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Abstract: Roof-mounted photovoltaic systems play a critical role in the global transition to renewa-
ble energy generation. An analysis of roof photovoltaic potential is an important tool for supporting 
decision-making and for accelerating new installations. State of the art uses 3D data to conduct po-
tential analyses with high spatial resolution, limiting the study area to places with available 3D data. 
Recent advances in deep learning allow the required roof information from aerial images to be ex-
tracted. Furthermore, most publications consider the technical photovoltaic potential, and only a 
few publications determine the photovoltaic economic potential. Therefore, this paper extends state 
of the art by proposing and applying a methodology for scalable economic photovoltaic potential 
analysis using aerial images and deep learning. Two convolutional neural networks are trained for 
semantic segmentation of roof segments and superstructures and achieve an Intersection over Un-
ion values of 0.84 and 0.64, respectively. We calculated the internal rate of return of each roof seg-
ment for 71 buildings in a small study area. A comparison of this paper’s methodology with a 3D-
based analysis discusses its benefits and disadvantages. The proposed methodology uses only pub-
licly available data and is potentially scalable to the global level. However, this poses a variety of 
research challenges and opportunities, which are summarized with a focus on the application of 
deep learning, economic photovoltaic potential analysis, and energy system analysis. 

Keywords: photovoltaic economic potential; aerial images; deep learning; semantic segmentation; 
roof segments; roof superstructures; public data 
 

1. Introduction 
The world is increasing efforts to move towards renewable energy production. Solar 

power is one important pillar in this endeavor for the massive reduction in carbon dioxide 
emissions. Large-scale, free-standing photovoltaic (PV) plants achieve a low levelized cost 
of energy (LCOE) and can outperform fossil power plants in this matter [1–3]. Though 
more expensive, rooftop PV systems play a major role in a sustainable energy system be-
cause they do not seal additional land area. In the past, the introduction of PV was enabled 
and accelerated by subsidies. To support policymakers, researchers have conducted roof-
top PV potential analyses ranging from city-scale to country-scale. This paper extends 
existing approaches by presenting a method for a scalable, individual building economic 
PV potential estimation using publicly available data sources and deep learning ap-
proaches. We first present the results and discuss experiences with the implemented 
methodology to outline challenges and research opportunities in this interdisciplinary 
field. 
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1.1. Existing PV Potential Analysis with Respect to Potential Type 
PV potential can be divided into physical, geographic, technical, and economic po-

tential, whereas the level of information increases for each type [4–8]. Figure 1 visualizes 
the PV potential qualitatively. 

 
Figure 1. Visualization of the four PV potential types. 

The physical potential is the solar radiation at a geographic location and consists of 
direct, diffuse, and reflected radiation of the real-sky global irradiance. PV-GIS [9,10] or 
the Copernicus Atmosphere Monitoring Service data [11] provide estimations of Europe’s 
physical potential via Application Programming Interfaces (APIs). Some researchers focus 
on geographic PV potential, which is the available solar radiation on roofs considering the 
roof planes’ orientation and shadowing effects of surrounding structures [12,13]. Publica-
tions determine the technical potential, which takes the PV system efficiency into account 
and represents the actual energy generation [5,8,14–21]. 

The fourth type of potential is the economic potential. Subsidies and policies have 
major leverage on the economic potential. Furthermore, a positive business case of a PV 
system is one of the most important drivers for installing PV systems. Therefore, for poli-
cymakers, it is important to know the technical potential, but it is even more critical to 
understand the economic potential. Hence, analyses should be extended from technical 
potential to economic potential. Recent studies include the economic potential to incorpo-
rate only the share of the PV potential, which is economically viable [4,7,22–27]. The eco-
nomic potential can be assessed by the LCOE, a common benchmarking measure for en-
ergy generation, which represents the cost per generated kWh over the lifetime of PV sys-
tems [28]. A comparison of the generation costs (e.g., LCOE) with an income threshold 
such as the feed-in-tariffs can determine the economic viability of a PV installation 
[4,7,22,23]. In addition, publications consider revenue and calculate the return on invest-
ment [25,26], the net present value [24], and the payback period [24–27]. This approach 
provides a more detailed profitability estimation. It also enables comparing economic po-
tential internationally because it can include different feed-in-tariffs or additional revenue 
considerations, such as self-consumption models. In Germany, with decreasing feed-in-
tariffs, PV systems are increasingly designed for self-consumption purposes and are cou-
pled with stationary battery storages [29]. While it is common for studies on site-level to 
consider a mix of self-consumption and grid feed-in [29–31], few studies, such as the ones 
from Lee et al. [25,26], consider it on system level. 

1.2. Existing PV Potential Analysis with Respect to Method 
Besides categorizing publications with respect to potential type, they can also be 

grouped based on their method for estimating the PV potential. Reviews on methods for 
PV potential estimation are published by Melius et al. [32] and Freitas et al. [33]. Addi-
tionally, a review by Assouline et al. [34] distinguished six types of methods for large-
scale PV potential estimation: Physical/empirical, geostatistical, constant values, sam-
pling, Geographic Information System (GIS)/Light Detection and Ranging (LiDAR), and 
machine learning. The chosen method is strongly dependent on the available data. There-
fore, we slightly adapted the categorization from Assouline et al. [34] to integrate the input 
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data perspective. We differentiated four groups with increasing detail of information: sta-
tistical, geospatial, aerial image, and 3D. The approaches can also use multiple input data 
sources. In this case, we assigned the literature to the group with the highest level of detail. 
The category statistical uses statistical data to estimate the available roof area by assuming 
roof area per capita. Furthermore, the effects of roof orientation, shadow, or roof super-
structures are considered using constant factors. Statistical approaches often examine 
large study areas such as the European Union [21,35] or Brazil [23] and take a top-down 
perspective. The geospatial approach determines available roof areas based on geospatial 
vector data such as building cadasters or maps. Hence PV potential is estimated bottom-
up. Those studies applied constant factors to account for decreasing PV potential due to 
shadow and superstructures. The study areas are typically larger, such as Spain [8], the 
Canary Islands [22], or the Fujian Province [24]. 

With the availability of 3D models, PV potential can be assessed with higher accuracy 
and a higher resolution. Three-dimensional models usually contain buildings on the city 
level and can be created using stereo photos or LiDAR. The approaches using existing 
semantic 3D city models based on the CityGML standard [36] were also explored [37,38]. 
Studies on the city level were conducted for Feldkirch [13], Lisbon [14], Uppsala [20], 
Cambridge [39], and the Chao Yang District in Beijing [40], among others [12,15,38]. Hong 
et al. presented a 3D method for potential technical estimation of the Gangnam district in 
Seoul, which included a hill shade analysis based on geospatial vector shapes of building 
and elevation information [17]. Lee et al. extended the results with a potential economic 
analysis [25]. Margolis et al. [16] analyzed 128 cities in the USA using LiDAR data. Gagnon 
et al. [41] expanded this study to the whole USA by statistically extrapolating the results 
of the 3D approach. Other mixed approaches were presented by Assouline et al. in several 
publications [18,42]. The authors used 3D data and machine learning methods to extrap-
olate the technical potential estimated with high detail data from Geneva to the whole of 
Switzerland. A study for Switzerland by Walch et al. [5] used a similar approach and de-
termined its uncertainty. 

The LiDAR-based 3D approaches can be considered the best methods with regard to 
the level of detail of the input data [34]. Furthermore, they can be coupled with machine 
learning methods such as random forests to extrapolate findings from a smaller to a larger 
study area. This combination shows high accuracy and relatively low computational time 
[5,42]. The examples of existing LiDAR-based solar cadasters were made available in re-
cent years by Mapdwell [43], Google’s Project Sunroof [44], or tetraeder.solar [45]. How-
ever, even though LiDAR data are becoming increasingly available, there is still no ex-
haustive coverage. Therefore, some researchers propose alternative methods for extract-
ing roof information based on aerial images. 

The task of roof segment segmentation was investigated outside of the context of PV 
potential analysis. For example, Hazelhoff [46] used a line detection approach [47] to de-
tect the roof ridge and gutters. Fan et al. used image processing methods to determine 
roof planes from LiDAR data [48]. Merabet et al. [49] presented a building roof segmenta-
tion method that is based on the watershed segmentation technique. 

To estimate the technical PV potential of the city of Turin, Bergamasco et al. [19] ex-
plored a methodology that extracts roof segments by clustering an image’s pixels into bins 
based on their color tones. Their qualitative validation revealed an accuracy level of 
around 90% for their dataset. Mainzer et al. [7] assessed the economic potential of the city 
of Freiburg. They used image processing to detect roof ridges and roof outlines and esti-
mate the azimuth correctly for over 70% of the roofs. Additionally, the authors proposed 
an approach based on contour detection [50] to identify roof superstructures that decrease 
the usable roof area. Furthermore, they used convolutional neural networks (CNN) to 
identify existing PV modules. The reported accuracy reaches over 90% on their dataset, 
indicating the high potential of CNNs for this task [7]. 

In recent years, deep CNNs outperformed the state-of-the-art in many image-recog-
nition tasks [51]. Therefore, deep learning has gained significant relevance in the remote 
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sensing field [52]. For example, CNNs were successfully used for the task of building foot-
print segmentation [53,54]. In the PV context, studies exploited the advances in deep learn-
ing for image recognition tasks. One application of CNNs is the mapping of existing solar 
modules by semantic segmentation. Yu et al. [55] constructed a solar deployment database 
for the USA using their developed deep learning framework DeepSolar. Mayer et al. ex-
tended the DeepSolar framework to Germany and applied it to the German state of North 
Rhine-Westphalia [56]. Castello et al. [57] demonstrated the applicability of CNNs for 
mapping PV modules in Switzerland. Furthermore, CNNs are used for the estimation of 
available roof areas. A study from Huang et al. [58] estimated the geographic potential of 
Wuhan, China using semantic segmentation of roof footprints. The authors only detected 
the whole roof and did not consider individual roof segments and their orientation. To 
the best of our knowledge, the DeepRoof project presented by Lee et al. [59] is currently 
the only publication that extracted roof segments, including their azimuth values, from 
aerial images using CNNs. The authors labeled their own dataset containing 2274 build-
ings from six US cities. The comparison of their 2D approach for potential technical esti-
mation with the LiDAR-based Google Project Sunroof results [44] demonstrates small 
mean errors of the estimated available PV installation area. This indicates that the PV po-
tential analysis using deep learning and aerial images has a great potential to be a viable, 
scalable alternative to 3D LiDAR methods. 

1.3. Contributions of the Paper 
The literature analysis shows that currently, only a few publications consider the eco-

nomic PV potential. Furthermore, the state-of-the-art bottom-up approaches are based on 
3D data, with the drawback of fragmentarily available data. Hence, this paper combines 
the latest scientific developments and proposes a methodology for bottom-up economic 
PV potential analysis using aerial images and deep learning. To the best of our knowledge, 
there is currently only one paper that used aerial images and deep learning to extract roof 
segments for PV potential analysis [59]. This paper applies the same approach and adds 
to the state of the art by exploring the application of deep learning for the task of roof 
superstructure segmentation. The methodology only relies on publicly available data, 
making it potentially scalable on a global level. The potential economic assessment calcu-
lates the internal rate of return (IRR) instead of LCOE, which contains more information 
due to revenue and cost considerations. This paper’s contributions are: 
1. A methodology for scalable, bottom-up, economic PV potential analysis using aerial 

images and deep learning as well as publicly available data; 
2. The application of CNNs for semantic segmentation of roof segments and roof su-

perstructure. Initial results are discussed to point out the advantages and disad-
vantages of the methodology; 

3. A comprehensive summary of research challenges and opportunities for this novel 
approach. 

2. Materials and Methods 
This section describes the methodology for the scalable, large-scale economic PV po-

tential analysis based on aerial images and deep learning. Figure 2 visualizes the respec-
tive steps grouped by the four potential types. The input data mainly rely on public data 
from Copernicus [11], Open Street Maps (OSM) [60], technical specifications of PV sys-
tems, as well as aerial images accessed from google maps static API [61]. Furthermore, 
some steps require input parameters that have been derived from the literature or online 
sources. The core element of deep learning-based extraction of roof information from aer-
ial images is highlighted in green in the Section 2.2. The other data processing steps use 
simple algorithms or calculations and are open for expansion in the future. Each potential 
type is calculated as an intermediate result and consecutively used to estimate the final 
result, the economic potential in the form of the IRR. 
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Figure 2. Potential estimation methodology grouped by the four potential types. 

2.1. Physical Potential 
This paper’s approach used data of solar radiation on the horizontal plane from the 

Copernicus Atmosphere Monitoring Service [11]. The radiation data were provided with 
a continuous spatial resolution by interpolation [62]. We downloaded the data for one 
representative location in the small study instead of each individual roof. This simplifica-
tion is viable because of the neglectable variance of the radiation within the small study 
area. 

2.2. Geographic Potential 
As described in the overview of this paper’s contributions, a novel approach for de-

termining the geographic potential based on aerial images is presented. 
First, we requested all building footprints of a study area from OSM [60] to create a 

list of buildings for the potential analysis. By this, we avoided analyzing areas without 
buildings, and we made sure to cover all mapped roofs. Although OSM offers high com-
pleteness and spatial accuracy of 1.5 m [63], incorrect map data can lead to misestimations 
of the potential on aggregated city level. Alternatively, other map services with higher 
data quality could be used. Furthermore, a CNN trained for building footprint segmenta-
tion could supply a tailored roof object list. The second input data source is the Google 
Maps static API [64] which provides the aerial images with a resolution of up to 0.15 m/px 
[61]. High-resolution imagery is a prerequisite for detecting relatively small roof super-
structures. 
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The input data are used for the semantic segmentation of roof segments and roof 
superstructures. The CNNs’ outputs are further processed to pass roof segment polygons, 
their orientation, and the respective superstructure polygons to the module placement 
algorithm. On inclined roof segments, the modules are projected onto the horizontal plane 
as a function of the tilt angle, assuming an orthogonal aerial image. Then, a grid of mod-
ules is placed onto the segment aligning its longest side. Finally, modules intersecting 
with superstructure are deleted. On flat roofs, the placement has more degrees of freedom. 
Modules can be oriented south, east, west, or aligned with the building. On flat roofs, 
space for maintenance or fire protection is considered. The usable area is the sum of all 
successfully placed modules. 

A critical factor for the module placement and the calculation of the irradiation is the 
inclination angle of the roof. Its inference from 2D image data provides a serious challenge 
due to missing height information. To cope with this problem, the slope angle is deter-
mined statistically using a normal distribution with a mean of 37° and a standard devia-
tion of 15° as proposed by Mainzer et al. [7]. Hereby, the same angle is assumed for all 
roof segments of the same building. This assumption holds true, especially for gabled 
roofs, which are very common in Germany, but also for hip and pyramid roofs. However, 
more complex roof types may deviate from this assumption. Flat roofs are recognized by 
the CNN. The statistical slope estimation leads to the erroneous calculation of the availa-
ble roof area and the irradiation on the roof. Figure 3 shows the relative deviation of the 
roof area and the yearly energy generation compared to a 37°, south-facing roof. While 
the difference of a 5° to a 37° tilted area is only 20%, the error becomes large for higher 
slopes. A 70° slope would mean a deviation of more than 125% from the 37° area. The 
effect of the slope on the irradiance on a tilted surface is visualized by the relative yearly 
energy generation. A 60° tilted, south-facing PV module yields around 5% less energy 
than a 37° module. This effect becomes larger for east- or west-facing roofs, where this 
difference is around 10%. The use of statistical slope estimation results in a higher variance 
of PV system configurations but also leads to greater deviations from the real PV potential, 
especially if a flat roof is assigned with a high slope value and vice versa. This approach 
could be improved by adding limiting the slope range with respect to additional roof in-
formation such as building type or roof area. For example, this could avoid assigning high 
slope values to industry or larger office buildings. 

  
(a) (b) 

Figure 3. Relative deviation of roof area depending on roof tilt angle (a) and relative yearly energy generation (b) in com-
parison to a 37° tilted, south-facing roof surface located in Munich, Germany. 

The solar irradiation on a tilted surface is calculated for each roof segment. It is split 
into a direct, diffuse, and ground-reflected component. The direct and ground-reflected 
components are calculated using isometric approaches, which rely on the trigonometric 
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relationship between the radiation beams and the roof surface. We applied the model by 
Perez et al. [65] to calculate the diffuse radiation component using pvlib [66]. It has shown 
high accuracy in comparison to other models [67]. Hence, it was already used in connec-
tion with PV potential analysis [39,68,69]. Shadowing effects and reduced sky view factors 
pose the same challenge as the slope estimation. This is considered with a constant value 
of 15%, whereas in the literature, values between 15% and 30% were applied [19,70–73]. 
It was applied to the whole PV system and not to each module individually. 

In the next sections, the core steps of this paper, the semantic segmentation for roof 
information extraction, are described in more detail. 

2.2.1. Datasets for Semantic Segmentation 
CNNs benefit from large training datasets. In the remote sensing context, such da-

tasets exist, for example, for building footprints [74,75] or existing PV modules [76]. Lee 
et al. published a smaller dataset consisting of 444 images and 2274 buildings along with 
the DeepRoof paper [59]. We used this data in this paper for the roof segment training. 
There are 20 different label classes, including 16 for azimuth directions, as well as one for 
flat roofs and domes, respectively. Each azimuth class, e.g., north, covers a span of 22.5 
degrees. An additional label classifies nearby trees. Pixels that do not belong to any class 
are labeled as background. Currently, to the best of our knowledge, there is no label da-
taset for roof superstructures. Therefore, we created our own preliminary dataset from 
aerial images of a small municipality in Bavaria, Germany. A total of 407 images with a 
size of 512 × 512 pixels were annotated as polygons with six semantic superstructure clas-
ses: window, dormer, chimney, ladders, PV modules, and unknown/others. 

2.2.2. Performance Evaluation of Semantic Segmentation 
This paper uses the Intersection over Union (IoU) or Jaccard Index for evaluating the 

semantic segmentation result, as it is the most commonly used metric [77]. This IoU 
measures the fraction of the intersection of the actual and predicted values to the Union 
for a specific class. IoU = Area of overlapArea of Union  (1) 

2.2.3. Semantic Segmentation for Roof Segments 
The first semantic segmentation step is the identification of individual roof segments 

and their orientation, similarly to Lee et al. [59]. For this purpose, we train a CNN using a 
U-Net architecture [78] with a ResNet−152 [79] backbone. The DeepRoof dataset is ran-
domly split into 60% training, 20% validation, and 20% test data. To increase the size of 
the dataset, each image is rotated by 30 degrees 12 times. The training is performed in two 
stages. At first, the weights of the encoder are frozen, and only the decoder weights are 
optimized using Adam optimizer [80]. The stage lasts for 55 epochs at 66 iterations and a 
batch size of 64 images. The learning rate starts at 4 × 10−4 and is divided in half after 40 
epochs. The second training phase incorporates all existing weights lasting for 100 epochs. 
It starts at a learning rate of 4 × 10−5 which is divided in half after 60 and 80 epochs, respec-
tively. During the training process, random augmentations are applied to the images to 
artificially increase the dataset and make the network less prone to overfitting [81]. The 
augmentations can be split into three different categories, which can be applied at the 
same time. Initially, the image is mirrored on the horizontal or vertical center axis. After-
ward, the image can be randomly cropped to 80% of its size. Lastly, the image is changed 
on a pixel level by varying its brightness, contrast, gamma, or saturation. On the test set, 
we achieve an IoU of 0.89 averaged over all classes and 0.84 only focusing on roof classes. 
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2.2.4. Semantic Segmentation for Roof Superstructures 
The second semantic segmentation step uses a deep learning approach for roof su-

perstructure segmentation, which is inspired by the PV mapping approaches [55–57]. A 
CNN based on the U-Net is used because of its superior performance on small datasets 
[78]. We compared the backbone architectures EfficientNet-B3 [82], Inception-resnet-
v2[83] and VGG-19 [84]. We chose Inception-resnet-v2 because of better performance. Due 
to the small size of the dataset with only 407 images, a split of 86%, 7%, and 7% was used 
for training, validation, and testing, respectively. Mirroring and cropping were applied to 
the superstructure dataset, similarly to the roof segments dataset augmentation. Further-
more, we merged all six superstructure classes into one superstructure class. In general, it 
would be preferable to detect each superstructure class individually, which leads a more 
challenging training. 

The network is trained with an initial learning rate of 10 . The learning rate is de-
creased using an exponential decay rate scheduling. We initialized the weights applying 
He initialization, which is the preferred choice for ReLU activated neural networks [85]. 
The Adam optimizer is used for the training process and a dropout with a skip probability 
of 0.5 is conducted after each layer [80]. 

Figure 4 visualizes the class representation of roof pixels, superstructure pixels, and 
background pixels. All six superstructure classes combined make up only 1.44% of all 
pixels. Jadon [86] provided an overview of loss functions for semantic segmentation and 
recommended the use of Focal Loss for highly imbalanced classes. Therefore, we imple-
mented a combination of Focal Loss with weighted Dice Loss. This led to better perfor-
mance than the Cross-Entropy Loss function. 

 
Figure 4. Representation of the class imbalance in the dataset. 

2.3. Technical Potential 
The technical potential is the electricity generation considering losses caused by the 

technical properties of the solar system (Table A1). Following [87], the framework differ-
entiates between the technical efficiency of the single module and the performance ratio 
on the plant level. The efficiency is a unique characteristic of a certain module type. In 
contrast, the performance ratio is a constant factor that comprises multiple aspects reduc-
ing the power output of the entire solar plant. It considers losses from dirt, turndown, 
temperature dependencies, partial load operation, conduction losses, and shadowing ef-
fects. Quaschning [87] proposed a performance ratio of 0.7. Instead, we used a perfor-
mance ratio of 0.8 (Table A3) because we considered shadowing losses separately in the 
geographic potential. 

2.4. Economic Potential 
This paper extends existing economic potential estimations [7,23] from LCOE to net 

present value. In addition to costs, the approach includes savings and revenues and thus 
has more explanatory value than LCOE. However, it requires estimating the electricity 
consumption of buildings. 

The first step is extracting building types from OSM building tags. We differentiated 
between residential, industrial, commercial, and public buildings because of their specific 
electricity consumption characteristics and electricity prices. According to standard load 
profiles for German buildings [88], commercial buildings exhibit their peak load at noon; 
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meanwhile, residential consumption peaks in the morning and evening. Additionally, 
commercial energy prices are lower than residential ones. The load profile of the building 
is determined by applying the methodology of Alhamwi et al. [89]. The yearly energy 
consumption is estimated by multiplying the building area with the specific consumption 
per square meter. Consequently, standard load profiles [88] are used to obtain a consump-
tion time series. 

Following Bertsch et al. [90], the economic return of a solar plant is calculated using 
the IRR. The share of self-consumption and grid feed is calculated dependent on the tech-
nical potential and energy consumption. The revenues differ between the two cases. The 
feed-in tariff stays constant over the entire lifetime of the plant while the electricity price 
increases based on historical data [21], which makes self-consumption even more attrac-
tive. The costs are divided into initial investment costs and yearly maintenance costs. Ad-
ditionally, the fee on self-consumption for larger PV systems can be considered (Table 
A1). The economic potential can be described as the share of technical potential for which 
the IRR exceeds a given threshold. This publication uses the weighted average cost of 
capital as the threshold. 

2.5. Case Study and Parameterization 
In this paper, we conducted a case study to discuss the applicability of the proposed 

method. The method analyzes each building individually and takes 1-2 min per building 
on a laptop with an Intel i7-7820HQ processor. Scaling this building-specific analysis to a 
whole city or region would require optimization of the program. The computation can be 
parallelized well to decrease the overall runtime. We selected a small residential area as a 
case study and chose the town Grafing bei München, because of the availability of poten-
tial solar information from a LiDAR-based cadaster [91]. The number of buildings was 
limited to 71 to allow for manual in-depth examination and comparison. The suburban 
setting was chosen because of the similarity to the training data. The equations for the 
technical and economic calculations are given in Tables A1 and A2 of Appendix A, Ap-
pendix B. The appendix also summarizes technical and economic assumptions in Tables 
A3 and A4. 

3. Results and Discussion 
3.1. Results Convolutional Neural Networks 

The IoU of the trained networks for semantic segmentation of roof segments and roof 
superstructures are 0.84 and 0.64, respectively. These values are in the range of similar 
other publications, the DeepRoof paper [59] for roof segmentation and a paper on PV 
module detection [57]. However, these values represent preliminary results and cannot 
be used as a benchmark. In deep learning, the selection or variation of the training, vali-
dation, and test data induce significant effects on the training results. Within the scope of 
this paper, we did not carry out a deeper analysis of those effects. Therefore, the next 
sections focus on qualitative discussion of example images within the study area. 

The roof segmentation is a critical step in the methodology because the rest of the PV 
potential analysis is based on the roof geometry. Figure 5 presents four examples of the 
resulting roof segments for the selected case study area. Examples (a) and (b) show a cor-
rect segmentation result. The buildings in the center are covered entirely by two segments. 
Most of the surrounding building area is detected as well. The azimuth classes of the seg-
ments are correctly labeled. In Figure 5a, a small part of a flat roof remains undetected. In 
Figure 5b, the roof segment of the building in the left-center was labeled with two classes, 
but only the east–north-east (ENE) azimuth would be correct. Figure 5c displays a medi-
ocre result. The center building is more complex than the gable roofs of (a) and (b) and 
was segmented well. Both coverage and azimuth classes are correct. However, the sur-
rounding buildings were detected only partly or not at all. Possibly because of trees cov-
ering parts of the roof. The last Figure 5d shows a building with incorrect results, although 
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gabled roof structures are usually detected well. The network proposes five different clas-
ses instead of two, and the roof is not covered well. A possible explanation could be the 
ladder on the roof, which could be interpreted as a separating line between two buildings. 
The building in the upper right is not detected at all. The results confirm the potential of 
using deep learning PV potential analysis demonstrated by the DeepRoof paper [59]. 
However, the number of misclassified buildings is still too high to estimate the PV poten-
tial for a whole area with the high accuracy of each individual building. Additional train-
ing for the roof segmentation network or quality control would be required. 

 

Figure 5. Example results of the roof segmentation, (a,b) show correct segmentation, (c) shows me-
diocre segmentation, and (d) show incorrect segmentation results. Labels: ENE: east-north-east, SSE: 
south-south-east, WSW: west-south-west, NNW: north-north-west, NNE: north-north-east, NE: 
north-east, SSW: south-south-west, SW: south-west. 

The second CNN was trained to detect roof superstructures. We trained the network 
on a single superstructure class, as well as on multiple classes such as windows, PV mod-
ules, chimneys, and dormers, and achieved better results for the single class training. Fig-
ure 6 exhibits examples. 

 
Figure 6. Example results of the superstructure segmentation, (a) led to a correct segmentation, (b) 
shows mediocre segmentation, and (c) led to incorrect segmentation. 

a) 

c) 

b) 

d) 
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Figure 6a shows a correct semantic segmentation for the center building. A super-
structure of the top-left building is also detected. The network labeled superstructures in 
the bottom, which are parked cars. The network is also able to detect existing PV modules 
as superstructures, as displayed in Figure 6b. However, additional modules on the smaller 
building attachment are not recognized. Further superstructures on the center building, 
such as the chimney or windows, remain unlabeled. Figure 6c shows the same building 
as Figure 5c. There are five superstructures on the center roof, but none of them are de-
tected. Similar to the roof segmentation network, the superstructure segmentation net-
work indicates the potential for correctly labeling obstructions on the roof. 

3.2. Results Economic Potential 
Based on the correct outputs of the network, the next steps of the methodology cal-

culate the geographic potential, the module placement, the technical potential, and the 
economic potential using the building’s assumed energy consumption. The result is an 
IRR calculated for each roof segment. Figure 7 shows an example of the module placement 
and the IRR. The existing modules are likely solar thermal models, and they were success-
fully detected as superstructures on the larger roof. The highest IRR of more than 10% is 
achieved by the small south-east facing roof segment. Due to the assumed constant system 
cost of 1071 €/kWp, small segments profit from high self-consumption and consecutively 
high IRR. Furthermore, the larger south-west roof segment shows a higher IRR of 7% than 
the north-east facing segment with an IRR of less than 5%, as expected. The segment’s 
individual IRR does not represent the optimal PV system solution for an entire building 
because of the possibility of combining multiple segments. The cost dependency of the 
system design needs to be considered to transform the economic potential of each segment 
into an economically optimal PV system. For example, installation on multiple roof seg-
ments might be more time-consuming and, therefore, more costly. 

 
Figure 7. Image (a) detected superstructures and module placement and (b) resulting economic po-
tential calculated as IRR for each segment. 

3.3. Comparison of Aerial Image and LiDAR Based Approach 
As described in the state of the art, solar cadaster based on LiDAR data are available 

to promote solar systems to citizens. We compared our results to a German solar cadaster 
from tetraeder.solar [91] to discuss the benefits and challenges of the aerial image-based 
methodology. Therefore, the same example from Figure 7 was used. Figure 8 shows an 
extract from the solar potential map (b) and the respective solar radiation (c). Addition-
ally, the roof superstructures and module placement (d) from our tool are displayed. 
Without additional knowledge, the building is classified as one address because of the 
information from OSM and Google Maps. However, tetraeder.solar uses official cadaster 

(b) Internal Rate of Return      in % (a) Module Placement 
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data from the state, which divides the building into two addresses (b). Furthermore, aux-
iliary buildings such as garages are mapped, too. The LiDAR data allow estimating the 
roof inclination and detecting protruding roof superstructures. This can be anticipated by 
the different color at the location of the chimney in Figure 8c. However, flat obstructions 
such as windows or the existing solar modules are not detected. Therefore, the solar po-
tential is displayed as high, and the solar cadaster proposes placing 16 modules each on 
the south-west facing roof parts, respectively. Figure 8d shows the resulting module 
placement from our tool, which proposes 16 modules in total for the whole south-west 
facing roof. Based on the LiDAR data, the roof slope is estimated at 20°, while the statisti-
cal roof slope assignment of our tool allocated a slope of 27.4° to the roof. Using the as-
sumptions (Table A3), 16 modules have a peak power of 4.8 kWp. They produce 4123 
kWh/a, according to the tetraeder.solar’s cadaster and 4884 kWh/a according to our tool. 

 
Figure 8. Image (a) google maps aerial image, (b) solar potential map screenshot, (c) merged build-
ing outlines from solar potential map, (d) merged radiation visualization from solar potential map. 

Furthermore, we compared our aggregated results for the whole study area of 71 
buildings in Table 1. The LiDAR dataset comprised more buildings in the study area than 
our analyses because of auxiliary buildings and incomplete mapping in OSM. We only 
selected the buildings that were both in our dataset and in the LiDAR dataset. 

Table 1. Comparison of presented methodology and LiDAR approach. 

Value This Paper LiDAR Difference Diff. in% 
Total Area in m2 9188.97 10,185.4 −996.43 −10.84 
Total Modules 3211 5637 −2426 −75.55 
Mean Modules 45.22 79.39 −34.17 −75.55 

Total Potential in MWh/Year 625.18 1364.57 −739.39 −118.27 
Mean Potential in kWh/Year 8805.35 19,219.27 −10,413.92 −118.27 

Mean Slope in Deg 30.94 21.51 9.43 30.49 

The comparison of the results shows that the technical potential calculated by the 
LiDAR approach is 118% larger than the results from this paper. The average number of 
placeable modules per roof differs by about 34 modules or 75%, although the difference 
in the average roof area is only 11%. This deviation can be explained by the used super-
structures recognition since roof structures prevent the installation of PV modules on the 
entire area, as well as the significant influence of the assumed roof inclination. Our as-
sumptions lead to a mean slope of 31°, which is more than 9° or 30% greater than the more 
accurate estimation by the LiDAR approach. Additionally, roof segmentation results such 
as the one displayed in Figure 5d constrain the module placement incorrectly and lead to 
a lower number of placed modules. The comparison shows that the application for a small 
study area leads to results that are of the same magnitude as a LiDAR approach. The lower 
technical potential can be partly attributed to superstructure recognition, slope estima-
tion, and incorrect roof segmentation. However, the overall estimation difference of more 
than 118% requires further analyses. Furthermore, the comparison needs to be expanded 
to different areas with varying roof architecture to prove scalability. 
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4. Research Opportunities 
Although solar potential analyses have been conducted increasingly in recent years, 

the use of deep learning and aerial images instead of 3D data has been sparsely re-
searched. The challenge is evaluating building-specific potential with high accuracy. Fur-
thermore, the economic PV potential is highly relevant for purchase decisions and policy-
making but remains rarely considered in scientific studies. Therefore, many challenges 
remain in this and adjacent fields of research. We gathered them into three groups: (1) 
deep learning for roof information, (2) improving economic PV potential estimation, and 
(3) using economic PV potential for energy system analysis. Further research opportuni-
ties can be found in [92] and [93] on the related topics of PV mapping using aerial images 
and modeling PV power generation on a city scale, respectively. 

4.1. Deep Learning for Extraction of Roof Information 
Challenges for improving semantic segmentation of roof segments and roof super-

structures using deep learning are increasing accuracy and generalization of the CNNs. 
Accordingly, future work should focus on extending the dataset, determining and increas-
ing dataset quality, and improving the training approach. 

Larger datasets covering multiple entire cities exist for the remote sensing tasks of 
building footprint segmentation [74,75] and PV module mapping [76]. However, with re-
gard to roof segmentation, we are only aware of the DeepRoof dataset consisting of 2274 
buildings in 444 images. To the best of our knowledge, there is no dataset for roof super-
structures, so we labeled our own dataset consisting of 407 images. Besides increasing the 
number of images, labeling activities should also pay attention to the variety of labeled 
roofs. For example, roof features change with the degree of urbanization as visualized in 
Figure 9 for an urban, suburban, and rural area in the greater Munich area. Furthermore, 
there is a regional variation in roof architectures that needs to be incorporated in the da-
taset to enable applying the network internationally. 

 
Figure 9. Examples of urban, suburban, and rural aerial images from Google Maps Static API in the 
greater Munich area. 

The annotation of labels for semantic segmentation is a labor-intense task. A higher 
degree of automation could accelerate the process. Rausch et al. [94] enriched 3D city mod-
els with detected PV modules. Conversely, 3D city models could also be used to generate 
2D roof segment annotations for aerial images, providing high spatial alignment. This 
would allow transferring semantic segmentation of roof segments to areas with no avail-
able 3D models. Another option could be machine-assisted labeling, using a CNN trained 
on a smaller dataset to pre-label images as proposed, for example, by Bastani et al. [95]. 
However, the benefits of adjusting pre-label annotations as opposed to labeling from 
scratch need to be explored. 

In addition to label quantity, dataset quality is a relevant challenge. A study by van 
Coilie et al. [96] shows that different labeler interprets the same image differently. Brad-
bury et al. [76] used two labelers per image to denote PV modules and reported that only 
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70% of the labels come from both labelers, meaning that 30% of the labels were missed by 
one labeler. Furthermore, the Jaccard Index of two annotations was lower than 0.86 for 
half of the labels. This indicates a high likelihood for erroneous ground truth data used 
for training, validation, and testing the CNNs, even if labels are created carefully. The 
effect of these errors in semantic segmentation tasks is sparsely studied. Besides the 
ground truth quality, the image quality can also vary. Google Maps provides different 
resolutions depending on the region. Furthermore, the images are not orthorectified. The 
effect of resolution and distortion on the roof segmentation task could be quantified to 
understand the required image quality. 

There is also the potential to improve the training of CNNs. In this publication, we 
applied the approach from Lee et al. [59] and used 16 classes, labeling a roof segment 
according to their azimuth group. A higher number of classes increases challenges for the 
CNN to decide on one class. Therefore, a different approach could be explored, detecting 
only one roof segment class and postprocessing the labels to calculate an azimuth value 
based on the segment’s outline and orientation. Additionally, gables and gutters could be 
detected to support the azimuth calculation. 

Superstructure pixels make up only 1.4% of pixels in our dataset. Therefore, a cas-
caded network approach could be explored to reduce the dominance of background pixels 
in the images. Using the available building footprint datasets, an additional network can 
be trained to output the roof area. For this task, high IoUs of more than 0.9 are achieved 
[53]. The footprint output can then be fed into the roof segmentation or superstructure 
segmentation network as an additional layer to promote an area of interest. 

Finally, the networks and data for semantic segmentation of roof segments and roof 
superstructures can be transferred to other application areas. For example, existing 3D 
city models usually do not include superstructures. The networks can be used to enrich 
3D models with superstructures similar to the approach presented by Rausch et al. [94], 
enabling research opportunities for the built environment field or architecture. 

4.2. Improving Economic PV Potential Estimation Based on Aerial Images 
Moreover, the economic PV potential estimation poses research opportunities. Im-

proving the accuracy of aerial image-based PV potential is challenging. The drawback of 
2D data is the absence of correct slope values and the inability to conduct shadow analysis. 
Based on 3D data for one region, characteristic roof types and respective inclinations could 
be derived statistically. Potentially, machine learning approaches could be utilized to 
transfer slope estimation to new regions similar to existing extrapolation approaches 
[5,42]. This paper implemented the superstructure segmentation for one class. However, 
when multiple classes are annotated, characteristic structure dimensions for chimneys, 
dormers, and air conditioning ducts can be assumed, allowing an approximation of 3D 
roof representations for shadow analyses. Furthermore, the type of building and its utili-
zation plays a key role in the site’s energy consumption and economical PV potential. A 
challenge remains determining building types from OSM or other map providers due to 
sparse annotation. More than 80% of buildings in the German state of Bavaria are labeled 
with the type “yes”. Figure 10 shows the remaining most frequent building type labels 
excluding “yes” from a dataset of more than 5 million labels in Bavaria. 

The building type could be classified using aerial images and CNN [97] or a combi-
nation of GIS data and aerial images [98]. The building dimensions also play a role in 
estimating the energy consumption, but height information is not publicly available. Us-
ing existing 3D data, machine learning methods could be applied to correlate geo-features 
with the building height, too. Furthermore, estimating building energy consumption 
poses a challenging task, even if sufficient geospatial data are given. The usage of German 
standard load profiles neglects site-specific variations and cannot be transferred on a Eu-
ropean or global level. Especially for larger buildings with higher energy consumption, 
such as industrial buildings, the standard load profiles become less valid. Another chal-
lenge is validating the results of the economic PV potential. The presented framework 
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builds on previous, validated APIs for physical and technical potential. However, the real 
economic potential can only be validated with customer data, which is not publicly avail-
able. The results of the PV potential analysis should be compared to existing studies based 
on other approaches. Since few studies regard the economic aspects, a comparison can 
focus on the technical potential. We presented preliminary results which assigned an IRR 
to each roof segment. An optimization could be added to the framework to determine the 
most economical solution per building. Combining the PV systems with energy storages 
can increase the economic benefit [29–31] and should be considered in the optimization. 

 
Figure 10. Relative Frequency of OSM building labels in Bavaria based on 5 Mio. Labels, excluding 
building type “yes”. 

4.3. Using Economic PV Potential for Energy System Analysis 
The analysis of the economic PV potential for cities, regions, or nations offers research 

opportunities on a system scale. Assuming economic potential related penetration rates, 
roll-out scenarios can be investigated with a high geospatial resolution. The impact on the 
electricity grid and the requirements for energy storage systems can be analyzed with lo-
cal reference. With increasing shares of renewable energy generation, sector coupling 
gains relevance due to the necessary balancing of more volatile supply and demand [99]. 
The introduction of electric vehicles resembles a major transition in the transport sector. 
Using the economic PV potential, synergies between PV and electric vehicles can be stud-
ied. Current research challenges include evaluating these synergies on the city level with 
a high spatial and temporal resolution [93]. Furthermore, policy measures play an im-
portant for the PV adaption rate. Their influence could be evaluated to support policy 
decision-making similar to [25]. This is especially interesting for new markets and regions 
with low PV coverage. Finally, increasing interest in the usage of aerial and satellite im-
ages evokes the necessity for ethical considerations and the discussion of privacy aspects. 

5. Conclusions 
Roof-mounted PV systems play an important role in the global transition to renewa-

ble energy generation. PV potential analysis is an important tool to support decision-mak-
ing and to incentivize new installations. Research in this area has evolved from calculating 
the physical potential, geographic potential, and technical potential. The analysis of eco-
nomic potential implies the most practical relevance and has been adapted by few studies. 
Existing publications with a high spatial resolution and a high level of detail are usually 
based on 3D data. Recent deep learning advances allow exploring an approach based on 
aerial images which are built on publicly available data. This paper presents a methodol-
ogy for economic PV potential analysis using aerial images and deep learning. Two CNNs 
are trained for semantic segmentation of roof segments and superstructures. The CNNs 
achieve Intersection over Union values of 0.84 and 0.64, respectively. We calculated the 
internal rate of return of each roof segment for 71 buildings in a small study area. A com-
parison of this paper’s methodology with a 3D-based analysis discusses its benefits and 
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disadvantages. The approach is potentially scalable to a global level but poses manifold 
challenges along the way. Therefore, the last section of this paper collected and discussed 
research opportunities in the fields of deep learning, improved economic PV potential 
analysis, and energy system analysis. 
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Appendix A. Calculations 

Table A1. Equations for technical and economic potential calculation. 

Calculation of the Technical Potential 
Physical Potential 𝐸 = 𝐼 , = 𝐼 , + 𝐼 ,  

Geographic Potential 𝐸 = 𝐼 ,  𝐴 𝑁𝐹  
Global Irradiation on Tilted Surface 𝐼 , = 𝐼 , + 𝐼 , + 𝐼 ,  
Effective Irradiation on Tilted Sur-

face 
𝐼 , = 𝐼 ,  𝑈  

Module Area on a Tilted Surface 
𝐴 , = 𝑤  𝑙  𝑐𝑜𝑠 𝜃  𝐴 = 𝑛 𝐴 ,  

Technical Potential E = 𝐸  𝜂  𝑃𝑅 
Calculation of the Economic Potential 

Investment Costs 𝐶 = 𝑃 ,  𝑐  (1 + 𝑉𝐴𝑇) 

Maintenance Costs 𝐶 = 𝐶 , + 𝑃 ,  𝑐 ,  1 + 𝑖  (1 + 𝑖)  

Weighted Average Cost of Capital 𝑊𝐴𝐶𝐶 = 𝐸𝑞𝑢𝑖𝑡𝑦𝐸𝑞𝑢𝑖𝑡𝑦 + 𝐷𝑒𝑏𝑡 𝑖 + 𝐷𝑒𝑏𝑡𝐸𝑞𝑢𝑖𝑡𝑦 + 𝐷𝑒𝑏𝑡 𝑖  

Self-Consumption Ratio sc(t) =  𝐸 (𝑡)𝐸 (𝑡) 

Fed-In Electricity Within One Year 𝐸 = 1 − 𝑠𝑐(𝑡)  𝐸 (𝑡) 

Self-Consumed Electricity Within 
One Year 𝐸 = 𝑠𝑐(𝑡) 𝐸 (𝑡) 

Net Present Value 𝑁𝑃𝑉 = 𝑅 + 𝑅 − 𝐶 − 𝐶 − 𝐶  

Revenues from Feed-In 𝑅 = 𝐸  𝑒 (1 − 𝑏)  (1 + 𝑖)  
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Revenues from Self-Consumption 𝑅 = 𝐸  𝑝  1 + ∆𝑝  (1 − 𝑏)  (1 + 𝑖)  

EEG-levy (Levy for self-consump-
tion in Germany) 

𝐶 =
⎩⎪⎪⎨
⎪⎪⎧ 0,  𝑃 , < 10 𝑘𝑊𝑝0,4 𝐸  𝑐 1 + ∆𝑐  (1 + 𝑖) ,  10 𝑘𝑊𝑝 ≤ 𝑃 , ≤ 750 𝑘𝑊𝑝

𝐸  𝑐 1 + ∆𝑐  (1 + 𝑖) , 𝑒𝑙𝑠𝑒  

Table A2. Overview of variables used for technical and economic potential calculation. 

Variable Unit Description Variable Unit Description 𝐴 ,  m² Projected Horizontal Mod-
ule 𝐴 = 𝜋𝑟  

ev - Self-Consumption Rate 𝐴  m² Area all Modules on Seg-
ment 

𝐷𝑒𝑏𝑡 € Debt 𝑏 - Degradation Rate ℎ - Hurdle Rate 𝑤  m Module Width 𝐼 ,  kWh/m² 
Ground-Reflected Irradiation on a Tilted 

Surface 𝐶  € Maintenance Costs 𝐼 ,  kWh/m² Diffuse Irradiation on a Tilted Surface 𝐶 ,  € Fix maintenance Costs 𝐼 ,  kWh/m² Direct Irradiation on a Tilted Surface 𝑐 ,  €/kWp Variable maintenance Costs 𝐼 ,  kWh/m² Effective Irradiation on a Tilted Surface 𝐶  € Costs from EEG Levy 𝐼 ,  kWh/m² Global Irradiation on a Tilted Surface 𝐶  € Investment Costs 𝐼 ,  kWh/m² Diffuse Irradiation on a Horizontal Sur-
face 𝑐  €/kWh EEG Levy 𝐼 ,  kWh/m² Direct Irradiation on a Horizontal Surface∆𝑐  - Yearly Change EEG Levy 𝐼 ,  kWh/m² 

Global Irradiation on a Horizontal Sur-
face 𝑐  €/kWp Specific Investment Costs 𝑖 - Internal Rate of Return 𝐸  kWh Self-Consumption 𝑖   Interest Rate (Equity) 𝐸  kWh Feed-In Electricity 𝑖   Interest Rate (Debt) 𝐸  kWh Geographic Potential 𝑖  - Inflation Rate 𝐸  kWh Economic Potential 𝑁𝑃𝑉 € Net Present Value 𝐸  kWh/m² Physical Potential 𝑙  m Length of pv Module 𝐸  kWh Technical Potential 𝑉𝐴𝑇 - Value Added Tax 𝐸  kWh Electricity Consumption 𝑈  - Utilization Factor Irradiation 𝐸𝑞𝑢𝑖𝑡𝑦 € Equity 𝑃 ,  kWp Plant Size 𝑒  €/kWh Feed-In Tariff    
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Appendix B. Technical and Economic Assumptions 

Table A3. Summary of technical assumptions. 

Factor Variable Value 
Module Placement on Flat Roofs  South-Orientation 

Area Usage on Flat Roofs F 1:2 
Module Slope on Flat Roofs - 36° 
Shadow Utilization Factor 𝑁𝐹  0.85 

Performance Ratio 𝑃𝑅 0.80 
Module Peak Power 𝑃  300 Wp 

Efficiency 𝜂  20.0% 
Module Length 𝑙  1650 mm 
Module Width 𝑏  992 mm 

Table A4. Summary of economic assumptions. 

Factor Variable Value Source 
Specific Investment Costs (incl. Value-added tax, VAT)  𝑐  1071 €/kWp [3] + VAT 

Maintenance Costs Variable  𝑐 ,  22.50 €/kWp [3,100] 
Maintenance Cost Fix  𝐶  100.00 € [3,100] 

Electricity Price  𝑝  30 ct/kWh Assumption 
Yearly Change of Electricity Price  ∆𝑝  2.0% Assumption 

Feed-In Tariff up to 10 kWp  𝑒  7.81 ct/kWh [101] 
Feed-In Tariff up to 40 kWp  𝑒  7.59 ct/kWh [101] 

Feed-In Tariff up to 100 kWp  𝑒  5.95 ct/kWh [101] 
EEG-Levy  𝑐  6.50 ct/kWh [102] 

Interest Rate Equity 𝑖  6.0% [103] (p 159) 
Interest Rate Debt  𝑖  2.0% [104] 

Debt Ratio  𝑙 80.0% [3] 
Inflation Rate  𝑖  1.5% Assumption 
Degradation  𝑏 0.25% [105,106] 

Time Horizon 𝑇 20a [3,107,108] 
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