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Abstract: In recent years, the vast penetration of renewable energy sources has introduced a large
degree of uncertainty into the power system, thus leading to increased trading activity in the continu-
ous intra-day electricity market. In this paper, we propose an agent-based modeling framework to
analyze the behavior and the interactions between renewable energy sources, consumers and thermal
power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel
adaptive trading strategy that can be used by the agents that participate in CID market. The agents
learn how to adapt their behavior according to the arrival of new information and how to react to
changing market conditions by updating their willingness to trade. A comparative analysis was
performed to study the behavior of agents when they adopt the proposed strategy as opposed to
other benchmark strategies. The effects of unexpected outages and information asymmetry on the
market evolution and the market liquidity were also investigated.

Keywords: intra-day electricity markets; agent-based modeling; adaptive learning; renewable energy sources

1. Introduction

In recent decades, an increase in the share of variable renewable energy sources (RES)
has been observed in the energy mix. These energy sources are characterized by highly
volatile generation profiles throughout the year, as highlighted by [1], and have stimulated a
substantial growth in the volumes of electricity traded in the short-term electricity markets,
as pointed out by [2]. Short-term markets are organized in a sequence of trading floors [3].
First, the day-ahead (DA) market takes place one day before the physical delivery, followed
by the intra-day (ID) market, where electricity trading occurs until a few minutes before
the actual electricity production/consumption. Once the ID market closes, the committed
generation or consumption becomes financially binding for market participants. In the case
of deviations (imbalances) between the actual and the committed production/consumption,
financial penalties might ensue during the imbalance settlement process. In this context,
the ID trading floor becomes particularly interesting because participants can exploit the
enhanced accuracy of forecasts that comes with reduced lead times. Thus, market actors
can reduce their imbalances by performing adjustments close to the time of delivery as
discussed by [4]. Additionally, they can provide flexibility in the market, mitigating the
need for expensive balancing actions, which is further discussed by [5,6]. Intra-day markets
are typically organized according to two distinct mechanisms, namely continuous trade or
discrete auctions. This paper focuses on the former mechanism, as it is the one expected to
prevail at the European level, as pointed out by [7,8].

The increased amount of activity expected in ID markets raises the volatility and
cross-border flows in the market [3]. As a result, the need for automation in the trading
process is rising. Moreover, an expected upsurge in the amount of available information
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and IT infrastructure for traders, which is further explained by [9,10], has prompted the
development of bots for automated trading as shown by [11]. For instance, according
to [12], in July 2019, the intra-day volume traded on the Nord Pool trading platform by
bots through the application programming interface (API) exceeded 52%. In this context,
it becomes relevant to analyze the interactions of the automated players in the ID market
and evaluate their impact on the market outcome.

With reference to the increased relevance of short-term markets and automatic trading,
this paper tackles the issue faced by an agent trading in the European Continuous Intraday
(CID) market. In particular, we propose an open source agent-based modeling (ABM)
framework for the CID market where agents can interact and exchange energy through a
centralized limit order book. These agents exchange electricity according to some trading
strategy. In this paper, we propose a trading strategy based on adaptive learning—such
a strategy allows the agents to build price–volume curves, which are then used to post
orders in the CID market. To benchmark the proposed adaptive learning trading strategy,
we introduce a second one following a “naive” approach. We leverage these two strategies
to assess the impact of different trading strategies on the prices of the CID market and
revenues of the agents.

The presented modeling framework enables the analysis of a number of additional
events and their impact on the CID markets. In this regard, we analyze the combined impact
of (i) generation/consumption capacity outages and (ii) the different strategies adopted
by each agent, on the price volatility in the CID market. Additionally, we investigate how
some agents can influence the transaction prices in the CID market if better estimates of the
imbalance prices are available those agents. Indeed, when the transmission system operator
mobilizes resources to provide additional reserves in the balancing market, only some of
the market players are activated. Such agents, therefore, receive information concerning
reserve activation prices which is not universally available. This creates information
asymmetry concerning imbalance prices across the market players.

The rest of the paper is organized as follows. Section 2 discusses the related work in
the literature. Section 3 gives the overview of how the continuous ID electricity market
works. The details of the proposed model are covered in the sections ranging from Section 4
to Section 7. The continuous market clearing performed by the MO is described in Section 4.
The detailed modeling of different agents is explained in Section 5. Section 6 describes
the pricing and volume strategies for the agents. The imbalance settlement mechanism
adopted in the simulator is highlighted in Section 7. Discussions regarding the performed
case studies and obtained results are given in Section 8. Section 9 concludes the paper and
discusses future work avenues.

2. Related Works

The prevailing literature on energy exchange optimization has mainly focused on the
DA market. As for ID and CID, limited research work can be found to date, in particular,
related to the mathematical modeling of the CID electricity market. The research gap and
the need to develop more detailed simulation models for the CID market is highlighted
by [13]. The participation of a wind power producer (WPP) in the CID market and
the benefits obtained through the reduction in the imbalance costs are presented by [14].
However, this work does not explicitly model the trading process in the ID market, and only
considers a limited order book (a compilation of available bids and asks for trading). More
thorough modeling of the CID market is provided by [15], where a deep reinforcement
learning framework for the participation of energy storage in the CID market is proposed.
In the latter, historical limit order book data were used to train the trading agent. However,
the use of historical data does not allow the study of the market impact of each player.
The need to model the interactions of the different market agents in the ID market has
been emphasized by [16]. Similarly, Ref. [17] organized the CID electricity market as a
continuous double auction (CDA) (according to [18], CDA is a fixed-duration auction
mechanism where more than one buyer and seller can compete with each other to buy
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and sell goods, respectively, and transactions can take place at any time whenever an
offer to buy and an offer to sell match) with the aim of understanding the impact of RES
agents’ forecast errors on the CID market. However, their work assumes that a single entity
aggregates the entire wind and solar power generation and trades the overall forecast error
in the ID market as a single entity. This entity is not allowed to submit orders, but it has to
accept the best price available when it enters the market.

Agent-based modeling provides a framework for simulating the operation of electric-
ity markets, with the purpose of investigating the behavior of different market participants
and to study their interactions. Some of the agent-based models (ABMs) that have been
developed in the past include EMCAS (electricity market complex adaptive systems)
by [19,20], NEMSIM (national electricity market simulation system) by [21], STEMS-RT
(short-term electricity market simulator–real time) by [22], SEPIA (simulator for electric
power industry agents) by [23], AMES (agent-based modeling of electricity system) by [24],
and MASCEM (multi-agent system that simulates competitive electricity markets) by [25].
A detailed literature review of these models has been performed by [26]. Some recent
research work on agent-based modeling includes [27–31]. A literature review of contem-
porary ABMs in different electricity markets can be found in [32]. However, none of the
aforementioned ABMs is well suited for modeling the European CID market since the
trading mechanism (limit order book) and the rules are not explicitly considered.

In this work, we present a novel ABM framework for the CID market, where all
the agents can interact and exchange energy via submitting orders in a centralized limit
order book. However, we adopt a different approach with respect to [33,34], where the
authors proposed a model to optimize the participation of a portfolio of assets in the energy
markets, aiming to maximize returns and the minimization of the implied risk. In this
paper, we consider each agent to control only one type of asset. Two different pricing
strategies are considered according to which the agents are posting orders in the market.
The first one is a simple strategy that randomly assigns a price to the volume that each
agent needs to trade at each step. The second pricing strategy adopted in this paper is a
slightly modified version of the trader AA (adaptive aggressiveness) strategy presented
by [35] that is used in financial markets. The main feature of this strategy is the notion of
aggressiveness, which is a variable that determines the behavior of the trader in the market,
e.g., passive, active, aggressive. More specifically, an aggressive trader tends to submit
better offers than its estimate of the competitive equilibrium price with the intention of
improving its chance of transacting. This variable is progressively learned in response to
the market events. According to [36], the trader AA strategy has been shown to dominate
not only all other algorithmic strategies but also human traders. However, the quoted
volume is not considered as a strategic variable in this strategy. In this paper, we propose
an adjusted version of the trader AA strategy that we call the modified trader AA (MTAA)
strategy. The proposed strategy also uses the aggressiveness variable for the construction
of price–volume curves.

In light of the above, the contributions of this paper are four-fold. First, we propose
a novel ABM framework to investigate the interactions between different agents in the
context of a CID market. Second, we employ an MTAA pricing strategy that learns from
past events in the CID market and benchmark it against a naive strategy that randomly
chooses prices from a range of prices based on the best buying and selling prices in the
CID market. Third, we study the response of different agents interacting in the CID market
to capacity outages under different pricing strategies. Lastly, we investigate the impact of
information asymmetry of the imbalance prices on the CID market prices.

3. Principles of Continuous Intra-Day Markets

This section describes the organization and the main principles that define the ex-
changes in the proposed CID market mechanisms. These principles are inspired by the
work of Boukas et al.; for more details, we refer the reader to [15].
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3.1. Market Set-Up

In the CID market, the actual delivery of energy in a predefined time slot is known
as a market product. A wide range of products is offered by the market operators in
Europe based on the associated duration of physical delivery. For instance, Nord Pool
offers quarterly (15 min-long), half-hourly (30 min-long), hourly, and block products. The
latter are products inter-linked in time and comprise several consecutive hourly products
(up to 24) as described by [37]. Although the increasing number and range of available
products aim to facilitate trading activities, these also complicate the decision process.

Assumption 1. Throughout this paper, it is considered that trading takes place solely for one
product. This assumption seeks to simplify notation and to reduce the complexity arising from (i)
the time coupling of the products in the delivery timeline, as well as (ii) the dependency between
trading and delivery timelines.

In this regard, the market product starting at the first hour of the day can be encoded
as H1, as shown in Figure 1. In this figure, the physical delivery of product H1 starts at
tH1
delivery and ends at tH1

settle. The trading activity for this product starts the day before at

tH1
open and terminates shortly before the actual delivery at tH1

close. In the following, we will

consider the trading timeline defined as the time interval T̃ =
[
tH1
open, tH1

close

]
. Furthermore,

we consider a discretization of the continuous time interval T̃, with the discretization step
∆t. The discrete time horizon is defined as T = {tH1

open, tH1
open + ∆t, ..., tH1

close}.

12:00 14:00 23:00 00:00 1:00
DA closure

D-1 D

tH1
open

tH1
close tH1

settle

INTRADAY REAL TIME DAY AHEAD

tH2
delivery

tH2
settle2:00

tH2
open

tH1
delivery

tH2
close

time

Figure 1. Graphical representation of the limit order book at time t.

3.2. Market Mechanism

At each time-step in the trading timeline, a market participant can express their
willingness to buy or sell a product (consume or produce energy during a predefined
time-slot) by posting orders in the CID market. There are four main types of orders: (i) the
market order, where no price limit is specified and the order is matched at the best price; (ii)
the limit order, which contains a price limit and can only be matched at the specified price
or better; (iii) the market sweep order, which is immediately executed (fully or partially) or
canceled; and (iv) block orders, consisting of one or several (up to 24) consecutive hourly
products. Each one of these types of order can receive additional execution specifications
related to the time or the volume of the order execution.

Assumption 2. In this paper, it is assumed that the agents can only place simple limit orders.
Placing a new limit order for a product in the CID market involves specifying its side, i.e., whether
it is a buy or a sell order y ∈ {Sell, Buy}, its volume v ∈ R+, and the price π ∈ [πmin, πmax] for
producing or consuming one unit of energy.



Energies 2021, 14, 3860 5 of 31

Every incoming order is treated according to the first-come–first-serve (FCFS) rule as
explained by [38]. If the price of a new Buy (Sell) order is equal or higher (lower) than the
price of an existing Sell (Buy) order, it will automatically be realized. Each transaction is
settled following the pay-as-bid principle, according to which the transaction price is set by
the oldest order of the two. Unmatched orders are stored in the limit order book (LOB), a
ledger that centralizes all outstanding bids and asks—i.e., the pending orders that have not
yet been canceled by the agents that originated them—and which is accessible to all market
participants. The LOB typically has two sides, namely the bid and the ask sides. The former
contains the prices and quantities of outstanding bid orders sorted in descending order,
while the latter stores the prices of outstanding asks and the associated quantities sorted in
ascending order. A visualization of outstanding bids and asks for product H1, as found in
a typical LOB is presented in Figure 2. The current work follows the LOB implementation
described by [39].

order price (Eur/MWh)

O
rd

er
 v

ol
um

e 
(M

W
)

pmin pmax

Bid-ask 
spread

p1 p2 p3 p4 p5

BIDS
(buy order)

ASKS
(sell order)

Figure 2. Graphical representation of the shared order book at time t.

4. Continuous Market Clearing

This section describes the functionality of the market operator (MO) agent. The MO is
responsible for organizing and facilitating the interactions between trading agents in the
CID market. As previously described, the exchanges take place through a centralized order
book. The MO is responsible for receiving the incoming orders from the agents, processing
them, and record the financial transactions. This agent is also responsible for updating
the order book and communicating it to the market participants. An overview of the CID
market simulator is shown in Figure 3.

4.1. Continuous Market Operation

This subsection highlights the various steps taken consecutively by the MO agent to
operate the continuous market clearing and the trading agents that submit their orders
during the entire trading timeline. The market session is composed of a set of agents
interacting over a discrete time horizon T. Let i denote an agent from the set I = {1, . . . , N}
where N is the number of agents. Additionally, let obt denote the LOB at time-step t ∈ T.

Assumption 3. A general assumption in this paper is that the only public information available
to the trading agents is the top of the LOB tobt and the DA price (πDA). The top of the LOB tobt
is a vector consisting of various price and volumes indicators: the best bid price bbpt, the best bid
volume bbvt, the best ask price bapt, the best ask volume bavt, the volume weighted average price
in the bid side vwapbt and the volume weighted average price in the ask side vwapat. Compactly,
we have:

tobt = (bbpt, bbvt, bapt, bavt, vwapbt, vwapat).
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Dispatchable agents

Private information Private information

Public information (TOB, LOB, DA price)

Market
OperatorVariable agents

Process information
according to Algorithm 2

to decide the order 

Post order Post order

Process
orders

Process information
according to Algorithm 3

to decide the order 

Update TOB,
LOB

Start CID 
market simulator

If t == T

No

Imbalance
settlement

Yes

t = t+1

t = 0

Figure 3. Overview of CID market simulator.

At the beginning of the market session, the MO instantiates the LOB obtopen . Then, at
each time-step t, all the agents in the market are given a chance to post their orders. Each
agent is assigned a unique identity number and the sequence in which these agents are
selected to act is chosen randomly. Every agent, once selected by the MO, first cancels any of
their previously submitted orders still in the order book obt, and then submits a new order
oi,t = (yi,t, vi,t, πi,t) according to their strategy Si. At this stage, the submitted order oi,t is
processed by the MO and a new instance of the LOB emerges, i.e., obt+1. The top of the LOB
(tobt+1) is also generated and shared among the agents for them to update their trading
strategies. This process is repeated until the end of the trading horizon. The described
process is presented in Algorithm 1. After CID trading, the imbalance settlement (detailed
in Section 7) takes place, where deviations from the committed schedules are penalized.

Algorithm 1 Run the market

1: procedure RUNMARKET(obtopen )
2: for t← topen, tclose do
3: i← rand(I)
4: oi,t ← Si(tobt)
5: obt+1, tobt+1 ← MO PROCESSING(oi,t, obt, tobt)
6: Update agents’ trading strategies
7: end for
8: Imbalance settlement
9: end procedure
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4.2. Order Processing

This subsection describes how the MO processes the orders submitted by the trad-
ing agents in the CID market. Once a new order oi,t is submitted by an agent, the MO
determines whether a transaction is realized and updates the LOB accordingly. First, the
MO checks the side of the order. For a buy (sell) order, the MO compares the price of the
order (πi,t) with the best ask (best bid) price, and if πi,t is greater (lower) than the bapt
(bbpt), a transaction takes place. During this process, the matching volume vmatch and price
πmatch are computed, as shown in the Appendix A. At this stage, an updated instance of
the LOB obt+1 is generated. The orders whose entire volume is matched are removed from
the LOB while the orders that are partially matched are first updated and then added to
the LOB. The algorithms that compose the processing of the submitted orders can be found
in Appendix A.

4.3. Updating Agents’ Beliefs

At each time-step t of the trading horizon, the MO communicates the top of the LOB
(which is generated from the LOB obt) to the trading agents. With this information, the
agents update their strategies Si as described in Sections 5.1 and 6.

4.4. Transaction Confirmation

When a match takes place, the two parties of the transaction are notified and both of
them locally confirm it, as described in Section 5.1.

5. Trading Agents

Two main types of trading agents are considered in the model, namely the dispatchable
agents representing the operators of thermal power plants, and the variable agents rep-
resenting renewable generators and consumers, among others. In this section, we first
describe a generic agent that has all the common attributes and functionalities of the two
aforementioned types of trading agents. Subsequently, the particular characteristics that
differentiate them are elaborated.

5.1. Generic Agent

At each time-step t in the trading horizon, the information available to a trading agent
can be divided, depending on its restriction level, into public and private.

Public information is considered to be available to all market participants at the same
time and includes the top of the LOB tobt and the day-ahead (DA) price πDA. On the other
hand, the private information is only available to each individual agent. Formally, the
public information available to an agent i in the current framework writes as

spublic
i,t = (tobt, πDA).

In the following, a detailed description of the agents’ private information is introduced.
Then, the modules that facilitate the interactions of the agent with the market environment
are defined.

5.1.1. Private Information

The private information available to trading agent i contains the effective capacity
Ci,t of the production/consumption asset that can be traded at time-step t in the trading
horizon. At the beginning of the trading horizon topen, the effective capacity is defined as
Ci,topen , and initialized with the value Ci. The private information of an agent i also includes
the market position pmar

i,t at time-step t, which represents the net volume of energy traded
for the corresponding product. In particular, a positive (negative) market position indicates
that the trading agent has sold (purchased) energy. At the beginning of the trading horizon,
pmar

i,t is initialized with the value of the day-ahead market position, represented by pda
i . The
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private information also contains the cash-flow ri,t, which reflects the cumulative revenues
of agent i during the trading process.

The difference between the market position pmar
i,t at time-step t and the expected energy

output at physical delivery is denoted by imbalance δi,t, which lists as additional private
information for a given agent. The agent has private access to their most recent prediction
for the positive and negative imbalance prices (π̂imb,+

i,t and π̂imb,−
i,t , respectively).

Assumption 4. In this paper, it is assumed that all the trading agents aim to maximize their
expected profits, taking into account payments for imbalances. The final imbalance ∆i is defined as
the difference between the actual realization and the market position at the end of the trading horizon
(pmar

i,tclose
). The trading decisions about the energy produced/consumed are such that the imbalance

penalties are minimized.

During the trading process, an agent can be both a buyer and a seller. The minimum price
an agent i is willing to offer and the maximum price they are willing to pay for a unit of power
at time-step t are denoted by lsell

i,t and lbuy
i,t , respectively, and are considered additional private

information. Finally, each agent maintains a local LOB oblocal
i,t during the trading process, as a

private ledger tracking their outstanding orders at time-step t. This local LOB is updated when
new orders are posted or when the existing (outstanding) ones are partially/fully accepted or
canceled. Formally, the private information of an agent i writes as

sprivate
i,t = (Ci,t,pmar

i,t , ri,t, δi,t, π̂imb,+
i,t , π̂imb,−

i,t , lsell
i,t , lbuy

i,t , oblocal
i,t ). (1)

5.1.2. Potential Functionalities

We define ‘potential functionality’ as a function that can be performed by a specific agent.
In the case of a generic agent, the agent functionalities available are described as follows:

(1) Strategy Si(tobt)

This function comprises all necessary computations for submitting orders in the mar-
ket. The definition and the interactions of this functionality with the rest of the simulator
are detailed in Section 6. In its basic form, the pricing strategy receives as input the public
information about tobt. Based upon this, it computes all relevant information required
for the design of the price–volume curves used for creating and submitting orders to
the market.

(2) Outage O(pout, c̃)

This function simulates the effect of receiving information regarding an unexpected
outage within the available portfolio during the trading horizon. It takes as input an outage
probability pout and the share of capacity which will be affected by the outage, given by c̃. The
discrete event of an outage X ∈ {0, 1} is sampled from a Bernoulli distribution defined as

P(X|pout) = (pout)X · (1− pout)1−X , (2)

where X = 1 corresponds to a capacity outage of share c̃. The outage functionality O is
used to update the effective capacity Ci,t at each time-step t by sampling a discrete event
Xt from Equation (2) and updating the effective capacity Ci,t as in:

Ci,t =

{
(1− c̃) · C , if Xt = 1
C , otherwise .

(3)

Assumption 5. In this paper, we assume that the up- and down-regulation prices are known to the
market operator agent throughout the trading horizon. The other agents forecast these prices with
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some error. This assumption allows us to study the effect of information asymmetry of imbalance
prices on the behavior of the agents.

(3) Imbalance Price forecaster I(eimb
i )

This function is used to produce estimates of the imbalance prices π̂imb,+
i,t , π̂imb,−

i,t of
the traded product (time slot) at each time-step t. For the sake of simplicity, we assume
that the imbalance price forecasts are given by adding white noise with variance eimb

i to the
real positive and negative imbalance price denoted by πimb,+, πimb,−, respectively. Thus,
the imbalance prices are given by

π̂imb,+
i,t = πimb,+ +N (0, eimb

i ) (4)

π̂imb,−
i,t = πimb,− +N (0, eimb

i ) (5)

Further details about the choice of πimb,+ and πimb,− are provided in Section 7.1.

(4) Confirm a Transaction Locally

This function enables a series of operations between parties in the case a transaction
takes place between two agents at time-step t. First, the agents update their market position
pmar

i,t and their cash-flow ri,t and then they update their local order book oblocal
i,t accordingly.

For a transaction between two parties exchanging a volume of vmatch, at a price πmatch, the
update of market positions and cash-flows for each party depending on their side ymatch, is
given by

pmar
i,t+1 = pmar

i,t +

{
vmatch , if ymatch = Sell
−vmatch , if ymatch = Buy

(6)

ri,t+1 = ri,t +

{
vmatch · πmatch , if ymatch = Sell
−vmatch · πmatch , if ymatch = Buy

(7)

The local order book oblocal
i,t that contains all outstanding orders is updated after each

transaction as follows. If the transacted volume vmatch fully matches the posted limit order
volume v, the order is removed from the LOB. Otherwise, the order remains in the local
book with an updated volume vi,t as reduced by vmatch.

5.2. Dispatchable Agent

This agent is built upon the previously described generic one and allows for the
representation of trading agents controlling fully dispatchable assets, i.e., thermal plants.

5.2.1. Private Information

In addition to the private information of the generic agent, the dispatchable agent also
tracks what we call buy and sell margins, gdown

i,t and gup
i,t , respectively. At every time-step

t, these margins correspond to the difference between the market position pmar
i,t and the

minimum stable load Ci,t (for a buy order) or the difference between the effective capacity
Ci,t and the market position pmar

i,t (for a sell order). Formally, these margins are given by

gdown
i,t = max

{
pmar

i,t −min
{

Ci,t, Ci,t
}

, 0
}

(8)

gup
i,t = max

{
Ci,t − pmar

i,t , 0
}

(9)

The private information of a dispatchable agent i writes as

sprivate,dis
i,t = (sprivate

i,t , gdown
i,t , gup

i,t ),
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where sprivate
i,t is the private information available to the agent i at time t as per Equation (1) and

gdown
i,t and gup

i,t are the buy and sell margins according to the Equations (8) and (9), respectively.

5.2.2. Potential Functionalities

(1) Strategy Si,dis(tobt)

Functionality is used to produce the order to be submitted to the market at time-step
t, according to Algorithm 2. Firstly, agent i cancels all potential outstanding orders. Then,
it computes the effective capacity Ci,t according to Equations (2) and (3). The resulting
capacity is used to compute the buy/sell margins according to Equations (8) and (9),
respectively. Then, new imbalance prices forecasts (π̂imb,+

i,t and π̂imb,−
i,t ) are computed

according to Equations (4) and (5) before the effective capacity Ci,t is leveraged to evaluate
the imbalance δi,t as per:

δi,t = min{Ci,t − pmar
i,t , 0}+ min{pmar

i,t − C, 0} (10)

At the end of the trading horizon, the final imbalance ∆i for a dispatchable agent i is
computed as ∆i = δi,tclose . In case the agent observes a negative imbalance δi,t < 0, the limit

price buy lbuy
i,t is updated. This happens as the agent prefers to buy the energy that cannot

be physically produced via its unit than to face imbalance penalties. Again, this follows
from Assumption 4 related to the requirement of the trading agents to be in balance at the
real-time delivery stage. In such a situation, the updated limits are given by

lbuy
i,t+1 =

(1− α)lbuy
i,t + α ·max{π̂imb,−

i,t , lbuy
i,topen
} , if δi,t < 0

lbuy
i,topen

, otherwise
(11)

lsell
i,t = lsell

i,topen
(12)

It should be noted that the limit sell price lsell
i,t remains the same for the entire trading

session since the agent does not face any positive imbalance. In the final step, with all the
public and private information available, agent i can use its pricing strategy PSi to produce
the order oi,t that will be submitted to the market at time-step t.

Algorithm 2 Steps to decide the orders to be placed

1: procedure Si,dis(tobt)
2: Cancel outstanding orders
3: Update capacity(Ci,t) as per Equation (3)
4: Compute buy/sell margins gdown

i,t , gup
i,t as per Equations (8) and (9)

5: Predict imbalance prices π̂imb,+
i,t , π̂imb,−

i,t as per Equations (4) and (5)
6: Compute imbalance(δi,t) as per Equation (10)
7: Update limit price buy/sell lbuy

i,t ,lsell
i,t as per Equations (11) and (12)

8: oi,t ← PS (tobt, sprivate,dis
i,t )

9: return oi,t
10: end procedure

5.3. Variable Agent

The variable agent is also built upon the previously described generic agent and
contains additional attributes and functionalities that enable the representation of trading
agents that control variable assets, i.e., renewable energy sources or consumption.
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5.3.1. Private Information

Due to the variable nature of this type of agent, it is considered that the agent has
access to a forecast p̂var

i,t at every time-step t, which is the most recent forecast of the
uncertain production/consumption.

Assumption 6. In this paper, we assume that the production/consumption forecast available to
each agent is independent of other agents and does not consider any spatial correlation.

5.3.2. Potential Functionalities
(1) Forecasting functionality

Forecasts are produced by this functionality at a frequency Di,t, according to:

p̂var
i,t = Fi(C, ecst

i,t , pvar
i,t , p̂var

i,0 ), (13)

where C is the effective capacity as per Equation (3), ecst
i,t is the error constant, pvar

i,t and
p̂var

i,0 denotes the realization and initial forecast of the variable consumption/production,
respectively. In this paper, we consider that the forecast of electricity consumption and RES
production p̂var

i,t is generated by adding a systemic error evar
i,t to the actual realization pvar

i,t ,
as per:

p̂var
i,t = pvar

i,t + evar
i,t

The error evar
i,t at time-step t is computed by one of the following functions:

• Cosinusoidal forecast:

evar
i,t = C̃ · cos

(
t
|T|

2·ecst
i,t

)
(14)

• Sinusoidal forecast:

evar
i,t = C̃ · sin

(
t
|T|

2·ecst
i,t

)
(15)

• Constant offset forecast:
evar

i,t = C̃ (16)

where C̃ denotes the amplitude/offset of the error and ecst
i,t is a constant that can adjust the

frequency of the error. Thus, the private information of a variable agent i writes as

sprivate,var
i,t = (sprivate

i,t , p̂var
i,t ).

where sprivate
i,t is the private information available to the agent i at time t according to

Equation (1) and p̂var
i,t is the forecast of production/consumption of the variable agent.

(2) Strategy Si,var(tobt)

Functionality is used to produce the order to be submitted to the market at a decision
time-step t, according to Algorithm 3. At first, agent i cancels all potential outstanding
orders. Then, the agent computes an updated version of the effective capacity Ci,t according
to Equations (2) and (3) and receives the most recent forecast of consumption/production
p̂var

i,t from Equation (13). Then, new imbalance price forecasts (π̂imb,+
i,t and π̂imb,−

i,t , respec-
tively) are computed according to Equations (4) and (5). At each time-step t, the imbalance
δi,t of a variable agent is computed as the difference between their market position pmar

i,t
and their most recent forecast p̂var

i,t as per:

δi,t = pmar
i,t − p̂var

i,t . (17)
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At the end of the trading horizon, the final imbalance ∆i for variable agent i is computed as

∆i = pmar
i,t − pvar

i,t .

If a variable agent has an imbalance δi,t, they face the risk of being exposed to an
imbalance penalty. To take this into account, the agent updates their limit buy/sell prices
(lbuy

i,t , lsell
i,t ) towards its estimates of the positive/negative imbalance prices (π̂imb,+

i,t , π̂imb,−
i,t )

according to:

lbuy
i,t+1 =

(1− α)lbuy
i,t + α ·max{π̂imb,−

i,t , lbuy
i,topen
} , if δi,t < 0

lbuy
i,topen

, otherwise
(18)

lsell
i,t+1 =

(1− α)lsell
i,t + α ·min{π̂imb,+

i,t , lsell
i,topen
} , if δi,t > 0

lsell
i,topen

, otherwise
(19)

Finally, the variable agent i can use its pricing strategy PSi together with the available
public and private information to produce an order oi,t that will be submitted to the market
at time-step t.

Algorithm 3 Variable agent strategy

1: procedure Si,var(tobt)
2: Cancel outstanding orders
3: Update capacity(Ci,t) as per Equation (3)
4: Compute recent forecast (p̂var

i,t ) as per (13)

5: Predict imbalance prices π̂imb,+
i,t , π̂imb,−

i,t as per Equations (4) and (5)
6: Compute imbalance(δi,t) as per Equation (17)
7: Update limit price buy/sell lbuy

i,t ,lsell
i,t as per Equation (18)

8: oi,t ← PS (tobt, sprivate,dis
i,t )

9: return oi,t
10: end procedure

6. Pricing Strategies

As described in the previous section, after deciding the amount of energy to be put into
the market, each agent i employs a pricing strategy PSi for this volume. More specifically,
each agent needs to construct a price–volume curve that defines the price at which shares
of the total volume will be placed into the market. In the following, the two available
pricing strategies, namely a naive strategy and a modified trader AA strategy, will be described.
In this section, first, a generic pricing scheme that serves as a basis for any of the two
aforementioned strategies is introduced. Then, the naive and the modified trader AA
pricing strategies are described in detail.

6.1. Generic Strategy

This strategy includes the common parameters and functions that any of the two
proposed pricing schemes should contain in the current framework. Thus, irrespective
of the pricing strategy, a set of parameters is required to construct the price–volume curve
of an agent. This set includes (i) the updated values for the buy/sell limits (lsell

i,t , lbuy
i,t ) (for

the ease of notation, the index i will be dropped in the rest of this section as the concepts
described here apply to each agent); (ii) the (user-defined) number of orders n that the
agent submits to the market; and (iii) the top of the book at the previous time-step (bbpprev

t ,
bbvprev

t , bapprev
t , bavprev

t ).
In addition, the generic pricing strategy is characterized by a set of processes. First,

the agent initializes all relevant strategy parameters. Then, the agent learns the strategy
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parameters based on information received from the MO (e.g., top of the book, transactions).
This update occurs at each market event and contains slightly different sub-processes
depending on the pricing strategy in use. Finally, the agent constructs the price–volume
curve and outputs the orders that are submitted to the MO.

6.2. Naive Strategy

This strategy builds the price–volume curve by randomly sampling from a range of
prices. The additional parameters that are characteristic for the naive strategy are (i) the
price range πrange used for random sampling and (ii) the number of intervals m in which
the price range is split. According to the naive strategy, an agent first initializes the values
of lsell

t , lbuy
t , n, πrange and m. Then, the values of the previous best bid/ask prices/volumes

are updated according to the new top of the book received from the MO. Then, the agent
passes the volume decision and the side of the orders to be posted and the price–volume
curve is built. In the case that the agent attempts to sell a volume v, the naive strategy
proceeds as follows. First, a price range is defined containing m intervals, with minimum
and maximum values given by

πsell
min =max{bbpt − πrange, lsell

t } (20)

πsell
max =max{bapt + πrange, lsell

t + πrange} (21)

Similarly, in the case the agent attempts to buy a volume v, the price range limits are
given by

π
buy
min =min{bbpt − πrange, lbuy

t − πrange} (22)

π
buy
max =min{bapt + πrange, lbuy

t } (23)

The price step is defined as

∆π =
π·max − π·min

m
(24)

The sets containing the candidate prices for selling P sell and buying P buy can be
defined as

P sell = {πsell
min, πsell

min + ∆π, ..., πsell
max} (25)

P buy = {πbuy
min, π

buy
min + ∆π, ..., π

buy
max} (26)

Then, a number of n price values πj, with j ∈ {1, .., n}, are sampled i.i.d. from P sell or
P buy, while the volume v is shared equally among all orders (i.e., v1 = ... = vn = v

n ). The
final orders are defined as

oi,t = {(π1, v1), (π2, v2), ..., (πn, vn)} (27)

6.3. Modified Trader AA Strategy

This strategy builds the price–volume curve in two steps. First, the methodology
introduced in the trader AA strategy, detailed by [35], is used to define the target price
at each step. Subsequently, the target price is used as a reference point to build the price–
volume curve. A first additional pricing strategy parameter that is specific to the MTAA
scheme is the competitive equilibrium price estimate π̂t. Second, the aggressiveness at
characterizes the trading behavior of an agent. It takes values in [−1, 1], where at > 0
corresponds to an aggressive trader (posting orders that are better than their π̂t estimate),
at = 0 is associated with an active trader (posting orders that are at their estimate π̂t) and
at < 0 denotes a passive agent (posting orders that are worse than their estimate π̂t). A
third MTAA parameter is the target price τt that specifies the price that the agent is willing
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to offer given its aggressiveness level at. In particular, the target price τt is given by a
parameterized exponential function with parameter θ.

The MTAA strategy implements the following steps. First, an initialization that
retrieves the values of lsell

topen
, lbuy

topen
, n, π̂topen , atopen and θtopen from the agent occurs. This is

followed by the learning of the parameters of the strategy after each time-step t, based on
the received top of the order book and the transactions that might have taken place. The
main parameters of the MTAA strategy are updated as follows:

• The competitive equilibrium price estimate p̂ is computed at each step as the mean
value of K past transactions according to:

π̂t =
1
K

K

∑
k=1

πk (28)

• The aggressiveness a is updated as

at+1 = at + β · (δp − at), (29)

where δp is a proxy of the degree of aggressiveness that would form a price equal to
the best bid price bbpt, if the agent is a buyer and the last event is a bid, or equal to the
best ask price, bapt, if the agent is a seller and the last event is an ask. In case the last
event is a transaction, the price reference is the transaction price πmatch. The learning
process of the aggressiveness takes place in a step-wise manner that depends on the
step-size parameter β.

• The target price parameter θ is only updated when a transaction takes place, while the
magnitude of the update depends on the market volatility ν through function θ̄(ν).
The updated parameters are given by

θt+1 = θt + β1 · (θ̄(ν)− θt), (30)

• The target price τt at each step t is computed as a function of the aggressiveness

level a, the estimated equilibrium price π̂t and the limit prices to buy/sell (lsell
t , lbuy

t ).
Compactly, it writes:

τt = gθt(l
sell
t , lbuy

t , π̂t, at),

where θt defines the shape of the exponential.

Finally, the last step involves learning the price–volume curve with the volume,
decision, and side of the orders posted by the agent, the volume decision, and the side
of the orders the agent will post and constructs the price–volume curve in a two-stage
procedure. Building this curve is a two-step process. First, the decision on the bid/ask
price is taken following the procedure described by [35]. More specifically, for determining
the price at which a new order will be posted, the MTAA strategy uses the target price τt
and the observed top of the book tobt. The price, depending on the side of the orders, is
given by

πask = bapt − (bapt − τt)/η (31)

πbid = bbpt + (τt − bbpt)/η (32)
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where η is a parameter that determines the rate of decrease (increase) in the ask price
(bid price) and η ∈ [1, ∞). Then, given the resulting price and the agent aggressiveness,
exponential price–volume curves for selling or buying energy are given by

P sell(V) = πask + (πmax − πask) · eVatφ − 1
eatφ − 1

(33)

P buy(V) = πbid + (πmin − πbid) · eVatφ − 1
eatφ − 1

(34)

where V ∈ [0, 1] represents the proportion of the volume v and πmax, πmin , φ are user-
defined parameters that are used to define the price range of the curves.

Then, a number of n price values πj, with j ∈ {1, ..., n}, are derived from P sell(Vj) or
P buy(Vj), where:

Vj =
∑

j
l=1 vl

v
.

The volume v is shared equally among all orders (i.e., v1 = ... = vn = v
n ). The final

orders are defined as

oi,t = {(π1, v1), (π2, v2), ..., (πn, vn)} (35)

An illustration of the price–volume curves derived from MTAA strategy based on
different aggressiveness values is shown in Figure 4.
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Figure 4. Illustration of MTAA price–volume curve (order price vs. proportion of order volume to be
posted in the CID market).

7. Imbalance Settlement

The MO, in addition to running the ID market, is considered to be responsible for
the final imbalance settlement after gate closure. This relies on the assumption that the
final position of each agent at the gate closure is binding and the agent does not adjust
its production/consumption during the physical delivery. The positive and negative
imbalance prices (πimb,+ and πimb,−, respectively) denote the penalties applied to positive
and negative imbalances caused by the trading agents. The two prevailing imbalance
mechanisms currently in use throughout Europe, namely single and dual pricing, are both
available in the current framework, with the user being responsible to define which of the
two is applied.

The single pricing mechanism applies a penalty to the agents that have a negative
imbalance and remunerates the agents that have a positive one. The value of the imbalance
prices under the single pricing mechanism is often the same based on the specific electricity
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market (i.e., πimb,+ ≈ πimb,−) and depends on the sign and the size of the system imbalance.
For instance, if the system imbalance is positive, a downwards regulation takes place. All
imbalances are then settled at the downwards regulating price πdown and for the single
pricing mechanism this implies πimb,+ = πimb,− = πdown. Formally, the single imbalance
pricing settlement amount rsip,down

i is given by

rsip,down
i = πimb,− · ∆i. (36)

Alternatively, when a negative system imbalance occurs, an upwards regulation takes
place and imbalances are settled at the upwards regulating price πup, which results in
πimb,+ = πimb,− = πup. In that case, the single imbalance pricing settlement amount rsip,up

i
will be:

rsip,up
i = πimb,+ · ∆i. (37)

The dual pricing mechanism applies a different price to the positive and the negative
imbalances, respectively. For example, let R denote the regulation volume activated to
counteract the system imbalance. In the case the system is in upwards regulation (i.e.,
negative system imbalance), an upward regulation price πup is applied to the positive
imbalances and the day-ahead price πDA is applied to the negative imbalances. Formally,
πimb,+ = πup and πimb,− = πDA. Thus, the dual imbalance pricing settlement amount
under upwards system regulation (i.e., rdip,up

i ) is given by

rdip,up
i =

{
πup · ∆i , if ∆i > 0
πDA · ∆i , if ∆i < 0

(38)

In the case that the system is in downwards regulation (i.e., positive system imbalance),
a downward regulation price πdown is applied to the negative imbalances and the spot price
πDA is applied to the positive imbalances. Formally, πimb,+ = πDA and πimb,− = πdown.
Hence, the dual imbalance pricing settlement amount under downwards system regulation
(i.e., rdip,down

i ) is given by

rdip,down
i =

{
πDA · ∆i , if ∆i > 0
πdown · ∆i , if ∆i < 0

(39)

If no regulation is activated, then all imbalances are treated at spot price πDA. As de-
scribed above, the sign and the amount of the system imbalance (regulation sign) determine
the penalty that will be attributed to the trading agents.

7.1. Impact on System Regulation

In this paper, we consider that the values for the upwards πup and the downwards
πdown regulation prices are predefined and do not depend on the regulation volume
activated R. This way, the sign of the system regulation sgn(R) is sufficient to determine
the imbalance prices (πimb,+ and πimb,−, respectively), given the imbalance mechanism
(single/dual pricing) considered and its computation proceeds as follows. First, a random
variable Y ∈ {0, 1} is sampled from a Bernoulli distribution that writes as

P(Y| f ) = (k)Y · (1− k)1−Y, (40)

where k denotes the probability of having a positive imbalance. In order to incorporate
the impact of the imbalances of trading agents in the imbalance settlement period (ISP),
the imbalance influence factor f ∈ [0, 1] is used. The cumulative imbalance caused by the
trading agents is computed as

∆market = ∑
n∈N

∆i, (41)
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while the probability k writes as

k = 0.5 + sgn(∆market) · f
2

. (42)

On the one hand, when f = 0, the sign of the imbalance ∆market does not impact
the system imbalance, which is then determined in a random way. On the other hand, if
f = 1, the cumulative imbalance of trading agents fully define the total system imbalance.
Then, the sign of the system regulation R, given the realization of the random variable Y is
given by

sgn(R) =

{
+1 , if Y = 0
−1 , otherwise

(43)

Once the sign of the regulation volume is determined, the imbalance settlement takes
place for each agent according to Equations (37)–(39).

8. Test Case, Results and Discussion

The presented ABM framework is used to evaluate three case studies based on a
proposed market configuration. First, the impact of different pricing strategies on the
market outcome is evaluated by gradually modifying the traders that adopt the MTAA
strategy. Then, the effect of capacity outages in the market price formation process is
validated. Finally, the effect of the imbalance price information asymmetry is analyzed.

8.1. Test Case Set-Up

In the following section, a case study with six trading agents is proposed. Among
these, four are variable (two RES agents, Wind1 and Wind2 and two consumer agents, Flex1
and Flex2) and two are dispatchable (Ther1 and Ther2), according to the classification in
Section 5. Additionally, an MO agent is defined to manage and clear the orders submitted
by the aforementioned traders.

8.1.1. Trading Agents Configuration

In line with Section 5, the trading agents have specific sets of input parameters.
Numerical values for the listed parameters are presented in Table 1. The values in this table
are set so as to maintain enough liquidity in the market in different case studies discussed
in this section. For the variable agents, the forecast error drives their trading behavior and
it is given by the difference between their updated forecasts and their updated position.
At the gate-opening time of the CID market, the DA position is the initial position of the
agents. The updated forecast is derived from the capacity and pvar. For example, for the
Wind1 agent, the updated forecast would be 2200 MWh, therefore, leading to a forecast
error of 700 MWh from its initial DA position. The capacities, DA positions, and initial limit
prices of the dispatchable agents are decided based on their characteristics to participate in
the CID market if they can sell beyond their DA positions at a price above their marginal
cost or buy at a low price in the CID market to produce less than their DA position. The
forecasts of these agents are assumed to be updated every 5 min. The minimum stable load
of the conventional agents is assumed to be 50 MW whereas the norders value for all the
agents are assumed to be equal to 10. Additionally, the input values of MTAA strategy
parameters including β, η, and δp are chosen according to [35].
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Table 1. Summary of parameters of various trading agents considered in the exercise.

Wind1 Wind2 Flex1 Flex2 Ther1 Ther2

Ci (MWh) 2500 2400 2500 2400 1000 1000
pda (MWh) 1500 1400 −1500 −1500 700 700
p̂var

0 (MWh) 1600 1800 −1800 −1900
pvar (MWh) 1700 1600 −2400 −2300
lsell (EUR/MWh) 10 10 30 30 80 80
lbuy (EUR/MWh) 150 150 150 150 15 20

p̂ (EUR/MWh) 20 40 100 100 50 50
ecst (-) 4 4 4 4
α (-) 0.5

eimb (-) 20

8.1.2. Market Operator Configuration

In the current example, the MO processes orders for one single hourly product from
00:00 to 01:00 on day D, assuming a trading session that starts (tH1

open) at 16:00 and ends
(tH1

close) at 23:00 on day D− 1. The DA price is set to 30 EUR/MWh, while the upwards and
downwards regulation prices are 160 EUR/MWh and 5 EUR/MWh, respectively. Dual
imbalance pricing is adopted as imbalance settlement mechanism. Lastly, the time-step for
the CID trade is considered to be 5 min.

The code for the simulations is written in Python 3.8. Simulations are performed on a
GNU/Linux machine whose CPU is an Intel Core i7-8665U and with 16 GB of RAM. It takes
2 min to complete each simulation. The repository containing the proposed framework
implementation as well as the test cases presented is freely accessible in GitLab [40].

8.2. Evaluating the Effect of Different Pricing Strategies

This subsection investigates the impact of the two available pricing strategies (i.e.,
naive and MTAA) on the agents’ revenues. To this end, four different simulations are run
where the agents’ strategies are tested. In the first simulation (Wind AA), the RES agents
adopt an MTAA strategy while the rest use a naive strategy. For the second simulation
(Consumer AA), the consumer agents adopt an MTAA strategy, while the rests adopt the
naive one. In the third simulation (Thermal AA), the conventional agents adopt the MTAA
strategy, while the rest use a naive one. Finally, for the fourth simulation (All AA), all six
agents adopt the MTAA pricing strategy.

In this case study, constant offset forecast (see Section 5.3 for details) is assumed to
be adopted by all variable agents for the sake of simplicity. Based on the DA position of
Wind1 and Wind2 and their generation forecast, they would predominantly act as sellers
in the CID market. On the other hand, Flex1 and Flex2 would act as buyers in the CID
market to be able to match their positions with their forecasts. Ther1 and Ther2 can either
sell or buy in the CID market depending on whether they can be transacted at a lower price
than their updated limit buy or higher price than their updated limit sell.

Table 2 lists the revenues (in kc) of all six agents after the ID gate closure (before the
imbalance settlement stage) under different pricing strategies. The transaction prices in the
CID market as a result of the strategies of the agents are shown in Figure 5.
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Table 2. Revenues of agents (kc) before imbalance settlement (incl. day-ahead) under the four
investigated scenarios.

Scenario
Agent Wind AA Consumer AA Thermal AA All AA

Wind1 79.20 64.48 84.41 68.16
Wind2 70.51 61.76 89.67 61.09
Flex1 −106.76 −61.26 −105.50 −71.75
Flex2 −94.39 −55.26 −92.81 −69.15
Ther1 54.03 20.86 35.96 26.80
Ther2 36.40 8.41 27.26 23.84

Figure 5a displays the evolution of the transaction price in the Wind AA scenario. At
the gate-opening of the CID market, the naive consumer agents (Flex1 and Flex2) buy at
their limit prices (150 EUR/MWh). Owing to high liquidity in the market during the initial
few hours, they buy the deficit in their position and reach the forecasted consumption
levels. Wind1, Wind2 and Ther1, Ther2 act as sellers to Flex1, Flex2 until they reach their
forecasted consumption. During these transactions, the Flex1, Flex2 agents lower the
prices of their bid orders according to the naive strategy. Consequently, the ask order prices
for the MTAA agents are adapted to respond to the market. As Flex1, Flex2 match their
forecasts, the transaction price falls to 20 EUR/MWh. At this price level, around 18:20, the
naive Ther1, Ther2 agents start posting bid orders, as that price is equal to their limit to buy.
The strategic Wind1, Wind2 agents (the agents that follow the MTAA strategy are referred
to as ‘strategic’ agents while those with the naive strategy are referred to as ‘naive’ agents)
adapt to the prices in the market and are transacted until their positions become equal to
their forecasts.

It can be observed from Figure 5b that when the Flex1 and Flex2 agents follow the
MTAA strategy (FlexAA scenario), the transaction price at the CID gate opening is at
70 EUR/MWh, which is well below their limits to buy. Figures 5b and 6b show how the
strategic consumers can pay a lower price as compared to the scenarios (WindAA and
TherAA) when they are naive while the producers are strategic. This explains why the
cost incurred by the Flex1 and Flex2 agents in the CID market is lower in the FlexAA
scenario (61,260 EUR and 55,260 EUR) as compared to that in the WindAA scenario, as
seen in Table 2. At the same time, it can be seen in Table 2 that the revenues earned by the
naive wind agents (64,480 EUR and 61,760 EUR) for reaching the same final position (as
seen from Figure 6a–c and Table 2) are reduced when Flex agents are strategic.

The thermal agents in the CID market can sell above their limits to sell (lsell) and
then buy at a cheaper price than what they have sold at as long as the price is below their
limits to buy (lbuy). This behavior of the thermal agents can be observed in Figure 6a–c.
Figure 6c shows the Thermal AA scenario where the thermal agents sell at a high price
(above 150 EUR/MWh) at the gate opening of the CID market (16:00). They start buying
from the naive wind agents 19:00 onwards. Following the MTAA strategy, both Ther
agents can transact. Moreover, the strategic Ther agents trade their volumes in parts over a
period of a few hours rather than trading the entire volume in a shorter time period as in
Figure 6a,b. The effect of this can be seen on the revenues of the thermal agents in Table 2.

The time required for the transaction price to reach 20 EUR/MWh, which is the limit
to buy for Ther2, is different depending on the scenarios. In Figure 5a (Wind AA) where
RES agents act as sellers while Ther1 and Ther2 are the buyers. It can be observed that the
transactions take place at 20 EUR/MWh at 18:20. However, in Figure 5c (Thermal AA), the
transaction prices reach 20 EUR/MWh at 19:00, when the sellers (Wind1 and Wind2) are
naive while the buyers (Ther1, Ther2) are strategic. Therefore, it can be inferred that if the
sellers are strategic, the price can converge faster to the value at which the buyers can buy
(limit to buy lbuy). However, if the sellers are naive, this process of adaptation of the price
to lbuy can be slower.



Energies 2021, 14, 3860 20 of 31

In Figure 5d, the transaction prices stay within the range of 61–69 EUR/MWh. In this
case, all the agents follow the MTAA strategy. As the transaction price does not go below
the limit to buy (lbuy) for the Ther agents, they are not able to buy from the Wind agents.
As a result, Wind1 and Wind2 agents are only able to sell to the Flex1 and Flex2 agents,
who have limited capacities to buy. The strategic Flex1, Flex2 agents trade their volumes
in parts over the entire trading horizon as opposed to the earlier cases. Therefore, the wind
agents are not able to match their positions with their forecasts as opposed to the previous
scenarios. This shows that the proportion of strategic agents and their capacities can have a
significant effect on the transaction prices, thus influencing the liquidity and final positions
of the agents in the CID market. As seen in Table 2, the revenues earned by wind and
thermal agents are reduced, while costs incurred by Flex agents are less than the WindAA
and TherAA scenarios.

Notably, the behavior of the variable agents in the CID market is sensitive to their
DA positions and forecasts. The aim of the variable agents is to match their positions in
the CID market to their updated forecasts. However, these agents are also limited by their
capacities. Therefore, if the DA position of an agent is close to its capacity, it might reach
its capacity limit soon and would not be able to trade further. This can give rise to lack of
liquidity in the CID market, especially with a small number of trading agents. Hence, the
effect of different price–volume strategies would become difficult to study in such type of
a market setup.
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Figure 5. Effect of different price–volume strategies on transaction prices with respect to trading time
in (a) Wind AA; (b) Consumer AA; (c) Thermal AA; and (d) All AA.



Energies 2021, 14, 3860 21 of 31

0 20 40 60 80
2000

1000

0

1000

2000

(a) Market Positions in Wind AA

Wind_1
Wind_2
Flexible_1
Flexible_2
Thermal_1
Thermal_2

Market events

M
ar

ke
t p

os
iti

on
 (M

W
h)

0 20 40 60 80
2000

1000

0

1000

2000

(b) Market Positions in Flex AA

Wind_1
Wind_2
Flexible_1
Flexible_2
Thermal_1
Thermal_2

Market events

M
ar

ke
t p

os
iti

on
 (M

W
h)

0 20 40 60 80
2000

1000

0

1000

2000

(c) Market Positions in Ther AA

Wind_1
Wind_2
Flexible_1
Flexible_2
Thermal_1
Thermal_2

Market events

M
ar

ke
t p

os
iti

on
 (M

W
h)

0 20 40 60 80
2000

1500

1000

500

0

500

1000

1500

2000
(d) Market Positions in All AA

Wind_1
Wind_2
Flexible_1
Flexible_2
Thermal_1
Thermal_2

Market events

M
ar

ke
t p

os
iti

on
 (M

W
h)

Figure 6. Effect of different price–volume strategies on market positions (in MWh) of the agents in
(a) Wind AA; (b) Consumer AA; (c) Thermal AA; and (d) All AA with respect to market events.

8.3. Comparing the Response to Capacity Outages

As described in Section 5, the agents can update their preferences in the wake of an
extreme event, e.g., an outage. This subsection analyzes the effect of information of an
outage event on the behavior of the agents and the transaction prices. As the strategy
followed by each agent is responsible for deciding its behavior, the effect of the information
of outages is studied and compared when the agents follow either an MTAA or a naive
strategy. The following cases describe the different strategies followed by the agents.

• Case I: all the agents follow the naive strategy;
• Case II: only the agent that suffers the outage follows an MTAA strategy while all the

other agents are naive;
• Case III: all agents adopt the MTAA strategy except the one that suffers the outage;
• Case IV: all agents follow the MTAA strategy.

To showcase the impact of outages on the behavior of agents, a series of experiments
are conducted. First, the effect of receiving information about an outage for Ther1 at
different time instants in the trading session is simulated, and the associated results are
centralized in Table 3. Then, similarly, the effect of knowledge of 100% outage in the
portfolio of Wind1 at different time instants is evaluated. The corresponding results from
Wind1 outage simulations are summarized in Table 4.

Table 3. Effect on the transaction prices (EUR/MWh) for information of 100% outage Ther1 at
different trading times and for different pricing strategies. (First column: Share of trading horizon
reached at outage in %) (Bef.: Before, Af.: After).

(%)
Time

Case I Case II Case III Case IV
πtr πtr ∆ πtr πtr ∆ πtr πtr ∆ πtr πtr ∆

Bef. Af. (%) Bef. Af. (%) Bef. Af. (%) Bef. Af. (%)

25% 65 70 7.69 58 62 6.89 69 86 24.63 77 77.8 1.04
50% 40 47 17.5 25 35 40 68 90 32.35 74.5 75 0.67
75% 20 25 25 20 85 325 65 85 30.76 76.5 77.5 1.30
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Table 4. Effect on the transaction prices (EUR/MWh) for information of 100 % outage of Wind1 at
different trading times and for different pricing strategies. (First column: Share of trading horizon
reached at outage in %) (Bef.: Before, Af.: After).

(%)
Time

Case I Case II Case III Case IV
πtr πtr ∆ πtr πtr ∆ πtr πtr ∆ πtr πtr ∆

Bef. Af. (%) Bef. Af. (%) Bef. Af. (%) Bef. Af. (%)

25% 65 165 153.8 57.5 70 21.7 15 165 1000 76.8 77.5 0.91
50% 45 165 266.6 18 80 344.4 15 165 1000 65 67 3.07
75% 20 165 725 17 87 411.7 15 165 1000 40 47 17.5

In Table 3, it can be seen that the response to the outage of Ther1 is highly sensitive to
the strategies adopted by Ther1 and the other agents. It also depends on the time when the
outage takes place. Consider Case II (ThermalAA) when the outage is received at 75% of
the trading horizon, a substantial price increase of 325% is observed. As the outage takes
place closer to the gate-closure, the less expensive agents (Wind1 and Wind2) have already
reached their forecasted set points and do not sell to the Ther1 agent. Therefore, a more
expensive naive Ther2 whose limit to sell is above 80 EUR/MWh is activated in the market,
setting the prices to 85 EUR/MWh.

In Case II (ThermalAA), the naive agents lead the prices in the market and the MTAA
agent follows. A similar principle also applies to Case III when only the unit with an outage
is naive but the others are strategic. The relative change in transaction prices is significant
in Case III as the Ther1 agent is naive and other agents are strategic.

In Case IV, when all the agents follow an MTAA strategy, the agents trade the volume
in parts throughout the trading horizon and the transaction prices are generally higher as
compared to the other cases. In this case, if an outage of Ther1 is going to happen, then the
relative change in prices is not that significant as the agents learn slowly per the market
event (outage). As a result, the unit that will suffer the outage is still able to buy back in the
CID market but in small parts of volume distributed over several hours until gate closure.
Trading smaller volumes with time leads to smaller price change rather than a surge in
price if the entire volume was being traded in a short duration of time—therefore, avoiding
a sudden surge in prices.

It can be seen that there is a less significant relative increase in price when the outage
occurs at the beginning of the trading horizon (t = 25%) as compared to near the gate
closure (t = 75%). One of the main reasons for this difference can be that the transaction
prices are already higher in the market at the beginning. Therefore, a further increase in
price does not create a spike in price.

A common observation from Tables 3 and 4 shows that there is always an increase
in price when producers Ther1 and Wind1 are informed about the outages. There is a
difference between the relative changes in prices in Tables 3 and 4 for outages of the
thermal and wind producers, respectively. These differences are owed to the fact that the
limit to buy (lbuy) for the wind agent is higher than the thermal agents. Therefore, under
certain circumstances, when the unit that loses the capacity needs to buy, it can pay a high
price depending on its limit to buy, thus increasing the prices in the market.

8.4. Evaluating the Effect of the Imbalance Price Information Asymmetry

In an electricity market, some agents have better estimates of the imbalance prices
as compared to others. Based on the estimates of imbalance prices available to each
variable agent, they may either prefer to remain in imbalance or trade in the CID market
to reach its forecasted generation or consumption. This subsection discusses the effect of
information asymmetry on the behavior of the agents in the CID market (in this study, in
relation to information asymmetry, all the agents are assumed to follow the MTAA stategy).
According to Equations (4) and (5), the estimates of imbalance prices can be varied by
assigning different values to eimb.
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8.4.1. Effect of Information Asymmetry on the Wind Agent

In this case study, we analyze the effect of information asymmetry on Wind1 agent.
To perform the analysis, we make certain assumptions about the values of white noise
variance (eimb). The estimates of the imbalance price values to the agents is obtained by
adding the real imbalance prices (π̂imb,+

i,t , π̂imb,−
i,t ) to the variance generated by eimb, the

detailed expression is provided in Section 5.1. In this analysis, we keep the value of eimb

equal to zero for all other five agents but Wind1 and vary eimb for the latter. The input
data used for this study are similar to those in Table 1; however, a few parameters, namely
the limit to sell (lsell) for Wind1 and Wind2 and realization (pvar) value for Wind1, were
modified. The lsell for Wind1 and Wind2 agents was set to 30 EUR/MWh while pvar value
for Wind1 was set to 2000 MWh.

The value of eimb is increased from 50 EUR/MWh to 250 EUR/MWh, thus making
the estimate of imbalance prices worse for the Wind1 agent. The estimate of imbalance
prices affects the limits set by the agent according to Equation (19). The Wind1 agent
remains in positive imbalance throughout the trading horizon. Therefore, it is interesting
to observe the change in the limit to sell (lsell) of Wind1 with the change in eimb. The Wind1
agent compares its performance with the imbalance settlement. As eimb is increased, the
Wind1 agent starts underestimating the value of the down-regulation price. Therefore, the
Wind1 agent lowers its limit to sell to transact and reach its forecasted generation rather
than staying in imbalance. The Wind1 agent would otherwise be paid in the imbalance
settlement stage according to its low estimate of down-regulation price.

Table 5 shows the relative change in transaction prices for different values of eimb.
With the increase in eimb, the information about imbalance prices is made worse. As a
result, the limit to sell for the Wind1 agent fluctuates more for a larger value of eimb. On the
other hand, the Wind2 agent has perfect information of the imbalance prices with eimb = 0,
therefore, at the beginning of the trading horizon, it sets its limit to sell to 5 EUR/MWh,
which is the actual value of the down-regulation price. The Wind2 agent does not change
its limit to sell after that due to perfect information about the down-regulation price. It can
be seen in the second row of Table 5 that the transaction price at the gate opening of the CID
market, (πopen

tr ), takes a value around 80 EUR/MWh. However, the way the transaction
prices evolve during the trading horizon changes with the values of eimb. The transaction
price at the gate closure (πclose

tr ) as seen in Table 5 is different based on the values of eimb.

Table 5. Effect of information asymmetry of imbalance price for agent Wind1 on transaction prices.

Parameter Units Wind1

eimb EUR/MWh 0.0 50.0 100.0 150.0 200.0 250.0
π

open
tr EUR/MWh 80.5 80.5 84.0 80.0 80.0 82.0

πclose
tr EUR/MWh 73.0 73.0 15.0 14.0 13.0 12.0

∆πtr % −9.32 −9.32 −82.14 −82.50 −83.75 −85.37

8.4.2. Effect of Information Asymmetry on the Flexible Agent

To study the effect of information asymmetry from a buyer’s standpoint, the eimb value
for Flex1 is increased from 0 to 300 EUR/MWh, while that of the other five agents is kept at
0 EUR/MWh. During this analysis, the limit to sell (lsell) for Wind1 and Wind2 agents was
set to be 30 EUR/MWh. The realization (pvar) value for Wind1 was set at 2000 MWh. The
value of limit to buy (lbuy) for Flex1 and Flex2 agents was made equal to 70 EUR/MWh.

The effect of variation of eimb of Flex1 agent on the transaction price can be seen
in Table 6. This table shows how the value of eimb of Flex1 agent affects the transaction
prices. With the increase in the error of the imbalance price estimate for the Flex1 agent,
it erroneously overestimates the positive imbalance price (π̂imb,+

i,t ). As a result, according

to Equation (18), the agent updates its limit to buy (lbuy
i,t ) according to the new estimate

of π̂imb,+
i,t , which is greater than its previous value. This leads to an increase in the lbuy

i,t of
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the Flex1 agent, which results in elevated order prices posted by the agent. Therefore, an
increment in the transaction price in the CID market with time is observed.

Table 6. Effect of information asymmetry of imbalance price for the Flex1 agent on transaction prices.

Parameter Units Flex1

eimb EUR/MWh 0.0 50.0 150.0 250.0 300.0
π

open
tr EUR/MWh 80.0 91.0 73.0 63.0 66.0

πclose
tr EUR/MWh 77.0 80.0 80.1 69.2 80.0

∆πtr % −3.75 −1.23 9.72 9.84 21.21

The effect of eimb on the limit to buy (lbuy) or sell (lsell) depends on the initial limits of
the variable agent of interest and that of other agents in the market. For example, if we are
studying the effect of information asymmetry on a buyer and if its limit to buy is above the
limit to sell of potential sellers, then the eimb variation does not make any difference to the
transaction prices or the way the limit to buy adapts. In such a case, the initial limit to buy
for buyers needs to be set at a lower value than the limit to sell, and then as the eimb value
is increased, the limit to buy increases to be transacted in the CID market. This study on
the information asymmetry of imbalance prices shows the importance of publishing the
information about balancing reserves activated by the system operators in real time. The
lack of this would cause information asymmetry, which can favor a few market participants
who can then influence the market price.

8.5. Discussion

In this section, we discuss the limitations of the presented framework and the de-
veloped pricing strategies. More specifically, one central assumption is that we have
discretized the CID market timeline so that the agents are allowed to submit orders at
equidistant time instants. However, in reality, the trade can take place at any time in the
trading horizon. This may lead to different outcomes when large time-steps are considered.
In addition, the agent configuration selected for each experiment is critical and should be
carefully selected to reflect a realistic market instance. The behavior of the agents in the CID
market is sensitive to their DA positions, capacities, and forecasts. If the DA position input
of an agent is close to its capacity, it might soon reach its capacity limit in the CID market
trading horizon and would not be willing to trade further. This can give rise to a lack of
liquidity in the CID market, especially with a few numbers of trading agents. Hence, in
such a market setup, the effect of different price–volume strategies would become difficult
to assess. With the availability of sufficient data, a realistic market configuration can be
tested with the proposed ABM to derive more practical insights.

In addition, in this paper, we assume that the strategic variables of each agent are not
public, and consequently, the rest of the agents do not have access to any of this information.
However, in a real market setting, there might be universally available forecasts of wind,
solar, or electricity load, which could directly facilitate the predictions of the other agent
strategies or future prices. However, to simplify the simulation process, we consider that
the agents do not have access to this information. The MTAA pricing strategy allows for
the agents to decide their order prices by considering the past transaction prices in the
market and the submitted orders. The order prices can then be updated each time the agent
submits an order in the CID market. In the naive strategy, the agents have no access to the
past or future values of the prices.

9. Conclusions

In this paper, we proposed an agent-based modeling framework to simulate the
behavior and interaction of different agents in the European CID market. In particular,
dispatchable as well as variable agents can trade electricity through a centralized limit order
book, which is constantly updated by the electricity market operator. Two pricing strategies
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are considered according to which the trading agents can decide upon the orders to be
posted in the CID market, namely a naive and a learning-based adaptive aggressiveness
(AA) trading strategy. The proposed adaptive trading strategy was found to perform
better than the naive strategy in terms of the revenues accumulated by the agents in the
CID market. The proportion of strategic agents in the CID market was found to have a
significant effect on the transaction prices, thus influencing the liquidity and final positions
of the agents in the CID market. The strategic producers were able to exploit the limit
prices of the naive consumer agents in the market, leading to high transaction prices in
the market.

Furthermore, this paper shows that, in the case of an outage of a dispatchable agent,
the prices in the market increase, and the surge in price is larger as the outage takes place
closer to the gate closure. A more significant change in prices takes place when a strategic
agent suffers an outage while other agents are naive, and in the case that a naive agent
suffers an outage while others are strategic. However, when all the agents are strategic a
substantial price increase is not observed. Therefore, in the wake of an outage, it is beneficial
if the agents adopt the proposed learning-based strategy to avoid the high transaction
prices. We further show that, in the case of information asymmetry in the imbalance prices,
there is a decrease/increase in the limit to sell/buy of the agents, therefore leading to a
decrease/increase in the transaction prices. Therefore, the revenues (cost) earned by sellers
(buyers) are reduced (increased) as an effect of information asymmetry.

The key findings of this paper can be summarized as follows:

• The proposed ABM provides a formalized tool to study the behavior of agents (market
players) under different CID market settings;

• The MTAA strategy presented in this work outperforms the benchmark (i.e., a naive
strategy) in terms of revenue and coping after outages;

• Information asymmetry among agents regarding the imbalance prices influences the
transaction prices in the CID market, favoring those agents with more information.

Future work could be directed towards modeling hydro-power, energy storage and
other agents in the CID market. An extension of the framework to include multiple
products is another interesting addition to the existing agent-based model. Effort could be
put in the future to add transmission constraints and perform larger case studies.
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Nomenclature

The following abbreviations are used in this manuscript:
Abbreviations
AA Adaptive aggressiveness
ABM Agent-based model
CDA Continuous double auction
CID Continuous intra-day
DA Day ahead
FCFS First-come–first-serve
ID Intra-day
ISP Imbalance settlement period
LOB Limit order book
MO Market operator
MTAA Modified trader adaptive aggressiveness
RES Renewable energy sources
TOB Top of the order book
WPP Wind power producer
XBID Cross-border intra-day

The main notation is presented below for a quick reference. Additional symbols are introduced
throughout the text.

Indices
i Agent that participates in the CID market
t Time
j Order number
Parameters
tH1
open Gate opening time for intra-day trade for hourly product H1

tH1
close Gate closing time for intra-day trade for hourly product H

1
tH1
delivery Start time of the physical delivery for hourly product H1

tH1
settle End time of the physical delivery for hourly product H

1
T̃ CID trading horizon for a specific CID product
∆t Discretization step for the trading horizon
N Total number of agents participating in the CID market
πDA Day-ahead price
pda

i Position of an agent i after DA market clearing
Ci,topen Effective capacity of agent i at time topen

n Number of orders placed by an agent in CID market
eimb

i Factor to represent the deviation of the forecast with respect to the real
imbalance price

πimb,+ Real positive imbalance price
πimb,− Real negative imbalance price
πup Up-regulation price
πdown Down-regulation price
Ci Minimum stable load of a dispatchable agent i
α A step factor to update limit prices
lbuy
i,0 Initial limit of an agent to buy

lsell
i,0 Initial limit of an agent to sell

C̃ Amplitude/offset of the forecast error
ecst

i,t Parameter to define the shape of forecast of agent i at time t
Di,t Frequency of arrival of new forecasts
pvar

i The actual production/consumption of a variable agent
R Parameter indicating the size and sign of regulation volume to counteract

the system imbalance
k Probability of having a positive imbalance
f Imbalance influence factor
Variables
Binary Variables
Y Binary variable that indicates if the system was up- or down-regulating
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yi,t Order side of an order posted by agent i at time t
Positive Variables
gdown

i,t The volume that a dispatchable agent i can buy at t
gup

i,t The volume that a dispatchable agent i can sell at t
Ci,t Effective capacity of an agent i at time t
vi,t Volume of an order posted by agent i at time t
vrem

i,t Remainder volume from order i at time t
vmatch

i,t Matched volume from order i at time t
bbvt Best bid volume at time t
bavt Best ask volume at time t
vmatch Volumes matched in a transaction
Continuous Variables
ri,t Cumulative revenues collected by an agent i at each time-step t of the

trading process
πi,t Price of an order posted by agent i at time t
bbpt Best buy price at time t
bapt Best ask price at time t
vwapbt Volume weighted-average price in the bid side at t
vwapat Volume weighted-average price in the ask side at t
πmatch Price at which orders are matched
pmar

i,t The net volume of energy traded by agent i until time-step t
δi,t Imbalance of an agent i at time t
π̂imb,−

i,t Recent prediction of negative imbalance price by agent i at time t
π̂imb,+

i,t Recent prediction of positive imbalance price by agent i at time t
∆i Final imbalance of an agent i
lbuy
i,t Maximum price that an agent i is willing to pay to buy at time t

lsell
i,t Minimum price at which an agent i can sell at time t
pmar

i,t The market position at the closing time of the CID market
p̂var

i,t The recent forecast of uncertain production/consumption at t
evar

t Error component that relates the forecasted and actual production/
consumption of variable agents

bbpprev
t Best bid price of the previous step

bapprev
t Best ask price of the previous step

bbvprev
t Best bid volume of the previous step

bavprev
t Best ask volume of the previous step

rsip
n Single imbalance pricing settlement amount

rdip,up
n Dual imbalance pricing amount under up-regulation

rdip,down
n Dual imbalance pricing amount under down-regulation

∆market The cumulative imbalance caused by agents trading in the CID market
Compilation of Variables
obt Order book that contains outstanding bids and asks at time t
oi,t Order posted by an agent i at time t
tobt Top of the order book at time t
Sets
I Set of agents participating in the CID market
T Set of time-steps available for trading in CID market
P sell Set of candidate prices in naive strategy
oblocal

i,t A private ledger by agent i to track its outstanding orders in the CID
market at time-step t

sprivate
i,t Set of private information available to agent i at time t

sprivate,dis
i,t Set of private information available to a dispatchable agent i at time t

Outage Parameters
pout Probability of outage
c̃ Outage percentage
Naive Strategy Parameters and Variables
πrange Size of price range considered in naive strategy
m The number of evenly spaced parts of price range in naive strategy



Energies 2021, 14, 3860 28 of 31

π
buy
min Minimum price value at which a naive agent can buy

π
buy
max Maximum price value for a naive agent to buy

πsell
min Minimum price value at which a naive agent can sell

πsell
max Maximum price value for a naive agent to sell
P sell Set containing the candidate prices for ask orders
Pbuy Set containing the candidate prices for bid orders
∆π Price step
MTAA Strategy Parameters and Variables
πmin User-defined minimum price value for MTAA strategy
πmax User-defined maximum price in the MTAA strategy
πask

i,t Price of an ask order determined by MTAA strategy for agent i at time t
πbid

i,t Price of a bid order determined by MTAA strategy for agent i at time t
ai Aggressiveness of agent i
τi Target price for an agent i
θ Parameter that relates r with τ

π̂ Competitive equilibrium price
β Step-size parameter to update aggressiveness
ν Market volatility
P sell(Vj) Set of price values of ask orders as a function of proportion of order volume
Pbuy(Vj) Set of price values of bid orders as a function of proportion of order volume
Operators
max Maximum operator
min Minimum operator

Appendix A. Algorithms

Algorithm A1 Order processing

1: function PROCESS(oi,t, obt, tobt)
2: if yi,t = “BID” then
3: if πi,t ≥ bapt then
4: vres ← vi,t
5: vmatch ← MATCH(vres, yi,t, bavt)
6: πmatch ← bapt
7: obt+1, tobt+1 ← UPDATE LOB(obt, vmatch)
8: oi,t ← UPDATE ORDER(vres)
9: Go to line 3

10: else
11: obt+1 ← obt.ADD(oi,t)
12: end if
13: else
14: if πi,t ≤ bbpt then
15: vres ← vi,t
16: vmatch ← MATCH(vres, yi,t, bbvt)
17: πmatch ← bbpt
18: obt+1, tobt+1 ← UPDATE LOB(obt, vmatch)
19: oi,t ← UPDATE ORDER(vres)
20: Go to line 14
21: else
22: obt+1 ← obt.ADD(oi,t)
23: end if
24: end if
25: return obt+1, tobt+1
26: end function
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Algorithm A2 Match

1: function MATCH(vres,yi,t, vt)
2: if yi = “BID” then
3: while vres > 0 do
4: end while
5: if vres > vt then
6: vmatch = vres − vt
7: else
8: vmatch = vres

9: end if
10: else
11: while vres > 0
12: if vres > vt then
13: vmatch = vres − vt
14: else
15: vmatch = vres

16: end if
17: end if
18: return vmatch

19: end function

Algorithm A3 Update LOB

1: function UPDATE OB(obt, vmatch)
2: if trade = TRUE then
3: if yi = “BID” then
4: if vres > bavt then
5: ADD(ot) and REMOVE(obavt)
6: else if vres = bavt then
7: REMOVE(obavt)
8: else
9: MODIFY(obavt)

10: end if
11: else
12: if vres > bbvt then
13: ADD(ot) and REMOVE(obbvt)
14: else if vres = bbvt then
15: REMOVE(obbvt)
16: else
17: MODIFY(obbvt)
18: end if
19: end if
20: else
21: ADD(ot)
22: end if
23: return obt+1, tobt+1
24: end function

Algorithm A4 Update posted order

1: function UPDATE ORDER(ob)
2: vres

t+1 ← vmatch
t − vres

t
3: end function
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