule is selected from the table based on its
matching between the ∆P and d∆P values. Here, the degree of function is inserted into the
vertical axis with contrast to the input function, and the corresponding output is obtained
from the horizontal axis.



Energies 2021, 14, 3979 12 of 21

Table 1. Established fuzzy rules for frequency droop gain control.

∆P (→)
BN LN Z LP BP

d∆P (↓)
BNC Z LC LC LC Z
LNC LC MC BC LC LC

Z Z MC BC MC Z
LPC LC LC BC MC LC
BPC Z LC LC LC Z

In the final step, the defuzzification process is applied to represent the derived output
fuzzy values to crisp values. Generally, there is a wide literature for defuzzification of the
fuzzy outputs. In this case, the most used center of area method is implemented. This
method combines the results in all the inference steps into a centroid of area. The details
of the process are as follows: Initially, the centroid of the corresponding function range
is multiplied with the degree of output membership function, and the values are added
up. This interprets that the membership functions are integrated over a given range and
divided by the summed degree of function. The resultant of this process is a fuzzy droop
gain kp, f uzzy and kq, f uzzy such that the voltage and frequency setpoints are set to the VSI.
Here, both kp, f uzzy and kq, f uzzy are considered to have the same value, as reactive power
control is not the major area of focus in this research. Considering the newly obtained
droop gains, the droop equation is given as

V −V0 = kq, f uzzy(∆P, d∆P)(Q−Q0) (24)

f − f0 = kp, f uzzy(∆P, d∆P)(P− P0) (25)

where kq, f uzzy(∆P, d∆P) and kp, f uzzy(∆P, d∆P) can be expressed as the derived fuzzy
gains of functions of ∆P and d∆P. The implementation of the developed fuzzy droop
controller with the voltage source inverter is shown in Figure 11.
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4.2. Transition from Standalone to Grid-Connected Mode

During the standalone operating mode, the DG is operating at its own voltage and
frequency setpoints, which are completely grid-connected operation. This resulted in some
inevitable differences between the two modes of operations. According to the theory of
power flow in a grid-connected system, the frequency difference in the system, i.e., the
voltage and phase angle difference, causes the power flow between the systems. For any
condition, if these differences are large, there is a sudden change in the power flow between
the system, resulting in unwanted transients and deviations in the system. Hence, to
ensure a stable connection of the islanded DGs into the grid, the seamless control action is
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achieved through the synchronization of voltage, frequency, and the phase angle. Further,
the standards for safe connection of DGs with the utility is suggested by various grid
codes and in the literature [50–52]. The research in [53] indicates that the phase angle
difference of a DG to the grid should not be more than 600. More strict requirements for
the grid interconnection of DGs are mentioned in the IEEE 1547 standards [54–56], and
these requirements vary depending on the system size. The grid integration standards for
low-voltage grids discussed in [57] proclaim that the phase angle difference of a DG to the
grid should not be more than 100. Considering these aspects, all the necessary controller
components are examined to eliminate any errors during this grid interconnection process.
Furthermore, an additional control layer will be developed to monitor the deprivations
within the allowable limits.

4.2.1. Voltage Synchronization

The control structure of VSI discussed in Section 3 is modeled by considering voltage
and frequency setpoints as the inputs. However, during the standalone operating mode,
the DG is operating at its own voltage and frequency setpoints, which are fed to the VSI.
This same principle is used for the synchronization process, but the voltage setpoint is
swapped with that of the utility [58]. This control aspect does not need any additional
control action except for the change in the setpoint for the VSI, and it has instant response.
The control structure of the VSI with the newly obtained voltage setpoints from the grid is
shown in Figure 12.
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4.2.2. Phase and Frequency Synchronization

The phase-locked loop is used to control both the phase angle and frequency during the
grid integration of the DGs. To achieve this, a synchronization loop is implemented using
the SRF-PLL, within which a reference frequency is provided as an input. Furthermore,
driving the q-axis voltage to zero locks the phase angle to the reference frame to achieve
the desired frequency. In this process, the DG tries to match its phase angle and frequency
level to the values at the grid and thus obtains new frequency and phase setpoints fg and
θg, respectively. Similar to the voltage synchronization, the frequency synchronization
can be achieved by shifting the frequency setpoint to the SRF-PLL from fdg to fg, and
this process also has an instant response as the VSI drives the Vq to zero. Furthermore,
to achieve the phase synchronization an extra control layer is required to eliminate the
phase angle difference and to prevent the unwanted power flows during grid integration of
DGs. The control structure for the frequency and phase synchronization loop is shown in
Figure 13.
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From Figure 13, it is observed that by sending out the signals for q-axis control, the
phase angle locked to the reference frame can be manipulated. Here, instead of driving the
q-axis voltage to zero, the Vq setpoint is achieved by driving the phase angle difference to
a PI controller. This variation will slightly affect the frequency at the initial stage, but as
the phase angle difference decreases, the frequency synchronization can be locked at its
original setpoint.

5. Numerical Simulations

For experimental validation of the developed control action, a DG system connected
in the grid is developed as shown in Figure 1. The details of the grid-connected DG unit
are shown in Table 2. The control action is developed using Typhoon-hardware in loop-
application programming interface (HIL-API) with the real-time operation of the DGs in
the grid. The DG systems contribute to 10 kWp power output, and the three-phase VSI
connected with the DG is operated with the pulse width modulation (PWM) generated
from the HIL interface.

Table 2. Parameters of the three-phase grid-connected inverter.

System Parameter Specification

DG Power Output 10 kWp
DC Link Capacitor 2000 µf

DC Link Voltage 650 V
Inverter Rating 10 kW/12.5 kVA

Inverter Switching Frequency 10 kHz
Filter Resistance 0.1 Ω
Filter Inductance 3 mH
Filter Capacitance 20 µf

Damping Resistance 15 e− 3 Ω
Grid-Side Inductance 5 µH
Grid-Side Resistance 10 e− 3 Ω

Total Battery Capacity 48 V, 600 AH

The generic user interface (UI) system for establishing interconnection between PV
systems and the grid has four machine states, which correspond to the starting up state,
running state, disabled state, and islanded state. The generic inputs of the UI are active
power curtailment, rate of change of active power, voltage deviation, frequency deviation,
and phase angle deviation. As the effect of ESS-SOC on the system operation and control
action is found to be negligible, the aspects of SOC are considered constant during the
simulation. Furthermore, the battery is considered to be fully charged at 100% SOC. The
operating characteristics of the PV systems connected at the point of common coupling are
shown in Figure 14. The figure shows the voltage, current, active power, and q-axis voltage
for the grid-connected operation of the DG system.
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Figure 14. Characteristics of the grid-connected DG system.

Case 1: Unintentional Islanding Operation
In this case, the fuzzy controller developed for the islanded operation of the DG

system is tested. A sample result scenario identifying the low-voltage ride through fault at
the grid side and the operation of the developed controller in identifying and disconnecting
the DG from the grid is shown in Figure 15.
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Initially, the DG is operating in the grid-connected environment. As the grid-side
abnormality occurs, the controller identifies the fault in 0.2 s and disconnects the DG from
the grid. During the transition period, the fuzzy transition controller lowers the droop gain
value to accommodate the sudden change in the active power. As the transition is being
achieved, there will be a sudden inrush in voltages and currents. Once the active power
deviation decreases, to suppress these transients, the fuzzy tries to increase the droop gain
and operate the DG in the standalone mode with its local load. Furthermore, the islanded
DG system operates with its RL load within 0.1 s from the time of disconnection. The
impact of low-voltage fault in the system can be observed through the voltage, current,
active power, and q-axis voltage. Upon the disconnection of the DG and action of the
controller, the magnitude of frequency and active power has foreseen a slight variation.
The frequency of the DG increased and reached the setpoint according to the state of charge
of the battery, and the active power in the connecting line was directed to satisfy the local
load. The standalone operating characteristics of the DG unit with an RL load is shown in
Figure 16.
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Case II: Grid Synchronization Operation
In this case, the DG system is reconnected with the utility after the low-voltage fault is

cleared in the system. A sample result of the condition is shown in Figure 17.
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From the result, it is identified that upon the reconnections, the fuzzy transition con-
troller tries to identify the voltage, frequency, and phase angle setpoints for synchronizing
with the grid operation. Here, from the active power, and the q-axis voltage, it is observed
that the synchronization is achieved within 0.1 s of reconnection of DG with the grid.
A brief comparison of the characteristics of the developed transition controller with the
conventional droop controller during the transition of the DG system from standalone to
grid-connected mode is given in Table 3.

Table 3. Comparison between droop and fuzzy characteristics for grid synchronization conditions.

Controller Initial Phase Angle Difference Synchronization Time

Droop Controller 2.95 rad 3 s
Fuzzy Transition Controller 2.9 rad 0.6 s

Furthermore, a detailed comparison between different characteristics of the developed
fuzzy control approach with the conventional droop controller are shown in Table 4.

Table 4. Comparison between droop and fuzzy characteristics for all the simulation scenarios.

Condition

Droop Controller
(Conventional Approach)

Fuzzy Transition Controller
(Developed Approach)

Droop Gain
[Hz/W]

Response
Time [s]

Oscillation
Level [%] Fuzzy Response

Time [s]
Oscillation
Level [%]

Normal Operation 0.1 0.18 0.19 Fuzzy Rules 0.076 0.07
Unintentional Islanding 0.07 0.47 0.49 Fuzzy Rules 0.115 0.17

Grid Synchronization 0.05 0.43 0.35 Fuzzy Rules 0.092 0.14
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For both the cases, it is identified that the fuzzy transition controller was successful
in identifying the grid abnormalities and disconnecting the DG system for standalone
operation. Furthermore, it reduces the impact of transients in the system for variation
in the active power. It was observed that the magnitude of the active power and q-axis
voltage had a major influence during the disconnection instant. Furthermore, the detection
time for the islanding scenario and disconnection from the grid takes less time with the
developed controller and has better performance. Similarly, the results of case 2 identify
that the synchronizing capability of the developed controller is very smooth with better
performance and less synchronization time. The developed controller showed increased
performance compared to the conventional control techniques, and it increased the overall
dynamic stability of the system. In summary, the major aspects achieved through this
paper are as follows:

• The fuzzy transition controller established the dynamic stability of the droop controller
and achieved stable disconnection of a DG from the grid.

• The synchronization method using SRF-PLL estimates the phase angle during the grid
synchronization and has significantly improved the synchronization performance.

6. Conclusions

In this paper, the seamless transition control for grid-connected operation of a three-
phase DG unit is achieved by modifying the conventional control and also by introducing
intelligent control mechanisms. The developed approach is achieved by initially dividing
the transition control into two processes: an islanding process and synchronization process.
In the islanding process, control modifications for intentional islanding are developed
based on the information that is available in the system due to the planned disconnection
for driving the active and reactive power setpoints to zero. Furthermore, the unintentional
islanding is controlled with the fuzzy inference system by modifying the droop characteris-
tics based on the information of change in active power, voltage, and frequency during the
grid abnormal operating condition. In the grid synchronization approach, the stationary
reference frame phase-locked loop is modified by driving the phase angle difference to
a PI controller with the q-axis voltage setpoint to zero. The developed modifications in
the control schemes are tested by simulating two cases: unintentional islanding and grid
synchronization during reconnection in a 10 kWp three-phase grid-connected system. The
results in both the cases identify that the islanding detection, standalone control, and syn-
chronizing capability of the developed controller are very smooth with better performance
and less time.

Furthermore, the work can be extended to show the effectiveness of the developed sys-
tem by implementing it with an actual system consisting of multiple distributed generation
systems.
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