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Abstract: Underground mining engineers and planners in our country are faced with extremely
difficult working conditions and a continuous shortage of money. Production disruptions are frequent
and can sometimes last more than a week. During this time, gate road support is additionally exposed
to rock stress and the result is its progressive deformation and the loss of functionality of gate roads.
In such an environment, it is necessary to develop a low-cost methodology to maintain a gate road
support system. For this purpose, we have developed a model consisting of two main phases.
The first phase is related to support deformation monitoring, while the second phase is related to
data analysis. To record support deformations over a defined time horizon we use laser scanning
technology together with multivariate singular spectrum analysis to conduct data processing and
forecasting. Fuzzy time series is applied to classify the intensity of displacements into several
independent groups (clusters).

Keywords: support deformation; laser scanning; multivariate singular spectrum analysis; forecasting;
fuzzy time series clusters

1. Introduction

Due to hard working conditions and a chronic shortage of money, the underground
mining in our country is very a difficult task. Most underground mines are characterized
by low mechanized mining methods and production disruptions can happen often. Such
mining methods are characterized by a long production cycle, and if we add disruptions
then it is obvious that the gate road support is exposed to the rock stress much longer than
is the case with the application of modern mechanized methods. In such a production
environment, the maintenance of the gate road stability is almost impossible and is per-
formed in an unsystematic way. In order to improve such a difficult situation, we use a
laser scanner to obtain high accuracy deformation data, and multivariate singular spectrum
analysis to process them and forecast the future state of deformations. Fuzzy time series
is used to classify deformation data into several independent groups with respect to the
magnitude of deformation intensity. In this way, we are enabling underground mining
engineers to develop a plan to support maintenance. They can plan activities related to the
identification of support states in the future, time of reconstruction, and type of support
that can be used to decrease the progressive deformation. An effective deformation forecast
can result in a decrease of costs and delays.

There are many different approaches to obtaining future states of support deformation.
Ding-Ping Xu et al. [1] compared the predictions from the rock–soil composite material
model, where an analytic method, along with existing data from physical model tests,
was applied to acquire results. Good consistency, both in terms of strength and failure
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mode, was provided when a comparison of these three types of information was done [1].
Danial Jahed Armaghani et al. [2] applied three-nonlinear forecasting methods, namely a
non-linear multiple regression, an artificial neural network, and an adaptive neuro-fuzzy
inference system, in order to estimate the uniaxial compressive strength of rock.

Grey system prediction models were developed by Xiaobo Xiong [3] for forecasting
rock tunnel displacement considering the non-linear parameters of the deformation of the
tunnel. Ping Tang [4] forecasted the working face underground pressure by applying a grey
system theory and genetic algorithm. Sun Yu et al. [5] proposed a time series prediction
model based on a generalized regression neural network to predict the long-term potential
deformation trends of surrounding rocks in a soft rock roadway tunnel. Haiming Chen
et al. [6] built an intelligent displacement back analysis network of a deep mine roadway
surrounding rock that is based on MATLAB NN toolbox. Francesca Bozzano et al. [7] used
terrestrial SAR interferometry to support the management of each phase of tunneling. Qian
Zhang et al. [8] made a numerical simulation for advanced displacement of tunnel with
weak and broken surrounding rock in order to reveal the adjusting process of displacement
in the main parts of a tunnel.

Grossauer et al. [9] developed an efficient way to predict displacements caused by
tunnel excavation based on the use of analytical functions that describe the movements
as a function of time and the face advance. A procedure based on analytical functions
has been developed to support the prediction of the tunnel performance and surface
movements. Merlini and Falanesca [10] illustrated the comparison between the prognosis
and the crosscheck of the support methods and the replacement solutions. Several back-
analyses were carried out in order to achieve the correct validation of the interventions and
an optimal understanding of the deformation behavior of the rock mass. Bao-Zhen Yao
et al. [11] has presented a multi-step-ahead prediction model, based on a support vector
machine, for tunnel surrounding rock displacement forecasting.

This paper is divided into five sections. In the section Materials and Methods, we de-
scribe the model of forecasting based on observed data and multivariate singular spectrum
analysis. We introduce the fuzzy time series concept to make clusters describing the gate
road support configuration deformation for every time point over observed and forecasted
periods. A computational process is performed in the Numerical Example section to repre-
sent the possibilities of model and conclusions are provided in the Results and Conclusion
section. Obtained results show a high level of correlation of original and reconstructed
series of the support deformations. Based on these results, it can be concluded that the
model is reliable and applicable for solving real-time problems in terms of predicting gate
road support deformations.

2. Materials and Methods
2.1. Dynamic of Support Deformations

The dynamic behavior of support is induced by the rock stress surrounding the gate
road. Deformation dynamics is the study of time varying response of support under dy-
namic loads. These loads are primarily considered a change of rock stress intensity induced
by mining activities. As a stope approaches the gate road, the rock stress intensity increases.

In order to describe deformations of a gate road support, we consider the time de-
pendent displacements only in the vertical cross-section (planar problem). Let S(t) be a
surface of the support bounded by B(t) =[Bl(t),Bu(t)] at the current time t, where Bl(t)
represents the lower edge and Bu(t) represents the upper edge of the support. Without
loss of generality, we equal the upper edge with the lower and transform the surface of
the support into one line, i.e., we reduce a real two-dimensional support to an artificial
one-dimensional support; S(t = 0) ∈ R2 → Bl(t = 0) ∈ R , (Figure 1).

The initial configuration of Bl(t), t = 0 is undeformed and known (recorded by laser
scanning). The motion of each point on Bl(t), t = 0, from the initial to the current configu-
ration, is completely defined by a time dependent mapping function. Since the equation of
this function is unknown and it is necessary to make monitoring of support deformations
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at equal or nonequal time intervals. Monitoring at equal intervals is much more applicable
for forecasting deformations of a gate road. It is very important to use the same coordinate
system to describe deformations over the time of monitoring.

Figure 1. Transformation of real two-dimensional support to an artificial one-dimensional support.

The position of the marker m
( →

v , t
)

, induced by rock stress, changes according to the
following vector equation (Figure 2):

→
v (t) =

→
v (t− 1) +

→
u (t), t = 1, 2, . . . , N , (1)

where
→
v (t)—the position vector of the marker m in the current support configuration.
→
v (t− 1)—the position vector of the marker m in the previous support configuration.
→
u (t)—the vector of displacement.
N—time of monitoring.

Figure 2. Change of the marker position over time.

In the xz-coordinate plane, the position of the marker m(x, z, t) is defined as follows:

x(t) = x(t− 1) + ∆x(t)
z(t) = z(t− 1) + ∆z(t),

(2)

The gate road support domain Bl(t) is divided into a finite number of segments “con-
nected” at the marker’s position. Support configuration at current time t is defined by the
set Bl(t) ={mt,i},i = 1, 2, . . . , M, where M is the total number of markers. Let us define a
section of the initial support configuration by the set Dl(t = 0) ⊂ Bl(t = 0); Dl(t = 0) =
{m0,1, m0,2, m0.3}. At time t = 1, the section of initial support configuration will be
transformed and defined by the set Dl(t = 1) ={m1,1, m1,2, m1,3}. At time t = 2, the
topology of the section is defined by the set Dl(t = 2) ={m2,1, m2,2, m2,3}. The time-
dependent path of the section topology transformation for t = 0, 1, 2 is defined as follows:
Dl(0, 1, 2) ={m0,1, m0,2, m0,3} → {m1,1, m1,2, m1,3} → {m2,1, m2,2, m2,3} (Figure 3).
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Figure 3. Change of the section of support configuration over time interval [0, 2].

In conventional matrix form, the data of position of all markers obtained by scanning
for 1 ≤ t ≤ N can be expressed by the time-dependent position vectors as follows:

→
V(t) =

[→
v ij

]
M×N

=


→
v 11

→
v 12

→
v 13 · · · →

v 1N
→
v 21

→
v 22

→
v 23 · · · →

v 2N
...

...
...

. . .
...

→
v M1

→
v M2

→
v M3 · · · →

v MN

, (3)

The position of each marker is represented by each row of the previous matrix, while
each column represents the configuration of the gate road support over time. According to
Equation (2), x and z coordinates of observed markers are defined as follows:

X(t) =
[
xij
]

M×N =


x11 x12 x13 · · · x1N
x21 x22 x23 · · · x2N

...
...

...
. . .

...
xM1 xM2 xM3 · · · xMN

, (4)

Z(t) =
[
zij
]

M×N =


z11 z12 z13 · · · z1N
z21 z22 z23 · · · z2N

...
...

...
. . .

...
zM1 zM2 zM3 · · · zMN

, (5)

As can be seen, the obtained data can be treated as a multichannel time series. Multi-
variate singular spectrum analysis is a very useful tool to process such datasets.

2.2. Gateroad Support Deformation Forecasting Algorithm

Our forecasting algorithm is based on the methodology of the multivariate singular
spectrum analysis (MSSA). In the paper by Harris and Yuan [12], the basic SSA (singular
spectrum analysis) algorithm was presented. Hassani and Zhigljavsky [13] showed that
SSA is a powerful method for time-series analysis and forecasting. Hassani and Mahmoud-
vand [14] pointed out that this method can be applied both to single series and jointly for
several series (MSSA). When it is a case of a two or more series, we are talking about MSSA.
The application of the SSA technique was found to be very useful for time series analysis in
many different fields, such as medicine, biology, genetics, finance, engineering and many
others [15]. The basic concept of the singular spectrum analysis is well presented in the
paper by Hassani et al. [16].
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According to Equation (2), x and z coordinates of the marker m over time correspond
to one channel time series. If we take into consideration the total number of markers is M,
then we are faced with an M-channel time series.

Consider an M-channel time series with a series length of Ni; V(i)
Ni

=
(

v(i)1 , . . . , v(i)Ni

)
,

(i = 1, . . . , M), where N is the time of monitoring. Here, we provide the procedure for the
x coordinates of the markers. The procedure for the z coordinates is completely the same.

At the first stage of the algorithm, the decomposition, includes the following two
steps: embedding and singular value decomposition (SVD) [14,16].

Embedding is a mapping that transfers a one dimensional time series of coordinates
X(i)

Ni
=
(

x(i)1 , . . . , x(i)Ni

)
into a multidimensional matrix

[
Y(i)

1 , . . . , Y(i)
Ki

]
with vectors Y(i)

j =(
x(i)j , . . . , x(i)j+Li+1

)T
∈ RLi , where Li(1 < Li < Ni) is the window length for each series

with length Ni and Ki = Ni − Li+1. The result of this step is the trajectory matrix Y(i) =[
Y(i)

1 , . . . , Y(i)
Ki

]
= (ymn)

Li ,Ki
m,n=1. The trajectory matrix Y(i) is known as a Hankel matrix. Thus,

the above procedure for each series separately provides M different Li × Ki trajectory
matrices Y(i)(i = 1, . . . , M). To form a new block Hankel matrix in a vertical form, we
need to have K1 = . . . = KM= K. The result of this step is the following block Hankel
trajectory matrix:

YV =

 Y(1)

...
Y(M)

, (6)

where YV indicates that the output of the first step is a block Hankel trajectory matrix
formed in a vertical form; index V means vertical.

In the second step, we perform the SVD of YV. Denote λV1 , . . . , λVLsum
as the eigen-

values of YVYT
V , arranged in decreasing order

(
λV1 ≥ . . . λVLsum

≥ 0
)

and UV1 , . . . , UVLsum
,

the corresponding eigenvectors, where Lsum = ∑M
i=1 Li. Note also that the structure of the

matrix YVYT
V , is as follows:

YVYT
V =


Y(1)Y(1)T Y(1)Y(2)T · · · Y(1)Y(M)T

Y(2)Y(1)T Y(2)Y(2)T · · · Y(2)Y(M)T

...
...

. . .
...

Y(3)Y(1)T Y(3)Y(2)T · · · Y(3)Y(M)T

, (7)

The structure of the matrix YVYT
V is similar to the variance-covariance matrix in

the classical multivariate statistical analysis literature. The matrix Y(i)Y(i)T , which is
used in the univariate SSA, for the series X(i)

Ni
appears along the main diagonal, and the

products of two Hankel matrices Y(i)Y(i)T (i 6= j) that are related to the series X(i)
Ni

and

X(j)
Nj

appear in the off-diagonal. The SVD of YV can be written as YV = YV1 + . . . + YVLsum
,

where YVi =
√
λiUVi U

T
Vi

and VVi = YT
V UVi /

√
λVi ,
(
YVi= 0 i f λVi = 0) . UVi are called factor

empirical orthogonal functions and VVi are the left and right eigenvectors of the trajectory
matrix, often called principal components.

The second stage of the algorithm, called reconstruction, includes the following two
steps: grouping and diagonal averaging or Hankelization [14,16].

The grouping step corresponds to splitting the matrices YV1 , . . . , YVLsum
into several

disjointed groups and summing the matrices within each group. The split of the set of
indices {1, . . . , Lsum} into disjointed subsets I1, . . . , Ik corresponds to the representation
of YV = YI1 + . . . + YIk . The procedure of choosing the sets I1, . . . , Ik is called grouping.
For a given group I, the contribution of the component YVI is measured by the share
of the corresponding eigenvalues: ∑i∈I λVi /∑dV

i=1 λVi , where dV is the rank of YVI and
I ⊂ {1, . . . , Lsum}. In a simple case where we have only signal and noise components, we
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use two groups of indices, I1 = {1, . . . , r} and I2 = {r + 1, . . . , Lsum} and associate the
group I1 with the signal component and the group I2 with the noise.

The purpose of diagonal averaging is to transform the reconstructed matrix ŶVi

into a Hankel matrix, which can subsequently be converted into a time series. Let Ỹ(h)

be the approximation of Y(i) obtained from the diagonal averaging step. If ỹ(i)mn stands

for an element of a matrix Ỹ(i), then the jth term of the reconstructed series X̃(i)
Ni

=(
x̃(i)1 , . . . , x̃(i)j , . . . , x̃(i)Ni

)
is achieved by arithmetic averaging ỹ(i)mn over all (m, n) such that

m + n− 1 = j.
The third stage of the algorithm concerns the future positions of the markers and

is based on the vertical multivariate singular spectrum analysis recurrent procedure
(VMSSA-R).

Let us have M-channel series X(i)
Ni

=
(

x(i)1 , . . . , x(i)Ni

)
and corresponding window length

Li, 1 <Li ≤ Ni, i = 1, . . . , M. Optimal values of the window length are discussed in chapter
4 of the paper by Hassani and Mahmoudvand [14].

The VMSSA-R forecasting algorithm for the h-step ahead forecast is as follows:
For a fixed value of K, construct the trajectory matrix Y(i) =

[
Y(i)

1 , . . . , Y(i)
K

]
= (ymn)

Li ,K
m,n=1 for each single series separately; construct the block trajectory matrix YV

as follows:

YV =

 Y(1)

...
Y(M)

, (8)

let UVj =
(

U(1)
j , . . . , U(M)

j

)T
be the jth eigenvector of the YVYT

V , where U(i)
j with length Li

corresponds to the series X(i)
Ni

(i = 1, . . . , M); consider ŶV =
[

Ŷ1 : . . . : ŶK
]

= ∑r
i=1 UVi U

T
Vi

YV the reconstructed matrix achieved from r eigentriples:

ŶV =

 Ŷ(1)

...
Ŷ(M)

, (9)

consider matrix Ỹ(i)
= H× Ỹ(i)

= H Ỹ(i)
(i = 1, . . . , M) as the result of the Hankelization

procedure of the matrix Ỹ(i) obtained from the previous step, whereH is a Hankel operator;
assume U(i)∇

j denotes the vector of the first Li−1 components of the vector U(i)
j and π

(i)
j is

the last component of the vector U(i)
j (i = 1, . . . , M); select the number of r eigentriples

for the reconstruction stage that can also be used for forecasting purposes; define matrix
U∇M =

(
U∇M

1 , . . . , U∇M
r
)
, where U∇M

j is as follows:

U∇M
j =


U(1)∇

j
...

U(M)∇
j

, (10)

define matrix W as follows:

W =


π
(1)
1 π

(1)
2 · · · π

(1)
r

π
(2)
1 π

(2)
2 · · · π

(2)
r

...
...

. . .
...

π
(M)
1 π

(M)
2 · · · π

(M)
r

, (11)
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if the matrix
(

IM×M−WWT)−1 exists and r ≤ Lsum−M, then the h-step ahead VMSSA
forecasts exist and is achieved by the following formula:

[
x̂(1)j1

, . . . , x̂(M)
jM

]T
=


[

x̃(1)j1
, . . . , x̃(M)

jM

]
, ji = 1, . . . , Ni

(IM×M −WWT)
−1WU∇MT

Zh, ji = Ni + 1, . . . , Ni + h
, (12)

where Zh =
[

Z(1)
h , . . . , Z(M)

h

]T
and Z(1)

h =
[

x̂(i)Ni−Li+h+1, . . . , x̂(i)Ni+h+1

]
(i = 1, . . . , M). It

should be noted that Equation (12) indicates that the h-step ahead forecasts of the refined
series are obtained by a multi-dimensional linear recurrent formula (LRF).

2.3. Displacement Time Series Clustering

The time displacement intensity vector of marker m is defined as follows:

∆v(t) =
√

∆x2(t) + ∆z2(t), t = 1, 2, . . . , N, (13)

The universe of displacement (clustering) is defined as the union of the two following
sets:

∆V = ∆V(i)
Ni
∪ ∆V̂(i)

Ni+h, (14)

where ∆V(i)
Ni

is related to the observed displacement series and ∆ V̂(i)
Ni+h to the the h-step

ahead forecasts of the refined displacement series. Note that clustering is performed for
each set separately.

To create the clusters within a defined universe of clustering, we apply the concept of
fuzzy time series. Such series, which were first proposed by Song and Chissom, ref. [17]
are based on fuzzy set theory proposed by Zadeh [18,19]. The most important advantage
of fuzzy time series approaches is to be able to work with a very small set of data and
not to require the linearity assumption. In the process of measuring the cross-section of
the underground roadways, certain measurement errors can occur (conditioned by the
error of the measurement method, instrumental error, personal error by the operator of
the instrument, or the error due to the working environment itself), the nature of fuzzy
time series is a good choice for a credible presentation of displacements of the markers and
its clustering.

Let ∆VM×N be the universe of observed displacement. Data obtained by monitoring
can be clustered in different ways, for example, a cluster composed of marker displacement
over time separately (∆ v12, ∆v32, ∆v24, . . .), a cluster composed of each row or column
data of the matrix ∆V. We focus on each column data in order to see how displacement
intensity of configuration of the gate road support changes over time. For that purpose, we
apply the concept of fuzzy time series with multiple observations [20–22].

A fuzzy set A of ∆VM×N is defined as follows:

A =
fA(∆v11)

∆v11
+

fA(∆v12)

∆v12
+ . . . +

fA(∆v̂MN)

∆v̂MN
, (15)

where fA is the membership function of A, and fA : ∆V → [0, 1] . The symbol “+” de-
notes the union operator. Membership function represents the degree of membership
of ∆vi in A, where fA(∆ vi) ∈ [0, 1], 1 ≤ i ≤ M× N. Let ∆V (t) be the universe of dis-
placement on which fuzzy sets fi(t), (i = 1, 2, . . .) are defined and F(t) is a collection of
f1(t), f2(t), . . . , F(t) that is referred to as a fuzzy time series of ∆V (t). Here, F(t) is viewed
as a linguistic variable and fi(t) represents possible linguistic values of F(t). If F(t) is
caused by F(t – 1) only, the relationship can be expressed as [23]. If the maximum degree of
membership of F(t) belongs to Ai then F(t) is considered to be Ai. Hence, F(t− 1)→ F(t)
becomes Ai(t− 1)→ Aj(t) .

The algorithm of a fuzzy time series model for multiple observations is composed of
the following steps [23]:
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Step 1: define the fuzzy sets for the fuzzy time series. We set the beginning and the
end of the universe of displacement as l =min∆VM×N and u =max∆VM×N , respectively.
The observed data are sorted in ascending order. The distance of any two consecutive
values of displacement is calculated as follows:

d = |∆vi+1 − ∆vi|, i = 1, 2, . . . , (M× N)− 1, (16)

Now it is necessary to compute the corresponding average value d and standard
deviation σd. The intention is to eliminate the outliers from the sorted data and obtain an
average distance value free of distortion. Outliers are values that are either abnormally
high or abnormally low in the sorted dataset. The process of elimination of outliers is
performed as follows:

d− σd ≤ d ≤ d + σd, (17)

Since the process of elimination is completed, a revised average distance value dR
is calculated for the remaining values in the sorted data set. Accordingly, the universe of
displacement is also revised and defined as follows:

∆VR = [lR, uR] =
[
l − dR, u + dR

]
, (18)

The number of equal intervals n is given by the user and each interval is characterized
by an adequate linguistic variable. The variable whose values are words or sentences
in a natural or artificial language is called a linguistic variable. We use five linguistic
variables n = 5 to describe displacement intensity of configuration of the gate road support;
A1 =(very small), A2 =(small), A3 =(medium), A4 =(high), and A5 =(very high). The
length of interval can be calculated by the equation:

L =
uR − lR
n + 1

, (19)

Each interval is obtained as: ∆v1 = [lR, lR + L], ∆v2 = [lR + L, lR + 2L], . . . ,∆vn =
[lR + (n− 1)L, lR + nL]. Linguistic variable Ai (i = 1, 2, . . . , 5) can now be defined ac-
cording to defined intervals as follows:

A1 =
{

1
∆v1

, 0.5
∆v2

, 0
∆v3

, 0
∆v4,

0
∆v5

}
A2 =

{
0.5
∆v1

, 1
∆v2

, 0.5
∆v3

, 0
∆v4,

0
∆v5

}
A3 =

{
0

∆v1
, 0.5

∆v2
, 1

∆v3
, 0.5

∆v4,
0

∆v5

}
A4 =

{
0

∆v1
, 0

∆v2
, 0.5

∆v3
, 1

∆v4,
0.5
∆v5

}
A5 =

{
0

∆v1
, 0

∆v2
, 0

∆v3
, 0.5

∆v4,
1

∆v5

}
(20)

The triangular fuzzy number is used to quantify the linguistic variable. It can be
defined as a triplet (a, b, c). The corresponding membership function is defined as [24]:

µA(∆v) =


0, ∆v < a
∆v−a
b−a , a ≤ ∆v ≤ b

c−∆v
c−b , b ≤ ∆v ≤ c

0, ∆v > c

, (21)

Step 2: determine a fuzzy observation of displacement. Triangular fuzzy number
O(t) =(a(t), b(t), c(t)) is also used to represent displacement of all markers at time point t,
where a(t), b(t), c(t) are the left, middle and right values of the triangular fuzzy number,
respectively. These values are defined in the following way:
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a(t) = min(∆v1t, ∆v2t, . . . , ∆vMt)

b(t) = ∆v1t+∆v2t+...+∆vMt
M

c(t) = max(∆v1t, ∆v2t, . . . , ∆vMt), t = 1, 2, . . . , N,
(22)

In other words, for every observation (column of matrix), it is necessary to separate
minimum, maximum, and average values of displacement for all markers.

Step 3: calculate the fuzzy relationship, Y(t), between each fuzzified observation and
defined fuzzy time series as in Step 1.

Y(t) = (µ1(t), µ2(t), . . . , µn(t)) = ∑n
i=1 max•min(O(t), Ai), µi(t) ≥ 0, (23)

Fuzzified observation of displacement at time point t belongs to cluster Ai if and only
if their intersection has the highest value of membership function; µi(t)→ max.

Each µi(t) is calculated according to Figure 4, representing the intersection between a
fuzzy observation of displacement O(t) and fuzzy time series consisting of A1, A2, . . . , Ai.

Figure 4. Relationship between fuzzy observation and fuzzy time series.

The calculation of the membership function value of intersection is based on the
following approach:

1
b(t)− a(t)

=
µi(∆vi)

∆vi − a(t)
, (24)

1
ci − bi

=
µi(∆vi)

ci − ∆vi
, (25)

From Equations (24) and (25), we can calculate the value of µi(t) as follows:

µi(∆vi) =
ci − a(t)

b(t)− a(t) + ci − bi
, (26)

3. Numerical Example

Artificial data related to displacement of markers are generated in order to verify
the validity of the proposed forecast model. A cross section of the gate road support and
positions of the markers are represented by Figure 5. The coordinate system origin is
located at the left lower corner of the gate road support (marker 1). The time resolution of
observation is five days.

Coordinate data obtained after six observations are represented in Tables 1 and 2 and
Figure 6.
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Figure 5. Gate road cross section with marker positions.

Table 1. X coordinates of the markers (m).

Marker t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

1 X(1) 0.000 0.011 0.025 0.039 0.055 0.068
2 X(2) 0.000 0.019 0.035 0.053 0.071 0.085
3 X(3) 0.000 0.022 0.047 0.079 0.104 0.135
4 X(4) 0.000 0.030 0.072 0.111 0.153 0.207
5 X(5) 0.058 0.095 0.132 0.192 0.230 0.281
6 X(6) 0.233 0.258 0.340 0.384 0.473 0.517
7 X(7) 0.502 0.549 0.630 0.646 0.720 0.732
8 X(8) 0.859 0.876 0.927 0.934 1.010 1.038
9 X(9) 1.278 1.299 1.360 1.351 1.308 1.343

10 X(10) 1.700 1.700 1.730 1.700 1.741 1.729
11 X(11) 2.122 2.089 2.119 2.079 2.054 2.027
12 X(12) 2.541 2.521 2.468 2.449 2.447 2.408
13 X(13) 2.898 2.830 2.814 2.726 2.721 2.665
14 X(14) 3.167 3.108 3.080 3.031 2.995 2.903
15 X(15) 3.342 3.300 3.260 3.184 3.120 3.081
16 X(16) 3.400 3.372 3.339 3.287 3.257 3.226
17 X(17) 3.400 3.387 3.364 3.341 3.313 3.286
18 X(18) 3.400 3.394 3.376 3.357 3.341 3.326
19 X(19) 3.400 3.391 3.379 3.365 3.351 3.341

Table 2. Z coordinates of the markers (m).

Marker t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

1 Z(1) 0.000 0.000 0.000 0.000 0.000 0.000
2 Z(2) 0.624 0.625 0.622 0.621 0.617 0.614
3 Z(3) 1.245 1.231 1.239 1.221 1.235 1.219
4 Z(4) 1.860 1.846 1.853 1.835 1.826 1.823
5 Z(5) 2.305 2.284 2.266 2.266 2.263 2.269
6 Z(6) 2.723 2.669 2.610 2.615 2.579 2.549
7 Z(7) 3.072 2.998 2.916 2.899 2.851 2.843
8 Z(8) 3.371 3.261 3.188 3.133 3.057 2.982
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Table 2. Cont.

Marker t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

9 Z(9) 3.538 3.386 3.251 3.163 3.101 3.044
10 Z(10) 3.590 3.388 3.308 3.207 3.126 3.026
11 Z(11) 3.537 3.344 3.258 3.124 3.031 2.930
12 Z(12) 3.371 3.219 3.146 3.079 3.017 2.936
13 Z(13) 3.072 2.939 2.890 2.815 2.778 2.730
14 Z(14) 2.723 2.662 2.634 2.606 2.587 2.552
15 Z(15) 2.305 2.271 2.241 2.239 2.219 2.209
16 Z(16) 1.860 1.853 1.844 1.839 1.820 1.812
17 Z(17) 1.245 1.241 1.238 1.249 1.244 1.242
18 Z(18) 0.624 0.622 0.621 0.620 0.620 0.622
19 Z(19) 0.000 0.000 0.000 0.000 0.000 0.000

Figure 6. Configuration of the gate road support over the time of observation.

Measurements for t = 0, 1, . . . , 5 are used to create a forecast model, while the
measurement for t = 6 is used as a control series. Detail calculation is provided for the x
coordinates. Figure 7 represents x coordinates of the marker 10 obtained by observation.

The inputs needed to perform multivariate singular spectrum analysis are:

• the number of markers (series) M = 19,
• the time series length needs to be equal to each marker (series) N = 6,
• the window length for each marker (series) L = 3,
• parameter K also needs to be equal to each marker (series) K = 4.

The trajectory matrix of marker 1 is obtained as follows: from the original series X(1) =
(0.000 0.011 0.025 0.039 0.055 0.068), we create the following trajectory matrix of dimension
L× K = 3× 4.

Y(1) =

 0.000 0.011 0.025 0.039
0.011 0.025 0.039 0.055
0.025 0.039 0.055 0.068

, (27)
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The above procedure is performed for each series separately and provides nineteen
different L× K = 3× 4 trajectory matrices Y(i) (i = 1, 2, . . . , 19). The result of this step is
the following vertical formed block Hankel trajectory matrix:

YV =


Y(1)

Y(2)

...
Y(19)

 =



0.000 0.011 0.025 0.039
0.011 0.025 0.039 0.055
0.025 0.039 0.055 0.068
0.000 0.019 0.035 0.053
0.019 0.035 0.053 0.071
0.035 0.053 0.071 0.085

...
...

...
...

3.400 3.391 3.379 3.365
3.391 3.379 3.365 3.351
3.379 3.365 3.351 3.341


, (28)

The eigenvalues of YVYT
V , arranged in decreasing order are λV1= 1066.7105; λV2 =

0.2704;λV3= 0.0135;λV4= 0.0080. The values of the corresponding eigenvectors UV1 , UV2 ,
UV3 , UV4 are represented in Table 3.

Figure 7. x coordinates of marker 10.

Table 3. Corresponding eigenvectors of YVYT
V .

Marker UV 1 UV 2 UV3 UV4

1
0.0011 −0.0570 −0.0017 −0.0151
0.0020 −0.0639 −0.0113 −0.0075
0.0029 −0.0640 0.0038 0.0064

2
0.0016 −0.0761 −0.0163 0.0108
0.0027 −0.0764 −0.0050 −0.0085
0.0037 −0.0744 0.0027 0.0238

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

19
0.2072 −0.0705 −0.0268 0.0102
0.2065 −0.0628 −0.0298 −0.0064
0.2057 −0.0649 −0.0375 −0.0386

The rank of the matrix YV is d = 4. The contribution of the component YVI is measured
by the share of the corresponding eigenvalues (Table 4).
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Table 4. Share of the eigenvalues.

Eigenvalue ∑i∈IλVi /∑
4
i=1λVi

Share (%)

λV1 = 1066.7105 1066.7105/1067.0024 99.9726
λV2 = 0.2704 0.2704/1067.0024 0.02534
λV3 = 0.0135 0.0135/1067.0024 0.00126
λV4 = 0.0080 0.0080/1067.0024 0.00075

Sum: 1067.0024

To perform the reconstruction stage, it is necessary to calculate the principal compo-
nents VVi = YT

V UVi /
√

λVi . The results of this calculation are represented in Table 5.

Table 5. Values of VVi .

VV1 VV2 VV3 VV4

0.5061209 0.6596638 0.1650227 −0.5318409
0.5020078 0.2372012 −0.5817402 0.5924250
0.4982835 −0.2396131 0.7359443 0.3984461
0.4935079 −0.6718575 −0.3059158 −0.4548699

The reconstructed trajectory matrix of all markers achieved from four eigentriples is
presented in Table 6.

The reconstructed series of marker M1 expressed in the form of principal components

achieved by arithmetic averaging of Ŷ(1)
V1

, Ŷ(1)
V2

, Ŷ(1)
V3

, Ŷ(1)
V4

are represented in Table 7 and
Figure 8 separately.

Figure 8. The reconstructed series of x coordinates of the marker M1 decomposed on principal components: (a) the first
principal component 99.9726%; (b) the second principal component 0.02534%; (c) the third principal component 0.00126%;
(d) the fourth principal component 0.00075%.
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Table 6. Reconstructed trajectory matrix of ŶV .

^
Y
(i)

V1
, i = 1,2,. . . ,19

^
Y
(i)

V2
, i = 1,2,. . . ,19

^
Y
(i)

V3
, i = 1,2,. . . ,19

^
Y
(i)

V4
, i = 1,2,. . . ,19

0.01818 0.01804 0.01790 0.01773 −0.01955 −0.00703 0.00710 0.01991 −0.00003 0.00011 −0.00015 0.00006 0.00072 −0.00080 −0.00054 0.00061
0.03306 0.03279 0.03255 0.03224 −0.02192 −0.00788 0.00796 0.02232 −0.00022 0.00076 −0.00097 0.00040 0.00036 −0.00040 −0.00027 0.00031
0.04794 0.04755 0.04720 0.04674 −0.02195 −0.00789 0.00797 0.02236 0.00007 −0.00026 0.00032 −0.00014 −0.00030 0.00034 0.00023 −0.00026
0.02645 0.02623 0.02604 0.02579 −0.02610 −0.00939 0.00948 0.02659 −0.00031 0.00110 −0.00139 0.00058 −0.00051 0.00057 0.00038 −0.00044
0.04463 0.04427 0.04394 0.04352 −0.02621 −0.00942 0.00952 0.02669 −0.00010 0.00034 −0.00043 0.00018 0.00040 −0.00045 −0.00030 0.00035
0.06116 0.06066 0.06021 0.05964 −0.02552 −0.00918 0.00927 0.02599 0.00005 −0.00018 0.00023 −0.00010 −0.00113 0.00126 0.00085 −0.00097

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.42505 3.39722 3.37202 3.33970 −0.02418 −0.00870 0.00878 0.02463 −0.00051 0.00181 −0.00229 0.00095 −0.00049 0.00054 0.00036 −0.00041
3.41348 3.38574 3.36062 3.32842 −0.02154 −0.00775 0.00782 0.02194 −0.00057 0.00201 −0.00255 0.00106 0.00030 −0.00034 −0.00023 0.00026
3.40026 3.37263 3.34760 3.31552 −0.02226 −0.00801 0.00809 0.02267 −0.00072 0.00253 −0.00321 0.00133 0.00184 −0.00205 −0.00138 0.00157

Table 7. Reconstruction stage of principal components of marker M1.

~
x
(1)
0

~
x
(1)
1

~
x
(1)
2

~
x
(1)
3

~
x
(1)
4

~
x
(1)
5

X̃(1)
V1

0.0181832 0.0255479 0.0328769 0.0326088 0.0397158 0.0467429

X̃(1)
V2

−0.0195524 −0.0144750 −0.0075777 0.0066606 0.0151494 0.0223594

X̃(1)
V3

−0.0000326 −0.0000509 0.0002304 −0.0003876 0.0003633 −0.0001351

X̃(1)
V4

0.0007183 −0.0002217 −0.0004133 0.0002287 0.0002666 −0.0002604
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Within the grouping step, we only have signal and noise components and we use
two groups of indices, I1 =

{
λV1 , λV2

}
and I2 =

{
λV3 , λV4

}
and associate the group I1 with

signal component and the group I2 with noise. The reconstructed series of x coordinates of
the marker M1 composed of the signal components are represented in Table 8.

Table 8. The reconstructed series of the marker M1 composed of the signal components.

~
x
(1)
0

~
x
(1)
1

~
x
(1)
2

~
x
(1)
3

~
x
(1)
4

~
x
(1)
5

X̃(1)
V1

+ X̃(1)
V2

−0.001369 0.011073 0.025299 0.039269 0.054865 0.069102

Figure 9 represents the original and reconstructed series of x coordinates of the marker
M1 using only signal group (I1).

Figure 9. Original and reconstructed series of x coordinates of M1.

The reconstructed series X̃(i)
Ni

, i = 1, 2, . . . , 19 achieved by arithmetic averaging of
YV(I1) are represented in Table 9.

Table 9. Reconstructed series of x coordinates of markers based on the signal components.

Marker t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

1 X(1) −0.001 0.011 0.025 0.039 0.055 0.069
2 X(2) 0.000 0.018 0.035 0.052 0.070 0.086

. . . . . . . . . . . . . . . . . . . . .
19 X(19) 3.401 3.390 3.379 3.366 3.353 3.338

The error of the reconstruction stage is calculated according to the following equation
of mean absolute percentage error (MAPE):

MAPEi =
1
N

N

∑
Ni=1

∣∣∣∣∣∣ X̃
(i)
Ni
− X(i)

Ni

X(i)
Ni

∣∣∣∣∣∣× 100%, (29)

The aggregated mean absolute percentage error (AMAPE) of the reconstruction stage
is calculated as follows:

AMAPE =
1
M ∑M

i=1 MAPEi, (30)

MAPEi and AMAPE are represented in Table 10.
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Table 10. Error of reconstruction stage.

Marker MAPE(0)
i MAPE(1)

i MAPE(2)
i MAPE(3)

i . MAPE(4)
i MAPE(5)

i MAPEi(%)

1 0.14 0.66 1.20 0.69 0.25 1.62 0.76
2 0.03 7.18 0.96 1.05 1.62 0.74 1.93

. . . . . . . . . . . . . . . . . . . . . . . .
19 0.03 0.02 0.00 0.02 0.06 0.08 0.04

AMAPE 0.95

Signal components used for the reconstruction stage were also used for the forecasting
purpose. Vector U(i)∇

j , j = 1, 2, composed of the first Li−1 components of the vector

U(i)
j , j = 1, 2, 3, 4, is represented in Table 11.

Table 11. Components of the vector U(i)
j , j = 1, 2.

Marker UV 1 UV 2

1
0.0011 −0.0570
0.0020 −0.0639

2
0.0016 −0.0761
0.0027 −0.0764

. . . . . . . . .
. . . . . .

19
0.2072 −0.0705
0.2065 −0.0628

Vector π(i)j , j = 3, composed of the last component of the vector U(i)
j , (i = 1, . . . , M),

is represented in Table 12.

Table 12. Components of the vector π(i)j , j = 3.

Marker UV 1 UV 2

1 0.0029 −0.0640
2 0.0037 −0.0744

. . . . . . . . .
19 0.2057 −0.0649

Forecasted x coordinates of the markers for h = 1 step ahead are obtained according to
Equation (12) and represented in Table 13.

Table 13. Forecasted x coordinates for h = 1.

Marker t = 6 t = 7 t = 8

1 0.083 0.096 0.108
2 0.102 0.117 0.131

. . . . . . . . . . . .
19 3.323 3.303 3.281

The analogous procedure is performed for z coordinates. The reconstructed series

Z̃(i)
Ni

, i = 1, 2, . . . , 19 are represented in Table 14.
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Table 14. Reconstructed series of Z coordinates of markers based on the signal components.

Marker t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

1 Z(1) 0.000 0.000 0.000 0.000 0.000 0.000
2 Z(2) 0.624 0.624 0.622 0.620 0.617 0.615

. . . . . . . . . . . . . . . . . . . . .
19 Z(19) 0.000 0.000 0.000 0.000 0.000 0.000

The difference between the original and reconstructed series for marker 2 is repre-
sented in Figure 10.

Figure 10. Original and reconstructed series of z coordinates of M2.

Aggregated mean absolute percentage error (AMAPE) of reconstruction stage of z
coordinates is 0.18%. Forecasted z coordinates of the markers for h = 1 step ahead are
obtained according to Equation (12) and represented in Table 15.

Table 15. Forecasted z coordinates for h = 1.

Marker t = 6 t = 7 t = 8

1 0.000 0.000 0.000
2 0.612 0.611 0.609
. . . .

19 0.000 0.000 0.000

The time displacement intensity vector of marker m for t = 0, 1, . . . , 5 and t = 6, 7, 8 is
represented in Table 16.

Table 16. Displacement intensity vector ∆V.

Marker ∆v(t = 0) ∆v(t = 1) ∆v(t = 2) ∆v(t = 3) ∆v(t = 4) ∆v(t = 5) ∆v(t = 6) ∆v(t = 7) ∆v(t = 8)

1 0.000 0.011 0.014 0.014 0.016 0.013 0.015 0.013 0.012
2 0.000 0.019 0.016 0.018 0.018 0.014 0.017 0.015 0.015
... ... ... ... ... ... ... ... ... ...
19 0.000 0.009 0.012 0.014 0.014 0.010 0.018 0.020 0.022

The universe of displacement is defined as follows: D =[l, u], where l =min∆V19×19= 0
and u =max∆V19×19 = 0.2020. The observed and forecasted data are sorted in the fol-
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lowing ascending order: 0, 0, . . . , 0.0063, 0.0090, . . . ,0.1958, and 0.2020. The distance of
any two consecutive values is: 0, 0, . . . , 0.0027, . . . ,0.0062. The corresponding average
value d and standard deviation σd of obtained distances are: d= 0.0011, σd= 0.0038. The
process of elimination of outliers is performed with respect to the following condition:
−0.00265 ≤ d ≤ 0.00503. A revised average distance is dR= 0.000695. A revised universe of
displacement is ∆VR = [−0.0007, 0.2027 ]. According to Equation (19) the length of interval
is 0.0338.

Quantification of the linguistic variables by the triangular fuzzy numbers is repre-
sented in Table 17.

Table 17. Variables obtained by quantification.

Variable ai bi ci

A1 −0.0007 0.0332 0.0671
A2 0.0332 0.0671 0.1010
A3 0.0671 0.1010 0.1349
A4 0.1010 0.1349 0.1688
A5 0.1349 0.1688 0.2027

According to Equation (22), displacement intensity of configuration of the gate road
support for t = 1 is: O(1) = (a(1), b(1), c(1)) = (0.0632, 0.0758, 0.2020 ) (Figure 11).

Fuzzy relationships between fuzzified observation O(1) =(a(1), b(1), c(1)) for t = 1
and defined fuzzy time series are: µA1(1)= 0.587; µA2(1)= 0.754; µA2(1)= 0.915; µA3(1)
= 0.842; µA3(1)= 0.727; µA4(1)= 0.631; µA4(1)= 0.359; µA5(1)= 0.419; µA5(1)= 0. Fuzzi-
fied observation of displacement intensity of configuration of the gate road support for
t = 1 belongs to the cluster A2 because the intersection between O(1) and A2 has the
highest value of membership function, µA2(1)= 0.915, (Figure 11).

Figure 11. Fuzzy relationships between O(1) and A1, A2, A3, A4, and A5.

4. Results

Finally, the obtained sequences of displacement intensity of configuration of the gate
road support over observed and forecasted time is as follows: A2→A2→A2→A2→A2→A1
→A1→A1, see Figure 12.
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Figure 12. Topology of the gate road support over time, blue color-observed and red color-forecasted
configuration.

5. Conclusions

Efficiency of underground mine production directly depends on functionality of the
main gate roads. Due to hard geological conditions and mining activities, deformations of
gate roads are very intensive and happen frequently. Having the ability to monitor and
forecast deformations is recognized as a key role to maintaining the stability of gate roads,
i.e., to maintain their functionality. The signal and noise of deformations are isolated by
multivariate singular spectrum analysis and it is also used to forecast future deformations
with respect to different combinations of obtained principal components. Clustering based
on fuzzy time series enables us to see how the configuration of the gate road support
has generally changed over time and defines the intervals of deformation by adequate
triangular fuzzy numbers. Making decisions and plans based on the intervals is much
more reliable and suitable than performing such activities based on crisp values.

The developed model enables mine planners to create an effective plan to support
repairs, including duration time and costs of reparation with respect to forecasted deforma-
tions. Future research will be focused on carrying an in situ measuring of the deformations
in an underground mine to quantify the quality of the method. Furthermore, the focus will
be on the making of a 3-D model of gate road support deformation forecasting.
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