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Abstract: Cities and nations worldwide are pledging to energy and carbon neutral objectives that
imply a huge contribution from buildings. High-performance targets, either zero energy or zero
carbon, are typically difficult to be reached by single buildings, but groups of properly-managed
buildings might reach these ambitious goals. For this purpose we need tools and experiences to
model, monitor, manage and optimize buildings and their neighborhood-level systems. The paper
describes the activities pursued for the deployment of an advanced energy management system
for a multi-carrier energy grid of an existing neighborhood in the area of Milan. The activities
included: (i) development of a detailed monitoring plan, (ii) deployment of the monitoring plan,
(iii) development of a virtual model of the neighborhood and simulation of the energy performance.
Comparisons against early-stage energy monitoring data proved promising and the generation
system showed high efficiency (EER equal to 5.84), to be further exploited.

Keywords: building energy modeling; energy monitoring; neighborhood

1. Introduction

Cities consume about 75% of total primary energy and emit between 50% and 60% of
the world’s total greenhouse gases [1,2]; a large share of it depends on buildings that, in the
European Union (EU), represent about 36% of CO2 emissions and account for 40% of the
final energy use [3–5]. Any roadmap to decarbonization should therefore include sound
solutions for the building stock management and renovation. As nearly 80% of the energy
consumed by buildings refers to its operation, proper energy management may substan-
tially allow the increase of buildings’ energy efficiency [6,7]. Single building interventions,
although useful, are limited in their effects, and do not allow to maximize the benefits of
sharing (costs, energy, etc.) among buildings. Micro-grids, connecting from a few buildings
to a whole neighborhood, represent a technical option to enable the sharing of information
and energy among buildings, providing a fundamental structure to promote waste heat
recovery [8,9], energy communities and demand-response programs, but also to imple-
ment a remote control and management of buildings to decrease their energy use while
enhancing occupants’ comfort. Intelligent buildings or smart buildings [10–12], have been
studied for a long time, and currently building management systems (BMS) are commonly
applied also in residential buildings [13–16], at least in the form of remote monitoring
and management. These advanced control systems boost building management, enabling
communication between users and building appliances, through remote monitoring and
control [6,17,18]. The current challenge of applied research relates to the management
of groups of buildings together, in order to improve the overall efficiency of a neighbor-
hood and its integration with the city’s energy networks (power grid, district heating and
cooling, data networks) [19,20]. This broad challenge includes a series of sub-challenges:
(i) modeling the built environment to simulate the neighborhood energy dynamics [21–24],
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both for new constructions and for existing ones, (ii) planning an adequate monitoring
and management, (iii) deploying the plan by integrating existing buildings with and en-
ergy management system (EMS), i.e., a platform allowing the visualization (dashboard) of
monitored data, and some sort of control.

Early examples of neighborhood networks exist in the form of micro-grids [20,25–27]
where the only energy carrier is electricity. The current energy transition [3,28], pushing
toward an electrification of the major final energy uses, makes these examples very interest-
ing for new neighborhoods and cities; however, most of the existing cities are characterised
by a much more complex energy structure that requires a further level of management
systems, i.e., multi-carrier EMS. Typically, the networks that need to be integrated are the
power grid, district heating and cooling networks (both local and city-wide), natural gas
networks and data networks [12,29,30]. This integration overtakes the traditional sectorial
division of the design and operation of energy systems, arising the necessity to simulate
the system complexity according to a holistic approach [31] and to perform advanced
operational analyses through energy modeling tools [32]. With a proper balance between
complexity and accuracy, simulations can be considered as a key practice to support the
systems performance assessment and operation [33]. Moreover, the continuous calibration
of dynamic energy models against monitoring data is a key point to minimize the perfor-
mance gap [34–37] and to obtain reliable energy performance forecast to be used by energy
management actions.

With the aim of assessing possibilities and limitations of the current level of technology,
Regione Lombardia funded a research project named “Sustainable Lifestyle: Merlata Smart
Grid” that involved the Department of Energy of Politecnico di Milano together with three
industrial partners: Euromilano, Siemens and Future Energy. The project intended to
deploy a real pilot of a multi-carrier EMS, able to monitor and manage the energy uses of
seven existing residential tower buildings in the suburbs of Milan, Italy. The buildings are
connected to the city’s district heating system for heating and domestic hot water (DHW)
supply, to a local cooling district system, based on a loop of underground water working
as a thermal sink for electric chillers, and to the national power grid.

The activities included: (i) the detailed mapping of the exiting systems, both at
apartment, building, and neighborhood level; (ii) the development of a detailed monitoring
plan and its deployment with the integration of existing information and communication
technologies (ICT) in the new multi-carrier EMS (Section 3); (iii) the creation of a dynamic
simulation model for system performance evaluation and optimization (Section 4); and (iv)
an early comparison between simulation output and energy monitoring data (Section 5).
The paper summarizes the integrated approach used in the project (Figure 1), where
dynamic simulation was used, trying to balance complexity and accuracy, as a tool to
inform the monitoring plan, thus proving to be both a design and an operational useful
tools, especially when neighborhood-level issues need to be challenged.
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2. The Case Study

The case study is a neighborhood of seven tower buildings (called B1, B2, B5, B7, B9,
B10 and B11), part of a new residential district under development in Milan, that overall
involves a large urban surface of 920,000 m2 and, once completed, will include a large
residential area of 4500 apartments, a school, and a few other commercial uses.

The district is divided in eleven parcels and the current study focuses on one of
them (Figure 2). The seven tower buildings in the parcel have different heights, volumes
and envelope technologies, and count for an aggregate volume of 111,000 m3 and about
400 apartments of different size and typology, as shown in Table 1.

All the buildings have a sub-station connecting them with a district heating system
(delivery temperature of 110 ◦C), for space heating (SH) and domestic hot water (DHW)
production. The cooling of the indoor spaces is provided via electric chillers exchanging
heat with groundwater, that works as a heat sink for the whole parcel. The eleven parcels
are then connected with each other, in order to provide resilience to the system in case of
malfunctioning on some of the loops. Overall, the underground systems will be provided
by thirteen supply wells and fourteen re-injection wells. Each apartment is conditioned via
radiant floors both for heating and cooling, integrated by controlled mechanical ventilation
(CMV) with heat recovery. A small photovoltaic array with a total pick power of 39.3 kWp
is installed on the roofs of the seven buildings.
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Table 1. Number of apartments per typology and buildings.

One Room Two Rooms Three Rooms Four Rooms Five Rooms Tot

B1 0 16 49 17 1 83
B2 0 13 31 12 1 57
B5 0 14 45 10 0 69
B7 1 3 35 0 0 38
B9 0 10 18 10 0 38
B10 0 1 54 0 0 55
B11 0 7 42 7 0 56
Tot 1 64 274 56 2 396

3. Monitoring Plan

The design of sustainable multi-carrier energy systems relies on the correct evaluation
of the heating and cooling generation system operation, the daily profile of the buildings’
energy use and the smart management of operational aspects. In this respect, the mon-
itoring of the real performance, through the acquisition of field measures, can provide
multiple benefit to the smart management of complex energy systems. Within this project,
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a monitoring plan has been conceived and applied for achieving three main purposes:
(i) characterizing the energy flows at different construction scale (building, parcel and
district); (ii) providing data for the mechanical system performance optimization; (iii) im-
prove the system management quality. The mechanical systems optimization includes the
optimization of the cooling generation system energy efficiency, with a focus on the two
chillers, distribution pumps, exploitation of ground-water as heat sink, and management
of water supply and return temperatures, in order to guarantee thermal comfort and limit
the heat loss/gain. To improve the quality of operational management and support the
energy manager activities, the monitoring plan aims at detecting in real-time: (i) system
failure alarms, (ii) temperatures and water flow rates operating off-range (e.g., the ground-
water return temperature must be monitored to avoid injection of overheated water to the
ground), (iii) the energy produced and consumed by the generation systems (chillers and
district heating).

The measures required to meet the abovementioned goals were the breakdowns by the
different energy carriers (electricity and heat) serving different mechanical systems: (i) heat-
ing and cooling system, (ii) domestic hot water, (iii) controlled mechanical ventilation,
(iv) lighting and appliances and (v) photovoltaic solar field. For each construction scale
(building, parcel and district) and each mechanical system, specific indicators have been
set out and suitable meters for the detection of the desired parameters have been identified.
For each indicator, we defined the related sensors and the quantity and quality of the
parameters to be measured. In particular, we collected information on: (i) the number of
required meters, (ii) the specific measured parameters, (iii) the parameters’ unit of measure,
(iv) the owner of the acquired information, if suitable, (v) the accuracy of the meter, (vi) the
resolution of the meter, (vii) the available frequency of the data acquisition, and (viii) the de-
sired frequency of the data recording or transmission, (ix) the transmission data protocols.
All these data have been collected in a matrix, where we listed and differentiate among the
meters already available on field and those to be installed (Table 2). This document was
needed to better understand the state of the art of the existing monitoring instruments to
be integrated or updated according to the goals of the monitoring plan.

Table 2. Monitoring matrix.
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Furthermore, a tree diagram outlining all the acquired measures was produced. The
diagram contains a breakdown of the information of all the measured parameters for: (i)
the three monitoring goals; (ii) the type of performed analysis; (iii) the considered level of
analysis, i.e., the construction scale or the specific investigated mechanical system; (iv) the
monitoring target (i.e., heating system, cooling system, DHW system); (v) the monitoring
indicator; and (vi) the equations to be implemented in the EMS platform. The diagrams of
the three monitoring goals are provided as a Supplementary Materials to this publication
(Figures S1–S3).

3.1. New Meters Installation and Data Acquisition System

Beside the identification of the parameters to be measured and acquired to reach the
three fundamental goals of the district energy monitoring, the monitoring plan depicted
the state of the art of the pre-existing instruments to be integrated with new meters for data
measuring. Therefore, a gap analysis has been conducted starting from the information
collected by the monitoring plan, aiming at identifying the additional meters to be installed
to complete the data collection and the most suitable data acquisition and transmission
architecture. Indeed, onsite inspections highlighted the existence of some local sensors
and control systems, installed concurrently to the mechanical systems and buildings
constructions. The main goal of such systems was to locally govern the mechanical systems
operation and to control logics for meeting the energy requirement of each single building,
therefore hampering a higher-level management that involve the distributed energy grid
of the parcel and, eventually, the district. The practical implementation of the monitoring
plan consisted, thus, in two main steps: (i) a market analysis to identify the new devices
according to the requirements listed in the monitoring plan and (ii) the integration of
the existing devices in the broader monitoring system, by building new infrastructures,
including physical interconnection and informatic system, that enables the acquisition of
the measured parameters. Then, a software application which enabled a structured data
acquisition and transmission has been conceived and developed, to ensure the remotely
accessibility and usability of the information in real time, for the purpose of the project.
The communication protocol used are Modbus, M-Bus and analogic signals.

Hereafter a short overview of the existing and new devices is provided.

3.1.1. Cooling System

The cooling system consists of two main sections. The district cooling loop, intercon-
necting the entire district for the exploitation of groundwater, and the cooling power stations,
where the electric chillers and the circulating pumps serving each parcel are located.

In the cooling power station under analysis, a pre-existing thermal meter allows
to detect the thermal energy provided by the chillers (or the heat exchangers when the
free cooling mode is used) to the seven buildings. New devices have been installed to
measure the electric energy absorbed by the chillers, consisting in three-phase electric
power meters connected to the power station’s electric panel. Additional thermal meters,
consisting in two temperature sensors, one ultrasonic flow rate sensor and a local calculator
have been installed to detect the thermal energy exchanged between each chiller and the
buildings and between the district colling loop and each chiller. The circulating pumps’
electric consumption was detected by installing dedicated communication devices, which
allowed to transfer the required parameters (i.e., electric energy, ON/OFF status, fluid
flow rate, operational mode, alarms) via Modbus protocol. The installation of the new
communication devices on the circulating pumps allowed the detection of some problems
in the operational logic of the circulators, which followed standard on-off mode, even if
they were equipped for working at different speed and flow rate. This problem has been
solved during the new devices’ integration.

As regards the district cooling loop, pre-existing sensors allowed the detection of the
temperatures of the thermal storage tank, at different heights, and the temperature of the
water re-injected into the ground. Other devices allowed local measurement (i.e., only at
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the wells’ location) of the flow rate and pressure of the water extracted by each of the three
extraction wells. Furthermore, the electric consumption of the cooling loop circulators,
alarms and operation mode were collected by local control panels. These devices have
required the installation of physical data transmission infrastructures, that allowed to
transfer the measured parameters from the local devices to the data acquisition system.

3.1.2. Heating and DHW Systems

The parcel heating system is served by a district heating system that satisfies the
energy needs for space hating and DHW, by means of heat exchangers. Each building
is served by two dedicated heat exchangers, one for the space hating and one for the
DHW. The thermal energy provided by each heat exchanger has been detected by installing
thermal meters (consisting in two temperature sensors and one ultrasonic flow rate sensor)
on the pipelines conveying the fluid from the heat exchanger to the distribution circuit
(Figure 3). This system integrates very well with the data acquisition system, via M-Bus
wire, and allows to limit the pressure drops.

Furthermore, the total amount of water taken from the public aqueduct and serving
for DHW, additional apartment cooling and common spaces irrigation, has been measured
via volumetric flow rate meters, which has been installed on the main water adduction
pipe in each building (Figure 3).
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3.1.3. Buildings Distribution Circuits

The heating, cooling and DHW energy flows within each building were already
measured through pre-existing devices. New installations concerned the detection of
the electric energy consumption of the circulating pumps on the distribution circuits.
The values have been collected by electric power meters installed on the wiring circuit
connecting each pump to the general electricity control panel.

3.1.4. Controlled Mechanical Ventilation (CMV)

Three temperature sensors were installed in the supply, extraction and expulsion ducts
of each of the seven heat recovery units of the CMV system, each of which serves a single
building. The temperature of the external air has been detected by one sensor for all the
seven buildings. The air flow rate has been acquired, for each heat recovery units, via hot
wire anemometers fixed in the middle of the extraction duct, since the supply duct did
not guarantee the device installation requirements (the device must not be installed near
turbulence points such as curves, section restrictions, filters). The electric consumptions
have been detected by installing additional data transmission infrastructures, that allowed
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to transfer the measured parameters from the local electric control panels to the data
acquisition system.

3.1.5. Photovoltaic System

Similarly to the CMV systems, the performance of the PV systems (produced electric
energy, electric current and tension) have been measured by an dedicated detection and
acquisition system. The PV is, nevertheless, made of quite small building-level sub-systems,
used just to feed lifts and the lighting system in the staircases.

3.1.6. Lighting and Appliances

The electricity consumptions of the buildings have been acquired by using electric
multimeters. These devices allow to monitor and acquire all the parameters available from
the buildings’ general electricity control panels.

3.1.7. Single Apartment Mechanical Systems and Indoor Comfort Conditions

Within this study the parameters related to the heating and cooling systems, DHW
and indoor comfort conditions have been monitored for fifteen apartments. They include
thermal meters measuring the energy delivered to each apartment, both in cooling and in
heating mode; a flow-rate meter for domestic hot- and cold-water consumptions; indoor
set point temperature; indoor temperature and indoor relative humidity. A pre-existing
measuring infrastructure was present and managed by the system’s manufacturer. At
this scale, thus, the data acquisition required a REST-API interface with manufacturer
database. The electric energy consumption characterization for each apartment required
the installation of dedicated multimeters.

3.2. Energy Management System

The EMS software has been conceived to facilitate the data analysis based on the
three aforementioned goals of (i) characterizing the energy flows; (ii) mechanical systems
operational optimization; (iii) operational management. The EMS allows the data visu-
alization according to the monitoring plan or to the geographical devices’ localization.
Furthermore, customized reports can be set, to show whichever data the energy manager
wants to compare, allowing the visualization at the desired time resolution (it is possible
to visualize raw data and data aggregated from hourly to yearly time series). It is also
possible to download the data in several file format. Figure 4 shows an example of the
EMS data visualization interface. To enable the EMS development, the data registered by
new and existing devices have been collected on local databases which are interrogated
through REST-API protocol to be transferred on the cloud. This required the development
of a dedicated software which enables to interrogate the local database in real-time and
make the data available in the EMS platform.
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4. Modeling
4.1. Buildings’ Modeling

Table 3 summarizes the geometrical characteristics of the seven buildings under analy-
sis, which differs in volume, heights, and window to wall ratio (WWR). The buildings differ
also in envelope technologies. The thermal transmittances of the envelope components of
each building are summarized in Table 4.

Table 3. Geometrical characteristics of the buildings on parcel R09/3 [23].

Vgross
[m3]

Vnet
[m3]

SEXT,gross
[m2]

Suseful
[m2]

S/V
[-]

WWR
[m2]

N◦ of
Floors

B1 23,281 16,533 6361 6123 27% 19% 23
B2 16,552 11,088 6594 4106 40% 13% 18
B5 19,194 12,524 6832 4638 36% 15% 17
B7 11,350 7572 5536 2805 49% 11% 11
B9 10,564 7096 4596 2628 44% 11% 14
B10 17,246 12,875 7700 4768 45% 13% 17
B11 13,118 8995 5223 3331 40% 22% 17

Table 4. Thermal transmittances of envelope technologies [W/(m2K)]. M1: external wall; M2: external
wall adjacent to concrete structure; M5: internal wall between apartments; M6: internal wall adjacent
to unheated spaces; P1: floor between apartments; P2: floor slab between apartments and unheated
spaces; S4: roof. [23].

ID B1 B2–B7 B9–B10 B11 B5

M1 0.175 0.161 0.161 0.161 0.161
M2 0.219 0.219 0.219 0.219 0.219
M5 0.236 0.236 0.236 0.236 0.236
M6 0.341 0.341 0.341 0.341 0.341
P1 0.490 0.490 0.490 0.490 0.490
P2 0.266 0.266 0.147 0.287 0.136
S4 0.204 0.204 0.180 0.180 0.180

A dynamic model of the seven buildings has been developed using TRNSYS 18 [38].
Firstly, the modeling concerned the buildings’ energy needs for space heating and cooling,
considering buildings’ geometrical and envelope characteristics. Then, the buildings’
models have been coupled with a detailed modeling of the HVAC (Heating Ventilation
and Air-Conditioning) systems (see Section 4.2). The developing of a well-managed
distributed energy resources and their correct interaction with the build environment
strongly rely on the reliable evaluation of daily energy use of buildings, at high spatial
and temporal resolution [39,40]. However, when it comes to the assessment of a large
portion of the built environment, at neighborhood or city level, the implementation of
detailed physic-based models is usually complex and time consuming. Therefore, at
larger scale, simplified “bottom-up” approaches or statistical “top-down” models are
commonly used [41]. The envelope modeling approach in this study was meant to find
a compromise between detailed modeling and the required computational effort. The
model allowed to characterize the energy needs for space heating and cooling starting
from the apartment level. Therefore, a reference floor has been considered, including
all the most frequent apartment typologies (two, three and four-rooms apartments (see
Table 1), simulated for all the seven existing buildings at different heights, including
lowest floor (first floor), intermediate and top floor. Each building has been simulated
considering its real position on the parcel, and the effect of other building and surrounding
shadows have been considered. The model preserves the specific envelope technologies
of each building. The lowest apartment ceiling and the upper apartment floor have been
considered as adiabatic since they face apartments with similar characteristics. The floor
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slab of the lowest apartments faces the ground floor including the entrance hall, that has
been considered as an unheated space. The intermediate apartments’ floors and ceilings
present adiabatic conditions. The upper apartment ceiling and all the vertical walls face
the external environment.

Occupant Behavior

No building or city uses energy, but people do. Therefore, it is crucial to model
correctly occupant behavior in building simulations, notably for the energy assessment
of high efficiency buildings, whose behavior is highly depending on the users [13,42].
In this study the occupant behavior has been described by using stochastic schedules of
occupancy and occupant-related electric energy use by lights and appliances have been
used. The schedules have been developed using a data driven procedure, that enabled the
identification of five clusters of daily probability of occurrence for the occupancy and five
clusters of daily probability of occurrence for the appliances’ and lights’ electric energy
use (Figure 5), by means of machine learning techniques applied on metered data of a
residential building located in Milan [43]. The metered data are referred to a residential
building which presents similar characteristics, apartments typologies and location (a
suburban area of Milan) with the buildings hereby analyzed. The clusters, consisting in a
daily hourly profile of the probability of occurrence of defined occupancy or energy uses,
have been combined randomly to generate fifteen yearly annual schedules to be assigned
to the modeled apartments. The profiles have then been multiplied for the average value
of electric energy use and the number of people for each apartment typology. These values
have been derived from the same database used for the profiles generation (Table 5) [23].
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Table 5. Number of people for apartment typology and maximum mean value of electric energy uses.

Apartment Typology Wh People

Two room 165.5 2
Three room 198.1 3
Four room 202.5 5

4.2. HVAC System Modeling

The simulation process consists of two steps performed using TRNSYS 18; firstly, the
apartments’ systems are simulated and then the district network is analyzed. In the first
phase, each apartment is modeled as a thermal zone in the Type 56 (TRNBuild—multizone
building model) interacting with other types which model the HVAC components. The
load profiles obtained for all the buildings have been then used as input for the district
network. The simulations have been run with one-hour timestep.

4.2.1. Apartment System Layout

A general scheme of the system layout is reported in Figure 6. Each apartment is
equipped with radiant floor panels for both heating and cooling, moreover a dehumidifier
is installed for the humidity control during the cooling mode. Both the systems are fed by
a building centralized network, which provides also the DHW. In addition, a centralized
mechanical ventilation system guarantees constant air change rates to each apartment.

The radiant floor system and the dehumidifier, with their own control subsystems,
have been modeled for each apartment, while the mechanical ventilation system and the
DHW profiles have been managed at building level.
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• Radiant floor panels

Radiant floor panels have been modeled in TRNBuild as “Active layers” placed in the
floor stratigraphy, including the data related to the pipe’s characteristics (spacing 0.1 m, out-
side diameter 0.02 m, wall thickness 0.002 m, wall conductivity 0.35 W/m/K). In function
of the number of loops (Table 6), the pipe length is calculated and the software evaluates
the heat exchange based on the inlet flow rate and temperature. In each apartment, the



Energies 2021, 14, 3716 11 of 19

Active layers are directly connected to the heating and cooling network in terms of inlet
and outlet water flow rate and temperature.

Table 6. Radiant floor specifications for the thermal zones.

Zone Type Water Flow Rate (L/h) Number of Loops

1 536.8 9
2 500.2 9
3 577.8 9
4 395.4 6
5 787.2 12

The room thermostat has been modeled as a differential controller with hysteresis
(Type 2) to control the zone air temperature according to the seasonal set point temperature
profiles (in the heating season daytime setpoint at 20 ◦C and night-time setback 16 ◦C, in
the cooling season daytime setpoint at 26 ◦C) with a dead-band temperature difference
fixed at ±1 ◦C. The ON/OFF signal regulates the single speed pump (Type 114) of the
water circuit. In addition, the circuit is equipped with a three-way valve which regulates
the flow rates to keep the inlet water temperature at the fixed value (38 ◦C in the heating
season and 16 ◦C in the cooling one).

• Dehumidifier

A dehumidifier REHOM 20L/G 1.3 is installed in each apartment. As shown in the
functioning schemes in Figure 7, the air taken from the zone undergoes a pre-cooling by
the cooling coil (B), fed by the cold-water circuit at 12 ◦C, and then is dehumidified and
cooled by the evaporator (C). The two condensers allow a double functioning: the heat
of condensation can be used for the air post-heating in the air-cooled condenser (D) or
discarded through the water-cooled condenser (F).
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The pre-cooling coil has been modeled with Type 124 (Simple Cooling Coil—Partially
Wet), following the manufacturer’s datasheet. Type 688 (Unitary Dehumidifier) has been
used for the refrigeration cycle; the type input “Heat Rejection Indicator” allows to pass
form the air cooled condenser mode to the water cooled condenser mode, when the zone
temperature is higher than 1 ◦C compared to the setpoint. The controller Type 2 maintains
the zone humidity between 10.5 e 12 gv/kgda during the summer period, toggling the
pump (Type 114) of the cold-water circuit and the fan of the dehumidifier (in Type 688).
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• Mechanical ventilation system

In each apartment an air change rate of 0.6 vol/h is provided by the mechanical
ventilation system. This is equipped with a heat recovery device which allows to pre-
heat or pre-cool the external air, recovering the heat from the exhaust air. This device
is modeled as a counter-flow heat exchanger (Type 5b) calibrated on the commercial
product’s performance corresponding to a heat exchange efficiency equal to 88.5%. The
air temperature, humidity and flow rate are provided to the thermal zones as ventilation
characteristics in the TRNBuild model.

• Domestic hot water production

The DHW uses have been evaluated in a separated simulation with a timestep of 0.1 h,
using three daily use profiles (Figure 8) corresponding to 36 L/day/person of DHW at
60 ◦C. These have been combined in stochastic manner with the annual occupancy profiles
of each apartment. The DHW consumptions are obtained considering 15 ◦C as main water
temperature and 55 ◦C as the actual temperature of the water delivered to each apartment.
Moreover, the heat losses from recirculation pipes (Type 31) have been evaluated, in order
to obtain the total energy consumed by the entire building for the DHW production.
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Figure 8. DHW use schedule (water at 60 ◦C, timestep 0.1 h).

4.2.2. District Systems Layout

The urban district heating network supplies heat to three substations, where three
couples of heat exchangers (one for the SH and one for DHW) are linked to the buildings’
technical room. These last are also connected to the cooling network of the district which is
fed by two chillers. Figure 9 schematically reports a portion of the district network.

The energy load files obtained from the simulations at building level have been used
to evaluate the energy consumptions at district level.

For the heating internal distribution network and heat exchangers, an average value
of thermal losses has been estimated equal to 10% of the users’ energy demand.
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Figure 9. Scheme of the district systems layout.

The district cooling network is fed by two groundwater source chillers CLIVET WSH-
XSC 180F installed in parallel. Their cooling capacity is 560 kW/each at nominal conditions
with load-side outlet temperature (T_LS_out) of 7 ◦C and source-side inlet (T_SS_in) at
30 ◦C. Groundwater is collected in a 500 m3 tank that periodically is partially depleted and
refilled to maintain the temperature at the chiller inlet below 21 ◦C. The system scheme is
reported in Figure 10. The tank has been modeled with Type 158; when the temperature
at the chiller source side inlet rises above 21 ◦C a water volume of 43 m3 is changed.
The two chillers have been modeled by Type 142 (water-cooled chiller), according to the
performance maps derived by the manufacturer’s datasheet. The performance maps are
two (Figure 11), in the first one the dependent variable is the cooling capacity and in the
other one it is the EER (Energy Efficiency Ratio), while the independent variables are in
both the cases the source side (SS) and load side (LS) water temperatures.
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Figure 10. Groundwater cooling system modeling scheme.

Table 7 reports the primary energy (PE) conversion factors for the district heating
system of West Milan and for the electricity.
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Efficiency Ratio (EER).

Table 7. Primary energy conversion factors for district heating in West Milan (source: A2A Calore e
Servizi S.r.l. [44]) and for electricity (source: Lombardy regional regulation DDUO 2456/2017 [45]).

Primary Energy Factor District Heating Electricity

fP,nren 0.29 1.95
fP,ren 0.19 0.47
fP,tot 0.48 2.42

5. Results and Discussion
5.1. Simulation Results

The monthly values of the energy supplied to all the apartments of the parcel under
analysis are represented in Figure 12. The space heating energy (Q_W,heat) reaches the
annual value of 23 kWh/m2/year (653 MWh/year), while the DHW production requires
18.5 kWh/m2/year (523 MWh/year). For the summer system operation, Q_W,cool rep-
resents the cooling energy supplied by the water systems (i.e., the radiant floor and the
pre-cooling and condensing coils of the dehumidifiers), while Q_dehum,s+l is the cooling
and dehumidification effect performed by the dehumidifiers’ refrigeration cycle. The
summer load (both sensible and latent) is met by the combined action of these two systems.
Q_W,cool is equal to 17.8 kWh/m2/year (505 MWh/year), while Q_dehum,s+l amounts to
7.9 kWh/m2/year (223 MWh/year). These results are consistent with benchmark energy
needs of newly constructed buildings in compliance with actual energy saving regulations.
There is no sharp predominance in the annual values for each use: 34% of the thermal
energy needs are for space heating, 38% for space cooling, and 28% for DHW production.
The latter value remarks that the DHW production gets importance in the framework of
highly efficient buildings.

In Figure 13, a detailed representation of the energy fluxes in the parcel is reported
via a Sankey diagram. According to the definitions of the European standard EN ISO
52000-1 [46], the energy fluxes go from the delivered energy, whose energy carrier is speci-
fied as “District” (for the urban district heating) and “ELE” (for the electricity import), to
the end users’ needs (grouped into the buildings “B#”). From the district heating network
1294 MWh/year are required; 55% is used for space heating (25.3 kWh/m2/year) and
the rest for domestic hot water production (20.3 kWh/m2/year). The heat losses of the
heating network in the parcel are also displayed, accounting for 4.2 kWh/m2/year, around
9% of the district delivered energy for the space heating and DHW production, thus the
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seasonal efficiency of the parcel network stands at 91%. The electrical uses for lights and
appliances installed in each apartment are about 70% of total electrical consumptions
(24.3 kWh/m2/year); whereas, among the electrical consumptions related to HVAC sys-
tems, about 50% is due to mechanical ventilation systems (5.4 kWh/m2/year). To guarantee
the summer thermo-hygrometric comfort, a total electrical energy of 5.7 kWh/m2/year
is required, shared between the consumption of the dehumidifiers of each apartment
(2.7 kWh/m2/year with a seasonal EER value of 2.90) and the chillers (3.0 kWh/m2/year).
For the cooling generation, in addition to the electric energy supplied and the cooling
effect produced, the heat rejection is specified as the sum of the condensation heat of the
dehumidifiers and the heat rejected by the chillers through the groundwater wells.
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Figure 13. Sankey diagram of the energy flows in the parcel.

For the chillers, Figure 14 depicts the monthly values of the cooling energy supplied
to the network (Qc), the electric energy consumptions (Wc) and the average efficiency EER.
Yearly, the electricity consumptions amount to 85 MWh, with seasonal EER equal to 5.84.

Figure 15 shows the primary energy consumptions of the entire parcel; the total
PE is equal to 3057 MWh/year (107.6 kWh/m2/year). The renewable share is 24%
(25.3 kWh/m2/year).



Energies 2021, 14, 3716 16 of 19

Energies 2021, 14, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 13. Sankey diagram of the energy flows in the parcel. 

For the chillers, Figure 14 depicts the monthly values of the cooling energy supplied 
to the network (Qc), the electric energy consumptions (Wc) and the average efficiency 
EER. Yearly, the electricity consumptions amount to 85 MWh, with seasonal EER equal to 
5.84.  

Figure 15 shows the primary energy consumptions of the entire parcel; the total PE 
is equal to 3,057 MWh/year (107.6 kWh/m2/year). The renewable share is 24% (25.3 
kWh/m2/year).  

 
Figure 14. Monthly values of the chillers’ cooling energy (Qc), electric consumptions (Wc) and av-
erage efficiency ratio (EER). 

 
Figure 15. Annual primary energy for the thermal and electrical use of block R9. 

5.2. Early Monitoring Results 

0

2

4

6

8

0

50

100

150

200

Jun Jul Aug Sep Oct

EE
R 

[-]

M
W

h

Wc Qc EER

2338

719

3057

0

1000

2000

3000

4000

M
W

h PE
/y

ea
r

PE,nren PE,ren
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average efficiency ratio (EER).
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5.2. Early Monitoring Results

At the moment, the available monitoring data are limited to a short period at the end
of June 2020. Figure 16 summarizes the daily values, from June 23rd to June 30th, of the
cooling energy produced by the two chillers, and compares the monitoring data and the
dynamic simulation results. The difference between the two series spans between +17%
and −49%. From an overall analysis of the data, it can be noticed that some modeling
assumptions can be among the reasons of those discrepancies; in particular, during the
weekend the cooling energy need is overestimated by the model (+17% and +8%), contrary
to weekdays (between −13% and −49%). In addition, the external weather conditions
definitely play an important role, as highlighted by Figure 17, where the trend of the
actual external air temperature is plotted against the weather file used in the simulations
(“ITA_Milano-Linate.160800_IGDG.epw” [47]). On average the actual temperatures are
2.8 ◦C higher than the typical year represented in the epw file, used by simulations.
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6. Conclusions

The paper reported the energy analysis of an existing residential neighborhood made
of seven tower buildings in the suburbs of Milan. The work has been performed to
provide a better monitoring and management of a complex neighborhood network that is
undergoing a rapid expansion and soon will include much more buildings and functions.

A detailed monitoring plan has been developed, and deployed on site, by integrating
existing devices and installing new ones. An EMS has been designed to provide fault
detection, optimization, and remote control. To support all of these activities and to further
guide the district in its evolution, a dynamic energy model has been developed with a
high level of detail. Early monitoring results show a good agreement with the simulation
ones; however, a further calibration of the model is required, as soon as the monitoring
data flow will be finalized, and enough data will be gathered to perform it properly. The
small discrepancy between simulation output and early monitoring data, may depend
on occupation schedules; in particular, the COVID-19 pandemic, substantially changed
occupation and energy schedules in residential buildings during 2020, as function of the
spreading of smart-working models. This further highlights the importance of occupation
and energy use patterns modeling for proper simulation and operational management of
buildings and energy networks/grids.

Results refer, at the moment, just to the case study and the specific location; some
hints from the process are nevertheless available and might inform similar neighborhood
energy modeling and monitoring projects, where the proposed methodological approach
may be replicated:

• Complex neighborhood/district energy networks should always be built together with
an EMS to provide remote control. System faults are highly probable, and optimization
is needed from the first operational day;

• Space heating and DHW production are relevant uses (respectively 34% and 28% of
the thermal energy needs), and geothermal energy might be used to cover them with
higher efficiencies;

• The use of centralized water-source cooling systems should be promoted under the
specific boundary conditions, due to the high efficiency (EER equal to 5.84) compared
to individual air-source systems;

• Lights and appliances are a large share of the electricity use (about 70% of total
electrical consumptions), a higher occupant engagement should, thus, be promoted;

• In order to reach a level of decarbonization in line with the Municipality’s targets, the
neighborhood needs to substantially increase its share of renewable energy.
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