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Abstract: The combined operation of hybrid wind power and a battery energy storage system can be
used to convert cheap valley energy to expensive peak energy, thus improving the economic benefits
of wind farms. Considering the peak–valley electricity price, an optimization model of the economic
benefits of a combined wind–storage system was developed. A charging/discharging strategy of
the battery storage system was proposed to maximize the economic benefits of the combined wind–
storage system based on the forecast wind power. The maximal economic benefits were obtained
based on scenario analysis, taking into account the wind-power forecast error, and costs associated
with the loss of battery life, battery operation, and maintenance. Case simulation results highlight
the effectiveness of the proposed model. The results show that the hybrid wind–storage system
is not only able to convert cheap electricity in the valley period into expensive electricity in the
peak period, thus resulting in higher economic benefits, but can also balance the deviation between
actual output and plans for the wind power generator to decrease the loss penalty. The analyzed
examples show that, following an increase in the deviation of the forecast wind power, the profit
of the combined wind–storage system can increase by up to 45% using the charging/discharging
strategy, compared with a wind farm that does not utilize energy storage. In addition, the profit
of the combined wind–storage system can increase by up to 16% compared with separate systems,
following an increase in the deviation penalty deviation coefficient.

Keywords: wind-storage combined system; peak-valley electricity price; battery storage system;
charging/discharging strategy; scenario method

1. Introduction

Due to the shortage of traditional fossil energies, and increasing concerns regarding
protection of the environment and the safe use of nuclear power sources, renewable energy
is receiving increased attention from all aspects of society. Wind energy, which is a form
of renewable energy that is the focus of numerous countries, has significant development
potential. However, the random nature and “anti-peak-adjustment” feature of wind power
have negative effects on the safety and economy of power grids. These negative effects be
exacerbated as the penetration rate of wind power increases.

Based on the load variation of power grid networks, electricity use within a single day
can be divided into periods, such as “peak”, “flat”, and “valley”, with specific prices set
for each period. This methodology is an effective means to enhance electricity resource
efficiency and increase the profit of electricity companies [1].

However, due to its random nature and “reverse-peak-adjustment”, the trend of wind
power is the “reverse” of that of the electricity price. Hence, it is difficult for wind farms to
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be profitable. Storage systems have the abilities of high speed “input/output” and flexible
adjustment, and can therefore realize the temporal shift in wind power, thereby increasing
the economic profit of wind farms. Research has been conducted on the combined use of
wind power and storage systems. Ref. [2] describes an optimal multi-use operation strategy
for a wind farm with a battery energy storage system (BESS). Considering intraday energy
market prices and imbalances, mixed integer linear programming was used to identify the
technically and economically optimal operation of a wind farm storage system. Ref. [3]
analyzed the fluctuation of real-time wind power output to obtain the economic maximum
charging/discharging power of a BESS in every scheduling period, based on quantization
index (QI) clustering, aiming to minimize the deviation between the generation scheduling
plan and the actual integrated power of a combined generation system. Ref. [4] presented
a multi-stage stochastic programming model to identify the optimal operation of a wind
power plant with a BESS in the day-ahead, intraday, and secondary reserve markets while
taking into account uncertainty in wind power generation and clearing prices. Ref. [5]
presented a multi-use application of a BESS in a wind farm to increase profit by shifting
energy over time and tracking the time-of-use electricity price. The self-consumption of
the BESS is not addressed.

An optimal control strategy is necessary to implement the developed operation strate-
gies so that the BESS charge/discharge responds to wind output to obtain the desired
operation of the co-work system, while considering the operational constraints of the BESS.
The authors of [6] presented different control strategies for the use of a BESS in wind farms.
In [7], a variable-interval reference signal optimal approach and a fuzzy control-based
charging/discharging scheme were presented to smooth wind power. In [8], the dual con-
trol of two-stage BESS charging/discharging was presented that ensures constant power
flow to the grid within the allowable upper and lower bands. The influence on the lifespan
or economics of the system was not addressed. The authors of [9] presented a control
strategy for battery switching in the operation of two BESS modules that interchange
between charging and discharging modes.

In the optimization of the operation of wind farm storage systems, the above citations
do not take into account the incentive effect of the peak–valley price on wind power
producers. Under the guidance of the price signal, wind power producers can make full
use of the advantages of battery technology to transfer their energy. Furthermore, the
studies noted above do not present specific battery energy storage operation strategies
according to the electricity prices of different periods.

Due to the low accuracy of current wind power forecasting methods, the deviation in
forecasts cannot be reduced to within a negligible range. Therefore, it is not practical to use
the wind power forecast value as the actual value to optimize the operation of the electricity
market. A significant deviation in the actual wind farm output from the day-ahead plan
will have negative consequences for the market. The BESS has flexible charge/discharge
capacity, which can be used to coordinate the wind power output, thereby reducing the loss
caused by any deviation from the wind power plan, and increasing the economic benefits
of the combined generation system. Therefore, studying the problem of wind farm storage
system optimization, while considering the prediction deviation of wind power output,
has research significance.

This study developed a systematic optimized model of a wind–storage co-work
system and, using a simulation experiment, verified the increase in wind farm profit via
the use of storage batteries. The current research was based on the predicted value of
wind power, and the deviation in this prediction, for the calculation of the next-day valley
electricity price and the working curve of the storage batteries, considering the costs of
BESS consumption. The aim was to increase the wind farm profit and lower the deviation
between the actual and planned wind power.
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2. The Structure of Wind-Storage Co-Work System

The battery storage system is located at the position of the exit grid-connection mother
cable of the wind farm. The wind–batteries co-work system is operated via a battery
charge/discharge strategy that is consistent with the working operation of the wind farm.
This structure is shown in Figure 1.
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Figure 1. Schematic configuration of wind-battery energy storage, where PW is the output power
of the wind farm; PE is the charge/discharge power of the battery storage system; PZ is the output
power of the whole system.

The current work plan of the wind farm is an optimized plan that considers the next-
day electricity price curve and the battery self-constraint condition. To maximize economic
profit, based on the concept of energy transport, the main working modes of the wind farm
and battery storage system are described as follows:

(a) Wind farm power output mode: At the peak of the electricity price, the wind farm
derives profit by outputting electricity to the macro-power grid; at the valley of the
electricity price, the wind farm outputs electricity to the storage batteries, with the
aim of selling the stored electricity when the price returns to its peak value.

(b) Storage battery system work mode: At the valley of the electricity price, electricity is
received from the wind farm, which is charging the storage system; at the peak of the
electricity price, the batteries are discharged, resulting in a profit.

The mathematic description of the wind–storage system is:{
PZ = PW + PE Peak Period
PZ = −PW Valley Period

(1)

2.1. Wind Power Output Model Based on Probability Theory

Due to the large number of wind turbines in the wind farm, and their distribution
within a large area, based on the central limitation theory, it can be assumed that the
prediction error of the wind farm’s output obeys the standard normal distribution, with an
average of zero and SD of σW [10,11].

Research on the prediction of wind power output shows that there is a linear relation-
ship between the standard deviation of the wind power output prediction and the output
prediction data [12,13], for which the mathematical description is:

σw(t) =kw p̃w(t)+k0 (2)

where σw(t) is the standard deviation of the wind power prediction deviation in time slot t;
p̃w(t) is the prediction value of wind power output in time slot t; kw, k0 are the coefficients
of wind power output prediction.

Wind power has a strong random deviation, and its prediction error may be large.
In the optimization of a large-scale power grid, the classic technology scenario is usually
adopted to describe this random procedure [14,15].
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According to the theory of probability and mathematical statistics, the probability of
a prediction deviating within a range of ±3σ is 99.75%. Figure 2 shows the wind power
output prediction deviation and the discretization curve in this range. The x-axis is divided
into seven equivalent intervals with zero as the center, and the width of each interval is σ
(standard deviation). Each interval represents a discretized random variable σw(t), w = −3,
−2, . . . , 3, after dividing the probability distribution into the related intervals. For each
interval w, the corresponding probability of the wind power output is Pj. Figure 2 shows
the prediction deviation and discretization curve of the wind power output within this
range. The output of the wind farm in period t is:

pw(t) = p̃w(t) + σw(t) (3)

where σw(t) is the wind power output prediction deviation.
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Derivation of the scenario probability for the wind power output model can accurately
reflect the wind power output in each time slot.

2.2. Storage Battery System Model

The storage battery system has the characteristics of charge status, charge/discharge
power, and efficiency. The charge/discharge power and charge status of the storage battery
system must remain within in a certain range while the system is operating. Over-charging
or over-discharging will result in damage to the battery system. The battery system is a
status-memory system, in which the status at time t has a close relationship with the status
at time t − 1. The output model of the battery system is shown as [16,17]:

pE(t) =

{
ηd∆SOC(t)

∆t ∆SOC(t) < 0
∆SOC(t)

ηc∆t ∆SOC(t) > 0
(4)

SOC(t) = SOC(t− 1) + ∆SOC(t) (5)

SOCmin ≤ SOC(t) ≤ SOCmax (6)

∆SOCmin ≤ ∆SOC(t) ≤ ∆SOCmax (7)

where SOC(t) is the charge status in time slot t; ∆SOC(t) is the deviation of charge status
in time slot t; ∆SOC(t) < 0 means it is discharging in time slot t; ∆SOC(t) > 0 means it
is charging in time slot t; SOCmin is the minimum charge status; SOCmax is the maximum
charge status; pE is the battery system charge/discharge power; ∆t is the time interval; ηc
and ηd are the efficiency of charging/discharging of the battery system, respectively, where
the efficiency of one cycle is ηs = ηc · ηd.

Equation (4) shows the relationship between the battery system’s charge/discharge
power and the battery charge status. Equation (5) shows the relationship between the
charge status at time t and that at t − 1. Equations (6) and (7) show the boundary limitation
of the battery charge status and the charge status deviation at any time.

Because the charge status SOC(t) of the battery system in time slot t is equal to the
accumulation of all previous charges and discharges, and the charge/discharge power of
the battery system at time t is not only affected by the deviation in charge status, but also
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the charge status at the previous time, SOC(t− 1), the charge status at each time will affect
the working strategy of the battery system at the following time [18–20].

In conclusion, the working strategy of the battery system at each time is not only
dependent on the on-grid electricity price, but also the current charge status. Consequently,
the charge/discharge power, charge status, and efficiency of the battery system will have a
large effect on the working statue of the wind farm, and on the wind farm’s profit.

3. Wind–Storage Battery Co-Work Optimized Model
3.1. Objective Function

Given the valley electricity price, the aim is to optimize the wind–battery system by
temporally shifting the wind power output using the battery system, and thus maximize
economic profit. In addition, the battery system is able to quickly respond to deviations in
the wind power output, and thus reduce the cost associated with this deviation. This can
be expressed mathematically as:

maxF = ∑
t
[Fplan(t)− Fpunish(t)]− ccs − com (8)

where F is the total economic profit of the co-work system; Fplan is the planned output
profit of the co-work system; Fpunish is the punishment resulting from the deviation of the
co-work system output; ccs is the daily battery life loss cost; and com is the daily battery
operation and maintenance cost.

The wind farm predicts the output of the following day and, in conjunction with the
battery system, implements the output plan for the following day, to maximize economic
profit. The battery system balances the real and planned electricity output to avoid the risk
arising from an error in output prediction.

3.2. The Output Profit of Co-Work

Based on the output prediction, the electricity price at all times, and the battery system
capacity, the wind farm owner provides the output plan for the following day to the power
grid center. The economic profit of the wind–battery co-work system is:

Fplan(t) = π(t)( p̃w(t) + pE(t))∆t (9)

where Fplan(t) is the planned economic profit of the whole system at time t; π(t) is the
electricity price at time t; p̃w(t) is the wind power output prediction value at time t; pE(t)
is the battery system power at time t.

3.3. Punishment for Output Plan Deviation

Due to the limitations of wind power prediction, in some cases the actual output
power is not consistent with the predicted power. In this case, the battery system has to
respond quickly to “input/digest” this unbalanced capacity:

pdev(t) =
∣∣∣pw(t) + pbel

E (t)− p̃w(t)
∣∣∣ (10)

where pdev(t) is the deviation of the wind–battery system output from the wind prediction
output at time t; LR pbel

E (t) is the charge/discharge power of the battery system to balance
the deviation of the wind power prediction at time t.

However, due to the limitations of the battery system, it is a challenge to balance all
of the deviation, and this unbalanced part increases the difficulty of central control of the
market. Thus, it is necessary to punish the wind farm owner, which is expressed as follows:

Fpunish(t) = ωπ(t)pdev(t)∆t (11)

where Fpunish(t) is the punishment for deviation; ω is the coefficient of output deviation;
π(t) is the on-grid price at time t.
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3.4. The Cost of Battery Life Loss and O&M

Because the operating environment of the battery is complex, the battery often works
under non-rated conditions, and undergoes a series of irregular charging and discharging
processes.

Experimental results show that the lifetime of the battery is closely related to the
depth of discharge (DOD), the rate of charge and discharge, the number of cycles, etc. The
National Renewable Energy Laboratory of the United States proposed a battery cumulative
damage life model based on the analysis of experimental data. This model indicates that
each discharge process of the battery will cause an irreversible reduction of the battery
life until the end of the battery life [21–23]. Under rated conditions, the total discharge
electricity of a battery during the whole life cycle, called the total effective discharge
electricity (ΓR), is expressed as:

ΓR = LRDRCR (12)

where LR is the rated cycle life of the battery; DR is the rated discharge depth (DOD); CR is
the rated capacity of the battery.

The relationship between the actual battery cycle life and the DOD can be obtained by
fitting data from many experiments. Figure 3 shows the cycle life curve of a lithium-ion
battery; the function used to describe this relationship is:

LA = a× D−b × e−cD (13)

where LA is the actual battery cycle life; D is the actual discharge depth; a, b, c are the fitting
coefficients.
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The irregular discharge process of the battery under each non-rated condition can be
equivalent to the consumption of the total effective discharge electricity of the battery (ΓR).
Thus, considering the influence of DOD and the discharge rate, the cost of battery life loss,
closs

i , in the discharge process i can be obtained as:

closs
i =

LRPRdi

LAPdis
i ΓR

ccap (14)

where PR is the rated power; di is the actual discharge electricity in the irregular discharge
process i under the non-rated condition; Pdis

i is the actual discharge power in the irregular
discharge process i; ccap is the initial investment cost of the battery.

The cost of battery life loss is expressed as:

ccs = ∑
i

closs
i (15)

where i = 1, 2, 3, . . . , n represents the discharge process in a day.
The cost of battery operation and maintenance is expressed as:

com = ∑
t

Pout
t εom∆t (16)
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where Pout
t is the operating power of the battery in period t; εom is the unit O&M cost

(USD/Kw); ∆t is the unit scheduling time.

4. Battery System Working Strategy
4.1. Peak–Valley Electricity Price Division

The current division into peak–valley periods in an electrical system is based on a
single day, and is dependent on the daily load curve. Electricity consumption in China
shows that, during the peak period, electricity has a high price; conversely, during the
valley period, electricity has a low price; finally, the electricity price is in a middle band
during the normal load period. Taking a day in spring as an example, detailed price
information is shown in Table 1.

Table 1. Prices of wind power.

Load Period Time Price on Grid ($/kWh)

Peak [7,11] ∪ [17,21] 0.15
Middle [11,17] ∪ [21,23] 0.10
Valley [0,7] ∪ [23,24] 0.06

4.2. Battery Storage System Working Strategy

Generally, to maximize profit, the battery should be charged during the valley period,
and discharged during the peak period. However, the charge status and power constraint
condition limit the shift function of the working period. Based on a single day, the schematic
of the wind–battery co-work system is as follows:

(1) The predicted daily wind power output p̃ w(t);
(2) Ensure the peak periods in a day 1, 2, . . . m, . . . , M, and reverse mark the valley

periods based on peak period nodes n1
j1, n1

j2, . . . ; nm
j1, nm

j2 . . . ; nM
j1, nM

j2 . . . ;
(3) For node m, if there is a valley period nm

j1 (m = 1, 2, . . . M), during this period, the
battery system will only be charged, unless it is fully charged SOCnj1′ = SOCmax;

(4) If there is no valley period nm
j1, in the middle price period, the wind power output

will charge the battery system;
(5) If in periods nm

jq (q = 1, 2, . . . ) the battery system is fully charged, but in period
m it is not fully discharged SOCm’ > SOCmin, the residue energy SOCm’ will be
accumulated into the m + 1 period;

(6) In the peak period, the battery system will only discharge, unless it is fully discharged,
SOCm’ = SOCmin;

(7) In the remaining non-peak periods, the battery system can be charged in valley
periods, and discharged in middle periods;

(8) Calculate the planned output from the co-work wind-battery system in all time
periods pl(t) = pw(t) + pE(t);

(9) Calculate the wind power prediction standard error σw(t) and the probability that a
different prediction error occurs, αk;

(10) According to different scenarios, calculate the difference pdev(t) between the output
of the wind–battery co-work system pz(t) and the planned output pl(t);

(11) Based on Equations (7)–(9), calculate the planned profit Fplan and unbalanced punish-
ment Fpunish;

(12) Obtain the daily optimal economic profit of the wind–battery co-work system.

5. Example Analysis

This paper uses a 10 MW wind farm as an example to illustrate the optimization
calculation. The cycle life coefficients of the lithium-ion battery are a = 694, b = 1.98, c =
0.016. The parameters of the wind–battery co-work system are listed as Table 2.
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Table 2. System parameters of wind-storage.

Parameter Value Meaning

Pw,rated/MW 10 Wind farm rated power
PE,min/MW −6 Battery maximum charging power
PE,max/MW 6 Battery maximum discharging power

SOCmax 1 Battery maximum charge status
SOCmin 0 Battery minimum charge status
SOCt0 0 Battery initial charge status

E/MWh 36 Battery maximum capacity
ηc 0.927 Battery charging efficiency
ηd 0.927 Battery discharging efficiency

LR/Cycle 1300 Rated battery cycle life
DR 0.8 Rated depth of discharge

Ccap/USD/kWh 224.9 Battery investment cost
εom/USD/kW 0.004 O&M cost

ηs 0.859 Battery total efficiency

As shown in Table 2, the maximum charging/discharging power of the battery system
is 6 MW, the capacity constraint is 0~36 MWh, the charge status is 0~1, the initial charge
status is 0.5, and the one-time charging/discharging cycle efficiency is 0.859.

Figure 4 shows the predicted value of the wind power output for a day in spring. The
figure shows a strong and irregular variation in output power. This indicates that the wind
power output is not consistent with the on-grid electricity price.
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Because the fluctuation of the peak–valley electricity price and wind power output
are affected by the season, we used one day from each of the four seasons of the year as an
example; these four days represent four different scenarios according to the corresponding
season. By combining the prediction and on-grid price, a wind–battery co-work system
output curve can be drawn, as shown in Figure 5a–d. Figure 5 shows that, during the valley
period, the output of the co-work system in all four scenarios decreases compared with
the pure wind farm output; during the peak period, the co-work system output increases
compared with the pure wind farm output; during the middle period, the output of the two
systems is mostly consistent— the output of the co-work system only decreases compared
with that of the pure wind farm in the spring and winter scenarios. The economic benefits
of each scenario are shown in Table 3. Table 3 shows that, in all scenarios, the benefits of
the co-work system increase by about 10%~11% compared with the pure wind farm. The
highest profit occurs in the spring scenario and, due to the small output of wind power, the
profit in the winter scenario is the lowest. The battery system converts the low-price valley
electricity to high-price peak electricity to obtain greater economic benefits.
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Table 3. Economic benefits of the wind farm in different scenarios.

Scenario Wind Farm Economic
Profit/USD

Co-Work System Economic
Profit/USD

Spring 11,849 13,079
Summer 10,806 12,076
Autumn 9345 10,407
Winter 8963 9853

The punishment coefficient is applied to reduce the deviation between the real output
and the planned output. To obtain the output deviation, the system should provide a
back-up capacity; the greater the output deviation, the greater the back-up capacity that is
needed. Hence, the punishment coefficient is always a number bigger than 1. In this paper,
it is set to 1.25.

Table 4 shows the predicted economic profit for the wind farm without the BESS
working mode and the wind–battery co-work mode. The table shows that, as the forecast
error increases, the profits of the wind power producer continue to decline. When the
prediction error coefficients kw and k0 are 0.1 and 0.01, respectively, the profit of the co-work
system is 10% greater than that of the wind farm running alone. When the wind prediction
coefficients kw and k0 are 0.2 and 0.02, respectively, a profit increase of 14% is achieved.
Next, when the wind prediction coefficients kw and k0 are 0.5 and 0.05, respectively, a profit
increase of 45% is achieved; this indicates that the percentage improvement increases with
the increase in prediction error. The profit is clearly enhanced via the use of the battery
system, and the greater the prediction deviation, the greater the increase in profit that can
be obtained using the co-work system. This indicates the battery system plays an important
role in decreasing the output deviation.
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Table 4. Economic benefits of the wind farm with different levels of forecast.

kw k0
Wind Farm

Economic Profit/$
Co-Work System Economic

Profit/USD

0.1 0.01 11,849 13,079
0.2 0.02 10,120 11,574
0.3 0.03 8391 10,123
0.4 0.04 6661 8620
0.5 0.05 4932 7134

Table 5 shows the economic profit arising from different values of the coefficient
of deviation for the wind farm without the BESS working mode and the wind–battery
co-work mode, when kw = 0.1 and k0 = 0.01. The table shows that, when the coefficient of
deviation ω is 0.5, although profits continue to decline, the profit of the co-work system is
5% greater than that of the wind farm alone. When the ω is 0.75, a profit increase of 7% is
achieved, which is a greater increment than that of the previous scenario. When ω is 1.00,
a profit increase of 9% is achieved. Finally, when ω is 2.00, the increase in profit is 16%.
Although the benefits continue to decline, the improvements due to the co-work system
are greater than those of the pure wind system. When the penalty coefficient increases,
the battery system can also clearly increase the profit by reducing the output deviation.
Overall, it is necessary for the operator to set a reasonable penalty coefficient of deviation
because it will have an impact on the profits of the power generator. To prevent wind
power producers from being too cautious or optimistic when reporting their output plans,
the penalty coefficient should not be set too high or too low. The ideal deviation penalty
coefficient selected in this paper is 1.25.

Table 5. Economic benefits of the wind farm with different values of coefficient of deviation.

ω
Wind Farm Economic

Profit/$
Co-Work System Economic

Profit/ USD

0.50 12,887 13,604
0.75 12,541 13,422
1.00 12,195 13,247
1.25 11,849 13,079
1.50 11,503 12,914
1.75 11,158 12,749
2.00 10,812 12,583

6. Conclusions

By locating the battery system at the wind farm’s output node, thereby ensuring that its
operation is consistent with that of the wind farm, it can have a significant influence on the
wind farm’s economic profit. In this paper, by considering the peak–valley electricity price,
and adopting the power and energy temporal transfer of a battery system, we constructed
a wind–battery co-work charge/discharge strategy model. Based on the prediction error of
wind power output, and the flexible ability of the battery system to adjust the deviation
of the wind power prediction, an analysis of the economic profit due to the wind–battery
co-work system was undertaken. The simulation results show:

1. A lower prediction deviation of wind power output decreases the economic profit of
the wind farm. The economic benefits of the co-work system decrease from $ 13,079
to USD 7134 with an increase in prediction deviation.

2. The battery system can convert the low-price valley electricity to high-price peak
electricity, thus reducing the negative effect of prediction deviation and enhancing
the economic profit of the wind farm. As the deviation in the wind power forecast
increases, the benefits of the combined wind–storage system increase by up to 45%,
compared with 10% for the wind farm without energy storage.
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