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Abstract: Adsorption cooling can recover waste heat at low temperature levels, thereby saving
energy and reducing greenhouse gas emissions. An air-cooled adsorption cooling system reduces
water consumption and the technical problems associated with wet-cooling systems; however, it
is difficult to maintain a constant recooling water temperature using such a system. To overcome
this limitation, a variable mode adsorption chiller concept was introduced and investigated in this
study. A prototype adsorption chiller was designed and tested experimentally and numerically
using the lumped model. Experimental and numerical results showed good agreement and a similar
trend. The adsorbent pairs investigated in this chiller consisted of silicoaluminophosphate (SAPO-
34)/water. The experimental isotherm data were fitted to the Dubinin–Astakhov (D–A), Freundlich,
Hill, and Sun and Chakraborty (S–C) models. The fitted data exhibited satisfactory agreement
with the experimental data except with the Freundlich model. In addition, the adsorption kinetics
parameters were calculated using a linear driving force model that was fitted to the experimental data
with high correlation coefficients. The results show that the kinetics of the adsorption parameters
were dependent on the partial pressure ratio. Four cooling cycle modes were investigated: single
stage mode and mass recovery modes with duration times of 25%, 50%, and 75% of the cooling
cycle time (denoted as short, medium, and long mass recovery, respectively). The cycle time was
optimized based on the maximum cooling capacity. The single stage, short mass recovery, and
medium mass recovery modes were found to be the optimum modes at lower (<35 ◦C), medium
(35–44 ◦C), and high (>44 ◦C) recooling temperatures. Notably, the recooling water temperature
profile is very important for assessing and optimizing the suitable working mode.

Keywords: adsorption; zeolite; SAPO-34; adsorption cooling; mass recovery; variable mode

1. Introduction

In recent years, adsorption cooling technology has gained significant attention ow-
ing to its ability to utilize low-grade heat sources and its environmental friendliness [1].
Low-grade heat (<100 ◦C) is easily obtainable with simple solar collectors or as waste heat
from power generation and industrial processes. The concept of adsorption is based on
the interaction between solid and gas, whereby the physical uptake of the refrigerant (i.e.,
adsorbate) on the surface of adsorbents, such as zeolite, silica gel, or activated carbon, is
facilitated through van der Waals forces or polar bonding [2]. Four main processes are
involved in the simple adsorption cooling cycle: isosteric heating, isobaric desorption, isos-
teric cooling, and isobaric adsorption [3]. Single-stage adsorption cooling systems are the
most researched and widely available type of adsorption refrigeration systems [4–6]. Sev-
eral adsorbent pairs have been studied for cooling applications, such as silica gel/water [7],
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activated carbon/methanol [8], zeolite (SAPO-34)/water [9], zeolite (13X)/water [10], and
MOF aluminum fumarate/water [11].

Silicoaluminophosphate (SAPO-34)/water is one of the most promising adsorbent
pairs for refrigeration and cooling applications; a low-grade heat source can drive the
SAPO-34/water adsorbent pair, as it has a weak polar framework [12]. As per the IUPAC
(International Union of Pure and Applied Chemistry) classification of adsorption isotherms,
a weak interaction-based adsorption is characterized by the type V curve [13].

In most studies, the Dubinin–Astakhov (D–A) equation has been used for SAPO-
34/water isotherm calculations [9,12]. Sun and Chakraborty [14] developed an uptake
equation based on the partition distribution function representing the rigor of each adsorp-
tive site and the adsorption isosteric heat at the zero surface. They compared this equation
with the D–A, BET, and Langmuir equations for SAPO-34/water. The results showed
a small error of 5%, indicating that the proposed model fit well with the experimental
results; by contrast, the Langmuir and BET equations failed to fit to the experimental
data. Youssef et al. [15] experimentally and numerically investigated the physical and
adsorption-related characteristics of AQSOA-Z02, a commercial variant of SAPO-34, using
the Sun and Chakraborty model. The results showed two different values of the constants
based on the pressure ratios.

In addition to the adsorbent pairs, researchers have also investigated the effect of
operation parameters on the adsorption cooling cycle, such as the cycle time and operation
temperature. Wang et al. [16] conducted a study that proved the importance of cooling
cycle time in the cooling process, because it affects the cooling capacity and coefficient of
performance (COP). Heating fluid, recooling fluid, and chilled fluid temperatures as well
as the cycle have a significant impact on the adsorption cooling system COP and capacity.
The effects of these parameters were investigated by Ghilen at al. [17], and the study
results showed that the highest COP value was obtained at a high heating and evaporation
temperature, whereas the lowest value was obtained at a high recooling temperature.

Single-stage adsorption cooling systems are the most researched and widely available
type of adsorption refrigeration system [4–6]. Two-stage adsorption cooling systems
have also been introduced and investigated by many researchers for operation at higher
recooling temperatures and lower heating temperatures compared to single-stage cycle
systems [18–21]. Alam et al. [22] proposed a new strategy in the form of a reheating
cycle to operate two-stage adsorption chillers and obtain a higher COP compared to the
conventional two-stage adsorption cycle. The reheating cycle consists of six main steps:
desorption, mass recovery process with heating, pre-cooling, adsorption, mass recovery
process with cooling, and desorption. The reheating adsorption cooling cycle performance
compared to the single stage cycle at various heating water temperature was investigated
by Wirajati et al. [23]; the results showed better COP for short and long reheating cycles at
heating temperature lower than 68 ◦C, while the single stage had a higher COP at heating
temperature above 70 ◦C. The results also showed that the short reheating cycle had a
higher cooling capacity at different heating temperatures, and the long reheating cycle had
a higher cooling capacity than single stage at heating temperature less than 70 ◦C.

Since the adsorption cooling cycle has a relatively low COP, the mass-recovery con-
cept was developed to improve adsorption cycle efficiency [24]. This concept involves
connecting the high-pressure bed (desorber) to the low-pressure bed (adsorber) at the end
of the desorption–adsorption cycle, thereby causing the refrigerant in the desorber to be
re-adsorbed in the adsorber because of the pressure difference between the two beds, as
shown in Figure 1 [25]. Despite the mass recovery process indicating natural movement of
the pressurized refrigerant from the desorber to the adsorber without extra heat input, the
mass recovery concept is commonly used in the literature even with continuous heat input,
which is similar to the reheating cycle concept, as highlighted above.
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Figure 1. Concept of mass recovery.

The effect of mass recovery without the heating process on the adsorption cooling
cycle performance at fixed operation temperatures was investigated by Chan et al. [26].
The simulation results showed that mass recovery improved the COP by about 3.9% with
a mass recovery time of 4.7 s. Wang [27] developed and tested an adsorption cooling
system at various operation conditions, including mass recovery. Incorporating mass
recovery resulted in increased cooling capacity and COP (over 10%). Kabir et al. [28]
simulated the effect of mass recovery on the performance of a single-stage adsorption
cooling system directly driven by solar energy. The study results showed that the mass
recovery process improved the overall performance. Ghilen et al. [17] simulated the effect
of mass recovery on a silica gel–water adsorption chiller. The mass recovery was found to
improve system performance; however, the improvement level was not quantified. The
effect of mass recovery on a three-bed adsorption chiller with various heating temperatures
was experimentally investigated by Uyun et al. [29]. The results showed that the COP
for the cycle with mass recovery was superior to that of the single-stage cycle for heating
temperatures below 75 ◦C. The effect of mass recovery on the adsorption cooling cycle with
different hot water temperatures was investigated by Duong et al. [30] with a transient
two-dimensional model. The simulation results showed that mass recovery improved
the COP up to 5% at 90 ◦C. The results also showed that the mass recovery had a greater
effect at a lower hot water temperature. This conclusion is in agreement with the result
of Uyun et al. [29]. The mass recovery effect on a commercial two-bed adsorption chiller
was investigated by Muttakin et al. [31] using a transient lumped model. That study
investigated the impact of mass and heat recovery on the chiller performance at various
hot water, recooling water, and chilled water temperatures, one with 30 ◦C and two with
28 ◦C recooling water, with different mass times up to 25 s. The result showed that there
were optimum cycle and mass recovery times for maximum efficiency under specified
operating conditions.
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There are many studies on the adsorption cooling cycle with mass recovery, but there
is a shortage of research on adsorption cooling with recooling water, especially at high
temperatures, as is done for heating temperature. This study attempted to bridge this
gap by investigating the mass recovery effect at various recooling water temperatures
up to 50 ◦C. The main novelty of the study is that it proposes and investigates a variable
mode two-bed adsorption chiller working in single stage mode and short, medium, and
long mass recovery modes. In practical situations, it is difficult to maintain a constant
recooling water temperature, especially using an air-cooled system on a daily or yearly
basis. Moreover, this study provides a methodology to determine the optimum recovery in
a dynamic way as a ratio of the cooling cycle duration instead of representing it as time
in seconds. In addition, the adsorbent pairs used in this study (SAPO-34/water) were
analyzed under different isotherm models to find the optimum isotherm model.

2. System Description

The proposed variable mode adsorption chiller is based on four cycles (steps), as
shown in Figure 2. The main concept is to work in a smart way to change the cycle mode
based on the ambient or recooling temperature. A patent was filed for this concept by
Precision Industries (PI-Dubai) [32]. The working steps can be summarized as follows:
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Figure 2. Variable mode adsorption chiller component.

Step 1: hot water flows into the adsorbent bed (B2), which causes desorption of the
refrigerant gases by B2; this increases the pressure inside B2. This forces the gases to
flow into the condenser through the non-return valve (NRV). The recooling water flows
into the condenser, thereby causing the desorbed hot refrigerant gases to condensate at
higher relative pressure and accumulate in the condenser. The condenser is connected
to the evaporator with a valve (S) to control the flow based on cycle conditions and the
expansion mechanism. The recooling water flows into the adsorbent bed (B1), on which
the refrigerant gases are adsorbed, thereby reducing the pressure inside it and forcing the
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refrigerant to flow from the evaporator to B1 through the NRV. The chilled water flows into
the evaporator, thus causing the refrigerant gases to evaporate and travel to B1.

Step 2: the motorized valve (M) opens for a certain time, thus allowing the relative
high-pressure hot gases to flow from B2 to B1. The time required for this process depends
on the recooling water temperature (mass recovery process with heating and cooling).

Step 3: Valve M closes, and the hot water flows into B1, which causes desorption of the
refrigerant gases by B1. This increases the pressure inside B1 and forces the gases to flow
into the condenser through the NRV. The recooling water flows into the condenser and
the desorbed hot refrigerant gases condensate at a high relative pressure to be accumulate
in the condenser. The condenser is connected to the evaporator by a valve (S) to control
the refrigerant flow based on the cycle and expansion mechanism. The recooling water
flows into B2, causing the refrigerant gases to be adsorbed adsorb, thereby reducing the
pressure inside it and forcing the refrigerant to flow from the evaporator to B2 through the
NRV. Next, the chilled water flows into the evaporator and causes the refrigerant gases to
evaporate and travel to B2.

Step 4: M opens for a certain time, which allows the relative high-pressure hot gases
to flow from B1 to B2. The duration of this process depends on the recooling water
temperature. Therefore, the optimum time increases at higher ambient temperature (mass
recovery process with heating and cooling). Then the cycle returns to step 1 to repeat
all steps.

Figure 3 shows a Clapeyron diagram of the thermodynamic processes of the proposed
system: the first mode (single stage mode, denoted with 1, 2, 3, and 4) and other modes
(mass recovery cycle with heating and cooling, denoted with 1, 1′, 2′, 3′, 4′, and 5′). The
cooling capacity in the mass recovery mode (represented as the net area in the closed
loop) is larger than that during the basic cycle. In addition, the condenser pressure in-
creases, which leads to condensation at a higher temperature. For the first mode, there are
four thermodynamics processes: preheating (1–2), desorption (2–3), precooling (3–4), and
adsorption (4–1). In the second mode, there are six thermodynamics processes: mass recov-
ery/adsorption with pressurization when the two beds are connected (1–1′), preheating
(1′–2′), main desorption process (2′–3′), mass recovery/desorption with depressurization
(3′–4′), precooling (4′–5′), and the main adsorption process (5′–1).
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3. Materials and Methods
3.1. Adsorbent Material Characterization

In this study, SAPO-34 zeolite was coated on a heat exchanger using epoxy binder [33],
and its properties were investigated with regard to adsorption cooling applications. The
microstructure of the zeolite crystals was observed via scanning electron microscopy (SEM)
using quanta 250 FEG; the zeolite radius was observed to be approximately 5–10 µm, as
shown in Figure 4.
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3.2. Experimental Determination of Adsorption Isotherms and Adsorption Kinetics

The experimental procedure for determining the adsorption kinetics and isotherms
for fitting with various mathematical models are explained in this section. The equilibrium
of the water uptake for SAPO-34 was determined using a dynamic vapor sorption (DVS)
analyzer (Surface Measurement Systems Ltd., London, UK). A schematic diagram of DVS is
shown in Figure 5. Water sorption isotherms of up to 90% P/P0 at temperatures of 20–70 ◦C
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were measured using DVS. The data were recorded in the dynamic mode every 20 s,
wherein both the sorbate entry rate, controlled upstream by a mass flow controller, and the
sorbate exit rate, controlled downstream by a butterfly valve, were measured. Throughout
the experiment, the pressure in the vacuum chamber was controlled (from 1.33 to 133.3 kPa)
using a butterfly valve (Baratron by MKS Instruments) that regulated the sorbate exit rate
depending on the feedback and adjusted the opening position to maintain the set pressure.
A mass flow controller was used to maintain a constant flow rate for the water vapor
that was generated at an experimental temperature under thermodynamic equilibrium.
Variations in the sample mass were simultaneously measured using an UltraBalance
(Surface Measurement Systems Ltd., UK). The sample was kept under constant water-
vapor pressure until the mass equilibrium was attained, before the water vapor pressure
was increased (adsorption branch) or decreased (desorption branch). The water adsorption
isotherms were recorded for 0–90% P/P0 and for desorption from 90 to 0% P/P0 at three
different temperatures. The samples were outgassed in situ at a temperature of 150 ◦C
under high vacuum (<1.33 × 10−3 Pa) and cooled to the desired sorption temperature
before each sorption experiment. The water sorption measurements were recorded at 34,
40, and 70 ◦C.
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3.2.1. Adsorption Isotherms

The isotherm parameters of SAPO-34/water were calculated using several adsorption
isotherm models with details provided in Table 1.



Energies 2021, 14, 3871 8 of 26

Table 1. Adsorption isotherm equations for different models.

Equilibrium Model Equation Parameters

Dubinin–Astakhov (D–A) ω = ω0 e[−{(
RT
E ) ln ( p

p0
)}n

]

ω: uptake (kg·kg−1)
ω0: maximum uptake (kg·kg−1)
E: characteristic energy (kJ·mol−1)
n: heterogeneity parameter
R: universal gas constant (kJ·mol−1·K−1)
T: bed temperature (K)
p: equilibrium pressure (kPa)
p0: saturated pressure (kPa)

Freundlich ω = ω0

(
p
p0

) 1
n

ω: uptake (kg·kg−1)
ω0: maximum uptake (kg·kg−1)
n: heterogeneity factor
p: equilibrium pressure (kPa)
p0: saturated pressure (kPa)

Hill ω = ω0

[ (
p

p0

)nH

KD+
(

p
p0

)nH

] ω: uptake (kg·kg−1)
ω0: maximum uptake (kg·kg−1)
nH : Hill cooperativity coefficient
KD: Hill constant

Sun
and
Chakraborty
(S–C)

ω = ω0

[
k
(

p
p0

)m

1+(k−1)
(

p
p0

)m

]
k =∝ e[m(Qst−h f g)/RT]

ω: uptake (kg·kg−1)
ω0: maximum uptake (kg·kg−1)
∝: pre-exponential coefficient
m: heterogeneity factor
Qst: isosteric heat of adsorption at zero surface
coverage (kJ·kg−1)
h f g: enthalpy of evaporation (kJ·kg−1)
R: universal gas constant (kJ·kg−1·K−1)
T: bed temperature (K)
p: equilibrium pressure (kPa)
p0: saturated pressure (kPa)

These models were fitted to the experimental results with the least-squared method
using the ‘nlinfit’ function in MATLAB. Root-mean-square error (RMSE) and coefficient of
determination (R2) were used to assess the goodness of fit.

3.2.2. Rate of Adsorption

The linear driving force (LDF) model was used to calculate the adsorption rate (kinetic)
parameters. The values of pre-exponential constant Dso (m2·s−1), and activation energy Ea
(J·mol−1) were calculated by fitting the DVS data to the LDF model:

dω

dt
=

15Dsoe(
−Ea
RT )

Rp2

(
ω0 −ω(t)

)
(1)

where the terms are defined as follows:

ω: instantaneous water uptake (kg·kg−1);
ω0 : maximum water uptake (kg·kg−1);
R: ideal gas constant (J·mol−1·K−1);
T: adsorption temperature (K);
Rp: radius of the adsorbent granules (µm);
Dso: pre-exponential constant of surface diffusivity (m2·s−1);
Ea: activation energy of diffusion (J·mol−1).

3.3. Adsorption Cooling System Model

In this study, a two-bed adsorption chiller with single stage and mass recovery modes
was modelled with the SAPO-34/water pair and numerically and experimentally simulated
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based on the adsorption isotherms explained in Section 3.2. The lumped model was used
to calculate the mass and energy balances, considering the following assumptions:

• The temperature, pressure, and adsorption rates were assumed uniform in the adsorp-
tion beds, evaporator, and condenser.

• The water vapor flow from an adsorption bed to the condenser or from the evaporator
to an adsorption bed was unrestricted, and the pressure drop was neglected.

• The chiller was well insulated, and there was no heat exchange with the exterior
environment.

• The inlet temperatures for hot, recooling, and chilled water were assumed constant.

The energy flow through the main chiller components is illustrated in Figure 6. The
amount of heat and mass transfer at each stage was objectively quantified using the lumped
model equations (Equations (2)–(24)), as explained subsequently.
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3.3.1. Energy Balance Equation for the Adsorption Bed

The energy balance equation for the adsorption bed is given as:
((MZ × CpZ) + (MHX × CpHX) + (MZ × Cpwv × w)) dTads

dt
= MZ ×Qst × dωads

dt −MZ × Cpwv × [Ø × (Tads − Teva) + (1−Ø) × (Tads − Twv)]× dωads
dt ]

+
.

mcw × Cpcw,ads × (Tcw_in − Tcw_out_ads)

(2)

where the terms are defined as follows:

MZ: mass of zeolite in the adsorbent bed (kg);
CpZ: specific heat capacity of zeolite (kJ/kg·K);
MHX,ads: mass of the adsorbent bed heat exchanger (kg);
CpHX,ads: specific heat capacity of the adsorbent bed heat exchanger (kJ/kg·K);
Cpwv: specific heat capacity of water vapor (kJ/kg·K);
w: amount of water in the bed (kg);
Qst: heat of adsorption (kJ/kg);
Tads: adsorbent bed temperature (K);
Twv: water vapor temperature (K);
Teva: evaporator temperature (K);
.

mcw: recooling water mass flow rate (kg·s);
Cpcw_ads: recooling water specific heat capacity (kJ/kg·K);
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Tcw_in: recooling water inlet temperature (K);
Tcw_out_ads: adsorbent bed recooling water outlet temperature (K).

Here, Ø = 1 if the adsorbent bed is connected with the evaporator and 0 if the adsorbent
bed is connected with another bed (mass recovery process). The left-hand side of the
equation denotes the required sensible heat transfer of the adsorbent bed (SAPO-34, water,
and copper heat exchanger). The first part of the right-hand side of the equation shows the
adsorbed heat. The second term shows the sensible heat flow from the evaporator to the
adsorbent bed. The third term shows the heat transfer by cooling water.

The cooling water outlet temperature is calculated using

Tcw_out_ads = Tads + (Tcw_in − Tads) × exp (
−Uads × Aads
.

mcw_ads × Cpcw
) (3)

where the terms are defined as follows:

Uads: the overall coefficient of heat-transfer (kW/m2·K) for the adsorbent bed;
Aads: the area (m2) of the adsorbent bed.

The overall heat transfer coefficient of the adsorbent bed is calculated in this study
experimentally based on:

Uads =
Qads

Aads × LMTD
(4)

where Qads is the adsorption heat capacity and LMTD is the log mean temperature differ-
ence being calculated as:

Qads =
.

mcw × Cpcw,ads × (Tcw_in − Tcw_out_ads) (5)

LMTD =
(Tcw_in − Tads)− (Tcw_out − Tads)

ln (Tcw_in−Tads)
(Tcw_out−Tads)

(6)

3.3.2. Energy Balance Equation for the Desorption Bed

The energy balance for the desorption bed is described as:

((MZ × CpZ) + (MHX × CpHX) + (MZ × Cpwv × w))
dTdes

dt
= MZ ×Qst ×

dωdes
dt

+
.

mhw × Cphw × (Thw_in − Thw_out) (7)

where the terms are defined as follows:
.

mhw: the mass flow rate (kg/s);
Cphw: the specific heat capacity (kJ/kg·K);
Thw_in: the inlet temperature (K);
Thw_out: the outlet temperature (K).

The left-hand side of the equation shows the required sensible heat transfer for the
adsorbent bed (SAPO-34, water, and copper heat exchanger). The first part on the right-
hand side of the equation denotes the desorption heat, and the second term indicates the
heat transferred by heating water.

The hot water outlet temperature can be calculated by:

Thw_out = Tdes + (Thw_in − Tdes) × exp (
−Udes × Ades

.
mhw × Cphw

) (8)

where the terms are defined as follows:

Udes: the overall coefficient of heat-transfer (kW/m2·K) of the desorber;
Ades: the area (m2) of the desorber.
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The overall coefficient of heat-transfer of the desorber is calculated in this study
experimentally based on below Equation (14):

Uads/des =
Qdes

Ades × LMTD
(9)

where Qdes is the desorption heat capacity and LMTD is the log mean temperature difference:

Qdes =
.

mhw × Cphw × (Thw_in − Thw_out) (10)

LMTD =
(Tcw_in/hw_in − Tads./des)− (Tcw_out/hw_out − Tads./des)

ln (Tcw_in/hw_in−Tads./des)
(Tcw_out/hw_out−Tads./des)

(11)

3.3.3. Energy Balance Equation for the Condenser

The energy balance for the condenser is described as:

((Mw_con × Cpcw) + (MHX × CpHX))
dTcon

dt
= −Mz × h f g × dωdes

dt −Mz × Cpz × (Tdes − Tcon) × dωdes
dt

+
.

mcw_con × Cpcw × (Tcw_in − Tcw_out_con)

(12)

where the terms are defined as follows:

Mw_con: mass of water inside the condenser (kg);
MHX_con: mass of the condensing heat exchanger (kg);
CpHX_con: specific heat capacity of the condensing heat exchanger (kJ/kg·K);
h f g: latent heat of evaporation (J/kg);
.

mcw_con: recooling water mass flow rate (kg/s);
Tcon: condenser temperature (K);
Tcw_out_con: adsorbent bed recooling water outlet temperature (K).

Here, the left-hand side of the equation shows the required sensible heat transfer of
the condenser water and the copper heat exchanger. The first part on the right-hand side
denotes the latent heat of vaporization for water. The second term indicates the sensible
heat transfer from the desorber to the condenser. The third term denotes the heat released
by the cooling water.

The cooling water outlet temperature of the condenser water can be calculated by:

Tcw_out_con = Tcon + (Tcw_in − Tcon) × exp (
−Ucon × Acon
.

mcw_con × Cpcw
) (13)

where the terms are defined as follows:

Tcon: the condenser temperature (K);
Ucon: the overall coefficient of heat-transfer (kW/m2·K);
Acon: the condenser area (m2).

The overall coefficient of heat-transfer of the condenser is calculated as:

Uads/des =
Qcon

Acon × LMTD
(14)

where Qcon is the adsorption and condensation heat capacity, and LMTD is the log mean
temperature difference:

Qcon =
.

mcw_con × Cpcw × (Tcw_in − Tcw_out_con) (15)

LMTD =
(Tcw_in − Tcon)− (Tcw_out − Tcon)

ln (Tcw_in−Tcon)
(Tcw_out−Tcon)

(16)
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3.3.4. Energy Balance Equation for the Evaporator

The energy balance for the evaporator is described as

((Mw_eva × Cpcw) + (MHX_eva × CpHX_eva))
dTeva

dt
= −Mz × h f g × dωads

dt −Mz × Cpwv × (Tcon − Teva) +
.

mchw × Cpchw × (Tchw_in − Tchw_out)
(17)

where the terms are defined as follows:

Mw_eva: mass of water inside the evaporator (kg);
MHX_eva: mass of the evaporator heat exchanger (kg);
CpHX_eva: specific heat capacity of the evaporator heat exchanger (kJ/kg·K);
Teva: evaporator temperature (K).

For the chilled water:
.

mchw: mass flowrate (kg/s);
Cpchw: specific heat capacity (kJ/kg·K);
Tchw_in: inlet temperature (K);
Tchw_out: outlet temperature (K).

The left-hand side of the equation represents the required sensible heat transfer of
the evaporator (copper heat exchanger and water). The first part of the right-hand side
indicates the latent heat of water vaporization. The second term represents the sensible
heat required to cool down the incoming condensed water to the condensation temperature.
The third term represents the heat transfer by the chilled water.

The chilled water outlet temperature was calculated using:

Tchw_out = Teva + (Tchw_in − Teva) × exp (
−Ueva × Aeva
.

mchw × Cpchw
) (18)

where the terms are defined as follows:

Ueva: the overall coefficient of heat-transfer (kW/m2·K);
Aeva: the area of the evaporator (m2).

The overall coefficient of heat-transfer of the evaporator is calculated in this study
based on:

Uads/des =
Qcon

Acon × LMTD
(19)

where Qeva is the adsorption and evaporation heat capacity and LMTD is the log mean
temperature difference:

Qcon =
.

mchw × Cpchw × (Tchw_in − Tchw_out) (20)

LMTD =
(Tchw_in − Teva)− (Tchw_out − Teva)

ln (Tchw_in−Teva)
(Tchw_out−Teva)

(21)

3.3.5. Mass Balance

The system mass balance is described by:

dMw_eva

dt
= −Mz × (

dωads
dt

+
dωdes

dt
) (22)

where the terms are defined as follows:

MW_eva: the mass of water (refrigerant) entering the evaporator (kg);
MZ: the mass of zeolite in the bed (kg).
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3.3.6. System Performance

The cooling capacity Q and the COP of the system were calculated using
Equations (28) and (29), respectively. The COP represents the ratio of cooling capacity
to the required heat input; the COP of the system is calculated based on the total cycle
period (tcy), including periods for precooling, adsorption, preheating, and desorption.

Q =

∫ tcy
0

.
mchw × Cpchw × (Tchw_in − Tchw_out)dt

tcy
(23)

COP =

∫ tcy
0

.
mchw × Cpchw × (Tchw_in − Tchw_out)dt∫ tcy

0
.

mhw × Cphw × (Thw_in − Thw_out)dt
(24)

The proposed model of energy, mass balance, and performance equations were solved
numerically by MATLAB using ODE 45 to calculate the temperatures of the adsorption
and desorption beds, condenser and evaporator, as well as system performance.

3.4. Experimental Setup

A lab-scale model of the variable cycle chiller was built at the Precision Industries
(PI, Dubai) labs to measure the performance of the chiller experimentally under different
modes and various recooling temperatures. The proposed tested adsorption chiller in
this study consisted of two adsorbent beds coated with SAPO-34 supplied by Mitsubishi
Chemical Corporation (see Figure 7).
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Figure 7. PI prototype adsorption chiller: (a) prototype, (b) 3D model.

The chiller performance was analyzed under the following operation conditions:

• The inlet hot water temperature (Th_in) of 90 ± 0.5 ◦C maintained by an electric water
heater with a 500 L buffer tank.

• The inlet recooling water temperature (Tre_in) of 30–50 ◦C maintained by a dry-cooler
with a 500 L buffer tank.

• The inlet chilled water temperature (Tch_in) of 18 ± 0.5 ◦C maintained by an electrical
heater with a 500 L buffer tank, the electrical heater is used as a cooling load in
this case.

• Hot, recooling, and chilled water flow rates for were 1.2, 1.2, and 0.71 L/s, respectively.
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The following setup of instrumentation was used to measure the experimental perfor-
mance of the chiller during the mass recovery cycle, as shown in Figure 8. The instrument
locations are described as follows:

• Three electromagnetic flow-meters (FM_h, FM_ch, and FM_re) (manufactured by
ALIA Inc., Newark, DE, USA) with accuracy of ±0.4% were used to measure the hot
water, chilled water and recooling water flow rate, respectively.

• Eight platinum resistance thermometers (PT100 Class A, Pico Technology) integrated
with two temperature measuring data loggers (PT-104 is a four-channel logger), a
resolution of 0.001 ◦C, and an accuracy of 0.015 ◦C were used to measure the inlet and
outlet temperatures of the hot, chilled, and recooling water, as well as temperature of
the storage tanks.
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4. Results and Discussion

Figures 9–11 present the experimental results of water-vapor uptake compared with
the calculated values at 34, 40, and 70 ◦C, respectively. The isotherm parameters for each
model are listed in Table 2. As shown in Figures 6–8, the D–A, Hill, and S–C models
correlated well with the experimental data, whereas the Freundlich model failed to fit.

Table 2. SAPO-34 isotherm parameters for different models.

Equilibrium Model Parameters

D–A
E (kJ·mol−1) n (−)

7.1067 3.943

Freundlich
n (−)
5.9199

Hill
nH (−) KD (−)
2.2337 0.0039

S–C
∝ (−) m (−)

2.71 × 10−6 2.2307
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Figure 11. Water uptake comparison between experimental and isotherm model results
at 70 ◦C.

As per the error analysis presented in Table 3, the Hill model exhibited the greatest
fitting accuracy at 34 ◦C, followed by the D–A, S–C, and Freundlich models. At 40 ◦C, the
Hill model achieved the highest fitting accuracy, followed by the S–C, D–A and Freundlich
models. The D–A model exhibited the greatest fitting accuracy at 70 ◦C, followed by the
S–C, Hill, and Freundlich models. Overall, the results of the Freundlich model deviated
substantially from the experimental results.

Table 3. Errors and statistical analysis of isotherm fitting results.

Temperature (◦C) Model RMSE R2

34

Hill 0.0066 0.9948
D–A 0.0072 0.9947
S–C 0.0364 0.8533

Freundlich 0.0751 0.9926

40

Hill 0.0089 0.9936
S–C 0.0113 0.9959
D–A 0.0124 0.9939

Freundlich 0.038 0.8447

70

D–A 0.0103 0.9848
S–C 0.0124 0.9817
Hill 0.0126 0.9774

Freundlich 0.0384 0.7954

The experimental results of the adsorption kinetics included more than one curve
based on the pressure ratios, as shown in Figure 12. The LDF model was fitted to the
experimental results for three pressure ratio intervals: P/P0 < 5%, 5% < P/P0 < 15%, and
P/P0 > 15%. The fitting results showed that the constants of the adsorption kinetics varied
with the partial-pressure intervals; these results are summarized in Table 4. The LDF model
was fitted satisfactorily to the experimental data, with an RMSE of 0.0046–0.0119, as shown
in Table 4.
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Table 4. SAPO-34 adsorption kinetic parameters with errors and statistical analysis.

Parameter Ea (J·mol−1) Dso (m2·s−1) RMSE R2

0% < P/P0 < 5% 2.06 × 104 3.95 × 10−9 0.0046 0.946
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Figure 13 shows the chiller experimental temperature profile at a total cycle time of
750 s and a mass recovery time of 150 s. Areas A, B, and C indicate the preheating/pre-
cooling, adsorption/desorption, and mass recovery with heating and cooling processes,
respectively, where both beds were connected with no cooling effect.

Figure 13 shows a cycle period range of 500–1280 s during the preheating of desorption
bed 1 (area A). During this process, the temperature increased until it reached a suitable
level for desorption, and the pressure increased until the condensation pressure was
reached. The condenser exhibited the minimum temperature in this cycle (close to the
re-cooling water inlet temperature), and no condensation occurred. Once bed 1 reached a
suitable temperature (as shown in area B), the condenser temperature increased, indicating
the flow of hot vapor from bed 1 (at condensation pressure or higher) to the condenser. In
the pre-cooling phase, the bed 2 temperature decreased until it reached a suitable level for
adsorption, and the pressure decreased to less than the evaporator pressure. During this
phase, the evaporator exhibited its maximum temperature (close to the chilled water inlet
temperature) and no cooling effect occurred. Once bed 2 reached a suitable temperature
and pressure for adsorption, the evaporator temperature decreased and the cooling effect
occurred (area B). In the mass recovery process (area C), there was a sudden drop in
temperature in bed 1 (desorber) and an increase in bed 2 (adsorber). This can be attributed
to the increase in adsorption and desorption rates immediately after interconnecting both
beds until equilibrium pressure was reached. The desorber temperature then started
to increase and the adsorber temperature started to decrease owing to the decrease in
adsorption and desorption rates occurring later in the process. Therefore, the heat input
became higher than the amount required for desorption, and the rejected heat increased to
values higher than the heat of adsorption.
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The system was investigated at a cooling cycle time of 500 s with different mass
recovery times. Figure 14 shows a comparison between the COP and cooling capacity for
the simulated model and the experimental measurements, which matched the predicted
results and showed the same trends. The mean absolute percent errors for COP and cooling
capacity were 9.5% and 6.8%, respectively. Figure 14 indicates that as the mass recovery
process time increased, the COP decreased until a saturation trend was observed, where
the COP remained constant. In addition, as the mass recovery time increased, the cooling
capacity increased until a saturation trend was observed, where the cooling capacity was
not affected by the mass recovery process time. In both cases, for COP and cooling capacity,
the curve drops for high cycle times.

Figure 15 shows the simulation results of cycle cooling output at different recooling
water temperatures, with single stage cycle and two mass recovery durations at a fixed
cooling cycle duration of 500 s. The single stage cycle exhibited better cooling output at
a recooling temperature below 38 ◦C compared to higher recooling water temperature.
The mass recovery cycle of 250 s exhibited higher cooling output within a recooling water
temperature range of 38–49 ◦C, while the mass recovery cycle of 375 s exhibited a higher
output at a recooling water temperature higher than 49 ◦C.
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The simulated COP results are shown in Figure 16. For a fixed cycle time of 500 s, the
simulation shows that the single stage cycle shows the highest COP at various recooling
water temperatures. In addition, the COP of the 250 s mass recovery cycle was higher than
that of the 375 s mass recovery cycle up to a recooling water temperature of 50 ◦C, whereas
at higher temperatures, similar COP values were seen. These results prove the importance
of the variable-cycle mode adsorption cooling system to optimize the chiller performance
with changes in recooling temperature.
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The cycle time has a significant effect on cooling capacity and COP. Therefore, the
variable mode cycle was simulated using the model at different cycle times and with
various recooling water temperatures to further understand their effects. The mass recovery
duration is defined in terms of the ratio of cooling cycle duration, reflecting its dynamic
value in a comparable manner. The following four modes were investigated in this study:

• First mode: single stage.
• Second mode: mass recovery with heating and cooling; the duration was 25% of the

cooling cycle duration (denoted as short mass recovery mode).
• Third mode: mass recovery with heating and cooling; the duration was 50% of the

cooling cycle duration (denoted as medium mass recovery mode).
• Fourth mode: mass recovery with heating and cooling; the duration was 75% of the

cooling cycle duration (denoted as long mass recovery mode).

Figure 17 illustrates the modelling results at fixed inlet hot and chilled water temper-
atures of 90 and 18 ◦C, respectively. At a low recooling water temperature of 30 ◦C and
a cycle time up to 600 s, the single stage mode exhibited higher capacity than the other
modes (see Figure 17). However, at a longer cycle time (more than 600 s), the short mass
recovery mode exhibited similar single-stage cooling capacity. With increased recooling
water temperature, the system required longer mass recovery time to achieve higher (peak)
capacity. Therefore, the uptake of the adsorber should be increased and that of the desorber
should be decreased. This can be achieved by increasing the pressure in the condenser and
the recooling water temperature or decreasing the adsorption pressure.
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There is an optimum mode for each recooling water temperature, which is related to
the optimum water vapor uptake and the condensation pressure. Figure 17 shows that
cooling capacity increased with increased cooling cycle time until a peak point, after which
it decreased. The peak cooling capacity was obtained when sufficient time was allowed to
reach the optimum water uptake. With a shorter time, the water vapor uptake and cooling
capacity were low because the adsorbent bed failed to reach the minimum temperature
and pressure to achieve higher adsorption rates. With a longer time, the uptake of the
adsorbent bed increased, thereby leading to a lower adsorption rate and cooling capacity.
At a fixed recooling temperature, the cooling capacity decreased with an increase in relative
mass recovery time because the cooling time became lower than the total cycle time.

Figure 18 illustrates the COP behavior at low and high recooling water temperatures.
It can be seen that the COP increased as the cycle time increased because the cooling effect
increased more than the heat input during the pre-heating phase. At a low recooling
water temperature, the single stage cycle had a higher relative COP compared to the mass
recovery cycle at a cooling cycle time less than 900 s and at a longer cycle time the short
mass recovery had a higher COP. At a higher recooling water temperature of 50 ◦C the
single stage cycle had a higher cooling cycle time of less than 750 s. While the mass recovery
cycle had a higher COP at longer cooling cycle time, the long mass recovery duration had
a higher COP followed by medium and short mass recovery duration.

During adsorption cooling, when the heat source is unlimited to waste heat or another
free heat source, the cooling capacity value is higher than the COP. Therefore, in this study,
the optimum mode cycle time was selected based on the maximum system cooling capacity.
Table 5 shows the optimum cooling cycle time (OCCT) for each mode at various recooling
water temperatures.

Figure 19 shows the cooling capacity at optimum cycle time for the different modes
with different recooling water temperatures. The variable mode curve follows the optimum
cooling capacity at different recooling water temperatures. At recooling water temperatures
of 30–35, 35–44, and >44 ◦C, the single stage cycle, short mass recovery mode, and medium
mass recovery mode, respectively, are found to be optimum modes.



Energies 2021, 14, 3871 22 of 26

Energies 2021, 14, x FOR PEER REVIEW 22 of 27 
 

 

single stage cycle had a higher cooling cycle time of less than 750 s. While the mass recov-
ery cycle had a higher COP at longer cooling cycle time, the long mass recovery duration 
had a higher COP followed by medium and short mass recovery duration. 

 
Figure 18. Predicted COP at various cycle mode and recooling water temperatures. 

During adsorption cooling, when the heat source is unlimited to waste heat or an-
other free heat source, the cooling capacity value is higher than the COP. Therefore, in this 
study, the optimum mode cycle time was selected based on the maximum system cooling 
capacity. Table 5 shows the optimum cooling cycle time (OCCT) for each mode at various 
recooling water temperatures. 

Figure 19 shows the cooling capacity at optimum cycle time for the different modes 
with different recooling water temperatures. The variable mode curve follows the opti-
mum cooling capacity at different recooling water temperatures. At recooling water tem-
peratures of 30–35, 35–44, and >44 °C, the single stage cycle, short mass recovery mode, 
and medium mass recovery mode, respectively, are found to be optimum modes. 

Table 5. Optimum cycle time for each cycle mode. 

 Single Stage Short Mass Recovery Medium Mass Recovery Long Mass Recovery 

Recooling 
Water 

Tempera-
ture (°C) 

Optimum 
Cooling 

Cycle 
Time (s) 

Qe 
(KW) 

COP OCCT (s) 
Qe 

(KW) 
COP OCCT (s) 

Qe 
(KW) 

COP OCCT (s) Qe (KW) COP 

30 350 18.9 0.48 450 18.2 0.41 450 16.5 0.36 450 15.2 0.34 
35 350 14.4 0.46 500 14.4 0.39 500 13.4 0.35 500 12.4 0.33 
40 300 9.9 0.41 500 10.7 0.35 600 10.2 0.34 600 9.5 0.33 
45 200 6.4 0.29 600 7.1 0.31 650 7.2 0.30 650 6.5 0.29 
50 100 3.5 0.13 900 3.9 0.27 800 4.4 0.25 800 4.4 0.25 

Figure 18. Predicted COP at various cycle mode and recooling water temperatures.

Table 5. Optimum cycle time for each cycle mode.

Single Stage Short Mass Recovery Medium Mass Recovery Long Mass Recovery

Recooling Water
Temperature (◦C)

Optimum
Cooling Cycle

Time (s)
Qe (KW) COP OCCT

(s) Qe (KW) COP OCCT
(s) Qe (KW) COP OCCT

(s) Qe (KW) COP

30 350 18.9 0.48 450 18.2 0.41 450 16.5 0.36 450 15.2 0.34
35 350 14.4 0.46 500 14.4 0.39 500 13.4 0.35 500 12.4 0.33
40 300 9.9 0.41 500 10.7 0.35 600 10.2 0.34 600 9.5 0.33
45 200 6.4 0.29 600 7.1 0.31 650 7.2 0.30 650 6.5 0.29
50 100 3.5 0.13 900 3.9 0.27 800 4.4 0.25 800 4.4 0.25

Under the same conditions listed in Table 5 and Figure 19, the COP at the optimum
cycle time for the single stage, short mass recovery, medium mass recovery, and variable
modes at various recooling water temperatures is shown in Figure 20. As explained
previously, the variable mode tracks the optimum mode based on the cooling capacity. At
recooling water temperatures of 35–44 ◦C, the variable mode COP drops to match that
of the short mass recovery mode. At recooling water temperatures of 44–50 ◦C, the COP
drops to match the medium mass recovery cycle mode.

This result suggests that the working ambient and recooling water temperatures are
very important factors affecting COP cycle optimization. At an ambient temperature where
the recooling water temperature is less than 35 ◦C, the single stage mode is recommended
to obtain a higher COP; at higher temperatures, the short mass recovery mode is recom-
mended. If the system changes between the two temperature ranges, a variable mode cycle
is recommended.

To quantify and assess the air-cooled variable mode adsorption cycle, it is important
to reflect on the ambient temperature profile. Figures 21 and 22 show hourly ambient
temperature profiles for two days in Dubai. The figures show hourly simulation of the
cooling output and COP for different modes based on the predicted chiller performance
curves, assuming the temperature changes on an hourly basis and the recooling water
temperature is 5 ◦C higher than the ambient temperature. On day 1, the variable model
gives higher daily cooling capacity and COP of 12% and 3.6% compared to the single stage
mode. On day 2, the variable mode gives 3.3% higher cooling capacity and 7.7% lower
COP compared to the single stage mode.
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5. Conclusions

In this study, we experimentally evaluated the adsorption isotherms and kinetics
of a SAPO 34-coated heat exchanger. The adsorption isotherms were predicted at three
temperatures using the Dubinin–Astakhov, Freundlich, Hill, and Sun and Chakraborty
models. The experimental results fit well with the results obtained using these models,
except for the Freundlich model. In addition, the adsorption kinetics parameters were
calculated using a linear driving force model that was fitted to the experimental data
with high correlation coefficients. The results showed that the kinetics of the adsorption
parameters were dependent on the partial pressure ratio.

This study proposed and investigated a variable mode adsorption cooling cycle for
single stage and different mass recovery durations, which exhibited several advantages
compared to other fixed-stage adsorption cooling systems. This system reached optimum
cooling capacity and performance at various ambient temperatures in hot and humid areas.

A prototype of the adsorption chiller was designed and experimentally and numer-
ically investigated using the lumped model. The experimental and simulated results
showed good agreement and similar trends.

Both experimental and simulation results at a constant cooling cycle time of 500 s
indicated that, as the mass recovery time increased, the cooling capacity increased until
there was a saturation trend, and as the mass recovery process time increased, the COP
decreased until there was a saturation trend.

Four modes were investigated: single stage and three mass recovery modes of short,
medium, and long duration. The cycle time was optimized based on the maximum cooling
capacity. The single stage, short mass recovery, and medium mass recovery modes were
found to be the optimum modes at lower recooling temperatures of less than 35 ◦C, a
medium temperature of 35–44 ◦C, and higher temperatures of more than 44 ◦C. Therefore,
the variable mode cycle can improve cooling capacity, and the improvement depends on
the ambient temperature and recooling water temperature profile.
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