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Abstract: In this study, we present the wind distributions from a long-term offshore met mast and a
novel approach based on the measure–correlate–predict (MCP) method from short-term onshore-
wind-turbine data. The annual energy production (AEP) and capacity factors (CFs) of one onshore
and four offshore wind-turbine generators (WTG) available on the market are evaluated on the
basis of wind-distribution analysis from both the real met mast and the MCP method. Here, we
also consider the power loss from a 4-month light detection and ranging (LiDAR) power-curve test
on an onshore turbine to enhance the accuracy of further AEP and CF evaluations. The achieved
Weibull distributions could efficiently represent the probability distribution of wind-speed variation,
mean wind speed (MWS), and both the scale and shape parameters of Weibull distribution in Taiwan
sites. The power-loss effect is also considered when calculating the AEPs and CFs of different WTGs.
Successful offshore wind development requires (1) quick, accurate, and economical harnessing of a
wind resource and (2) selection of the most suitable and efficient turbine for a specific offshore site.

Keywords: measure–correlate–predict (MCP); wind-turbine generator (WTG); annual energy
production (AEP); capacity factors (CFs); light detection and ranging (LiDAR); mean wind speed (MWS)

1. Introduction

The global necessity of developing renewable energy is rising due to climate change
and the exhaustion of fossil-fuel-based energy sources. According to an Intergovernmental
Panel on Climate Change (IPCC) report, renewable-energy sources have the potential to
reduce carbon emissions and solve the climate crisis [1]. As a result, renewable energy could
play a key role in the post-oil era by providing stable and clean energy [2]. Wind-power
energy was developed in the 1990s in Europe, and Denmark installed the first offshore wind
farm (OWF) in 1991 [3]. Many countries have since launched related programs for offshore-
wind-power (OWP) development. Wind energy is the fastest growing renewable-energy
source, receiving global attention due to advances in technology for harnessing its power.
The utilization of wind power is an answer to environmental and climate-change problems
and is a means of conserving conventional-energy sources. To catalyze the development
of wind farms, several global research projects are being run to assess wind potential and
predict wind energy [4].

Compared to onshore wind energy, offshore wind energy provides more stable output
and higher energy density, has smaller scale restrictions, and is less likely to cause civil
complaints [5]. Consequently, offshore wind power has been the official energy policy in
Europe for many years. The ratio of renewable energy reached 20% of total power usage
on the basis of the EU program in 2020, in which offshore wind energy plays a crucial
role. The Global Wind Energy Council (GWEC) in 2018 estimated the annual installed
capacity of global offshore wind power to 2017 as 18,814 MW in 17 countries, with 11 in
Europe accounting for 15,780 MW, equivalent to 84% of total capacity, and the other 16%
for Taiwan, Vietnam, the US, South Korea, etc. [6]. The installed capacities in the top two
countries, the UK and Germany, were 6836 and 5355 MW, equivalent to 36% and 28.5%,
respectively [7]. China had the third largest installed capacity at 2788 MW, accounting
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for 15%, followed by Denmark. There are still more undeveloped offshore wind farms
in Taiwan.

In Taiwan, over 98% of the energy supply is imported from other countries, particu-
larly fossil fuels (81.5%) [8]. Therefore, the Taiwanese government is actively developing
renewable energy, especially in the offshore wind sector. The goal of installed capacity of
offshore wind power in Taiwan was 520 MW in 2020 and will reach 5500 MW in 2025. Off-
shore wind power has three planning stages, namely, demonstration wind farm, potential
wind-farm development, and zone development. The stakeholders who joined the first
stage (demonstration wind farm) are Taipower, SWancor, and TGC. These stakeholders
individually completed the installation of offshore met masts in March 2015 and have since
measured long-term offshore wind data. SWancor finished the first two offshore wind
turbines near the Miauli coast and achieved an 8 MW installation capacity in October 2016,
which extended the frontier of the offshore-wind-power industry in Taiwan. The develop-
ment of offshore wind farms in Taiwan has passed the planning stage and is moving to
extensively set up wind turbines. Phenomena such as frequent typhoons and earthquakes
have made Taiwan a leader in offshore-wind-power development in Asia by finding a
tremendous and essentially infinite energy source in Earth’s seas.

The most promising marine energy sources are offshore wind energy and wave en-
ergy [9]. Wave-energy harvesting is still in the early stages of development; therefore,
a potential solution for the acceleration of its development is the combination of two
different energy resources [10]. Wind power plays a key role in reducing global carbon
emissions. The power curve provided by wind-turbine manufacturers offers an effective
way of presenting the global performance of wind turbines; however, due to the com-
plicated dynamic nature of offshore wind turbines and the harsh environment in which
they are operating, wind-power forecasting is challenging, but it is vital to enable condi-
tion monitoring (CM) [11]. The future of offshore energy harvesting relies upon further
technological advancements of wind-turbine generators (WTG), national policies, and the
number of large companies and developers involved in this sector. A key issue regarding
the development of offshore wind harvesting is wind distribution and machine selection.
Therefore, huge amounts of offshore wind energy could be developed in Taiwan in three
decades; however, generating this offshore-wind-energy supply in Taiwan requires an
accurately and economically represented wind distribution, the prediction of wind-farm
output, and the selection of suitable machines.

In this study, we propose an applicable wind-power estimation of Taiwan offshore
sites via a long-term operating met mast and demonstrate a prediction method for wind
resources from short-term near-shore data. Lastly, the AEPs or CFs of several market-
available turbine types are explored to identify the most efficient machine in offshore sites,
and the gap between met-mast and prediction-method data.

2. Theories of Wind Energy Systems
2.1. Wind

Wind is the large-scale air flow on Earth’s surface. Winds are commonly classified by
their spatial scale, their speed, the types of forces that cause them, the regions in which
they occur, and their effect. Some wind characteristics are velocity (wind speed), density,
content, and energy. In this section, we introduce the basic definitions of wind and related
theorems of wind-energy assessment.

A. Wind Energy

Wind power is the application of wind to provide mechanical power through wind
turbines for generating electrical power. The kinetic energy in a parcel of air of mass m
flowing at speed v in the x direction is given by Equation (1):

U =
1
2

mν2 =
1
2
(ρΛx)ν2 (1)
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where Λ denotes the cross-sectional area in m2, ρ is air density in kg/m3, and x denotes the
thickness of the parcel in m.

B. Wind Power

Wind power passing through an area Λ perpendicular to the wind is given by
the following:

Pw =
dU
dt

=
1
2

ρΛv2 dx
dt

=
1
2

ρΛv3. (2)

This can be viewed as the power being supplied at the origin to cause the energy
of the parcel to increase according to Equation (1). A wind turbine extracts power from
side x, with Equation (2) representing the total power available at this surface for possible
extraction. The wind industry needs to be able to describe variations in wind speed. Turbine
designers need this information to optimize their designs, thus minimizing generating
costs. Wind-farm developers also need wind distribution to predict the AEP and to select
a turbine to maximize the power production. Wind variation for a typical site is usually
described using the so-called Weibull distribution, as shown in Figures 1 and 2. Figure 1
shows the curves of Scale Factor 1 with different shape factors. Figure 2 shows the curves
of Shape Factor 3 with different scale factors.

Figure 1. Weibull distribution for different shape parameters (k).

Figure 2. Weibull distribution for different scale parameters.
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C. Weibull Distribution

The Weibull distribution is defined as follows [12–15]:

f (v) =
k
A
(

v
A
)

k−1
e−

v
A

k
k > 0, v > 0, A > 1 (3)

where Weibull distribution f (v) is depicted by shape factor k and scale factor A.

D. Mean Wind Speed

This is a two-parameter distribution, where A and k denote the scale and shape
parameters, respectively. Wind speed v is distributed as Weibull distribution f (v). Mean
wind speed v is derived as [16]:

v =
∫ ∞

0
v

k
A

( v
A

)k−1
e−( v

A )k
du. (4)

If the change in variable is as follows,

x =
( v

A

)k
, (5)

then the mean wind speed can be expressed as

v = A
∫ ∞

0
x

1
k e−xdx. (6)

Gamma function Γ(y) is generally written in the following form:

Γ(y) =
∫ ∞

0
e−xxy−1dx. (7)

E. Wind-Speed Variance

Equations (6) and (7) have the same integral if y = 1 + 1/k. Mean wind speed and
variance are then

ν = AΓ
(

1 +
1
k

)
(8)

σ2 =
∫ ∞

0
(ν − ν)2 f (ν)dv = A2

(
Γ
(

1 +
2
k

)
− Γ2

(
1 +

1
k

))
= (ν)2

 Γ
(

1 + 2
k

)
Γ2
(

1 + 1
k

) − 1

 (9)

Scale parameter A and shape parameter k can then be derived from the average wind
speed and variance on the basis of Weibull distribution. On the basis of this equation, the
ratio of common wind speed rises with rising k. Acquired data at many widely spread
locations can be naturally well-defined by Weibull density function over a long-enough
time period. Scale parameter A can scale the curves to fit different wind-speed distributions,
as shown by Equation (3). Since the properties of a probability density function entail that
the area under the curve must be unity, then the curve has to horizontally expand as it is
vertically compressed. Therefore, corresponding wind-speed distribution may be adopted
for any value of A with the appropriate scale parameter.

F. Measure–Correlate–Predict Method

If no or a few measurements are available for estimating the wind-energy resource at
a given potential windfarm site, then available measurements should be supplemented
by measurements over a longer period from another site. This method is based on the
assumption that the overall wind climate remains the same within a distance given by
local mesoscale conditions [17]. Renewable-energy researchers have applied measure–
correlate–predict (MCP) algorithms for many years to construct wind-resource models
with the long-term conditions at a specific site based on short-term wind-data collection.
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MCP algorithms are used to predict a wind resource by modeling wind data (speed and
direction) measured at the special site over up to a year, together with coexisting data at a
neighboring reference site. The model employs long-term data from the site to simulate and
analyze the long-term wind distributions at the target site. In general, MCP characterizes
wind-speed distributions as a function of wind direction at a target site to obtain the annual
energy estimation of a wind farm located there. Local obstruction, atmosphere gradient,
large-scale weather influence, and terrain effects induce stochastic variations of wind speed
and direction for spread of distance and time. Therefore, corresponding models and co-
existing wind data should be considered carefully to improve the consistency between
simulation and actual results. Well over half a dozen variations on the MCP technique
have been proposed over the last 15 years, in part to address some of the specific concerns
mentioned above [18]. The variations include two-dimensional, vector, and nonlinear-
regression techniques [19], matrix approaches [20], artificial neural networks [21–23], and
joint probability distributions [24–26]. MCP methods fundamentally differ in the relation-
ships that they establish between wind data (speed and direction) recorded at the target
site and simultaneously recorded wind data at one or various nearby weather stations that
serve as reference stations and for which long-term data series are available.

2.2. Wind-Turbine Output

A. Mechanical Power

Converted mechanical power is the difference between input and output wind power:
extracted power is typically expressed in terms of undisturbed wind speed v and turbine
area Λ. This method yields:

Pm,ideal =
1
2

ρ

(
16
27

Λv3
)

. (10)

Factor 16/27 = 0.593 is called the Betz coefficient and refers to the maximal fraction of
power (59.3%) that an actual turbine can extract in an undisturbed tube of air within the
same region. The extracted fraction of power could in practice be smaller due to mechanical
imperfections. The highest wind power yield in optimal conditions is around 35–40%,
although fractions as high as 50% have been claimed [7]. The extracted fraction of power
from wind power by a practical wind turbine is represented as Cp, which is the coefficient
of performance. Using this notation and dropping the subscripts of Equation (10), the
actual mechanical power output can be expressed as

Pm = Cp

(
1
2

ρΛv3
)
= CpPw. (11)

The coefficient of performance is not a constant but varies with wind speed, tip speed
ratio, the rotational speed of the turbine, and turbine-blade parameters such as angle of
attack and pitch angle. The relationship between average power and wind speed based on
wind data modeled by probability density function f(v) depends on multiple shape and
scale parameters, as shown in Figures 1 and 2.

B. Annual Energy Production

Full information about the wind’s characteristics is essential to evaluate the wind-
energy potential of a field. This information should be measured by a wind mast installed
at the specific site as the reference for the whole area, but the cost of installation and oper-
ation means that wind data are insufficient for evaluating wind-energy potential. Wind
measurement is commonly performed by linear models such as the Wind Atlas Analysis
and Application Program (WASP). Linear models employ linear equations to define the be-
havior of wind flow over a territory and are inadequate for evaluating wind characteristics
in complex fields such as terrains with hills, depressions, and valleys [27]. Computational
fluid dynamics (CFD) targets exactly this problem of quantitatively describing all phys-
ical phenomena involved in a real fluid and determining a prediction model [28]. The
wind-energy sector is slowly but increasingly applying CFD rather than linear models for
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complex-terrain, forest, and wake models. A simulated model using CFD comprehensively
evaluates wind flow and wind power in practical sites [29]. Some CFD software (listed
below) is available to analyze wind flow in different media and structures. A brief review
of the wind-energy literature reveals many mathematical models for calculating wind flow
over a certain region [30]. Recent CFD software already provides essential data to simulate
wind flows over complex terrains [31]. The specific location, height, and time of wind can
provide an estimation of wind power. A complex, hilly, and mountainous terrain increases
the difficulty of estimation. Software applications such as WindSim and OpenFOAM are
available for wind-flow analysis involving flatlands, hills, and mountains. Researchers
compared the performance of the two CFD software above for simulating wind flow over
practical terrains [32]. Windographer is an advanced software application that quickly
imports data from almost any format and automatically determines the data structure,
removing the need to specify details such as time step or date format before analyzing the
data [33]. This tool allows for the high-quality control and import of virtual data in each for-
mat and can also export to all common wind-flow models in the wind-power industry [34].
The assessment of wind resources can be performed either experimentally or numerically.
Long-term historical wind data would ideally be available for every possible wind-turbine
location. This information is not available but can be constructed by a combination of
experimental and numerical methods. Wind conditions are experimentally determined in
a fixed point, and the data can be extrapolated in the surrounding region in a numerical
model. This study assesses wind resources on the basis of long-term historical wind data
and power output. Regarding flexible hub heights and applicable wind conditions, short-
term measurements near the wind turbines are designed to be experimentally analyzed
by the program for the potential sites. Annual energy production (AEP) quantifies the
wind-energy potential of a given site. The estimated AEP, not accounting for uncertainties,
is calculated by multiplying the total hours by the average wind-turbine power [35].

EAEP = T
∫ ∞

0
Pwt(v) fv(v)dv, (12)

where T denotes the number of hours for one year, generally 8760 h; Pwt(v) represents the
power-performance curve; and fv(v) indicates the wind-speed probability density function
(PDF). Power-performance curve Pwt(v) is a single fixed curve that is typically obtained
from the turbine manufacturer. The AEP is estimated by Equation (12) from the mean
values of the power-performance curve and the wind-speed PDF. Figure 3 shows the
respective power output of varying wind speed for most wind turbines, where Vi is the
cut-in wind speed, VR denotes the rated wind speed, V0 denotes the cut-out wind speed,
and PR denotes the rated power [36].

Therefore, the electrical output power may be expressed by

Pe = PRPn. (13)

Available power Pa = 1/2ρΛV3 of a wind turbine is defined as the “potential” power
of the undisturbed stream of area Λ. Hence, PR is the rated power given by

PR = ηoRPa = ηoR
1
2

ρΛV3
R, (14)

where ηoR denotes the overall efficiency of the wind turbine, ρ denotes the air density, and
Λ denotes the rotor sweeping area in Equation (14).
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Figure 3. Generation of output electrical power of pitch-controlled wind turbine.

C. Power Models

Normalized power Pn is expressed as

Pn =
Vn − Vn

i
Vn

R − Vn
i

. (15)

Different empirical power models are generated by setting n to 1, 2, 3, or k (the
Weibull shape factor) to form the linear, quadratic, cubic, and general power models,
respectively [37,38]. The power model can be conclusively expressed, as shown in Figure 1,
based on [39,40]

Pe = PR


0 Vi < V
Pn Vi ≤ V ≤ VR

1 VR ≤ V ≤ V0

0 V0 ≤ V

. (16)

D. Capacity Factor

Capacity or rated output is the maximal electric output that a generator can produce
under specific conditions. Each generating facility has a “nameplate capacity” indicating
the maximal output that the generator can convert. Capacity factor (CF) is the ratio of
what a generation unit is capable of generating at maximal output versus the unit’s actual
generation output over a period of time, generally a year.

CF is defined for a wind turbine using renewable energy. The CF definition clearly
shows how much power is possible to extract from wind: a turbine with a higher CF value
is more suitable for a specific site in terms of production [41]. CF is defined as the ratio of
average output power to rated power, with the dimensionless index expressed by

CF =
Pe,avg

PR
=
∫ VR

Vi

Pn f (V)dV +
∫ V0

VR

f (V)dV. (17)

If the mean annual wind speed at a site is known or can be estimated, then the
following formula can be used for a rough initial estimate of the electricity production from
a number of wind turbines.
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The AEP is generally defined by

AEP = Pe,avg·time = Pe,avg·8760 (kWh). (18)

The normalized AEP is calculated by annual mean wind energy, that is, WM = 0.5 ρΛ
V3

M × time. Second capacity factor CFII is then calculated as

CFI I =
Pe,avg·time

WM
= ηoR(

VR
VM

)
3
CF, (19)

where VM denotes the annual mean wind speed of a defined area and where CFII indicates
a dimensionless and positive parameter less than 1.

3. Proposed Estimation for Wind-Turbine Output

The power output of offshore wind turbines is generally directly estimated from local
wind data. Related data could be measured by sensors installed in the offshore area. The
performance of a wind turbine is ideal for generating the corresponding power output
derived from the collected wind data. Routine maintenance, occasional incidents, and
unexpected accidents all influence the availability of a wind turbine. A wind turbine
comprises some components, intrinsically consumes partial wind power, and operates
intermittently between available periods. The increase and reduction in wind speed are
generally not fully compatible with the power output derived from a wind turbine caused
by the physical characteristics. Therefore, a wind-turbine output model based only on wind
data without consideration of other issues could overestimate the practical performance of
a wind turbine.

Offshore and onshore circumstances are certainly different in many conditions; how-
ever, local wind data are gathered from the local environment and induce related charac-
teristics of on-site wind turbines. Since the practical effects of a wind turbine are verified
from the actual power output, offshore wind-turbine output can be evaluated by the same
criteria rather than by the consideration of simplified wind data. Nearshore wind data were
measured by light detection and ranging (LiDAR) beside a wind turbine for verification
from November 2019 to March 2020. Wind speed can be more than 25 m/s in the beginning
of winter, as shown in Figure 4a. Nearshore wind speed usually has a similar pattern
to that of offshore wind speed. The location of the measuring site from November 2019
to March 2020, shown in Figure 4b, was Changhua Coastal Industrial Park (N 24.157736,
E 120.429382).
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Figure 4. (a) Wind speed measured by LiDAR; (b) measuring LiDAR in Changhua Coastal Industrial Park.

Figure 5 depicts the nearshore wind direction, which keeps to the northeast for most
winters in Taiwan. The dominant wind direction is about 22.5 degrees due to the monsoon
in Taiwan. Although wind direction is not steady all the time, it correlates with wind speed.
Higher wind speed can sustain wind-direction stability, as the main air flow dominates the
wind direction with higher dynamic energy than subordinate flows do.
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Figure 5. (a) Wind direction measured by LiDAR; (b) wind rose map for multiple levels.

The diurnal profile in Figure 6 shows about 30% variation in wind speed within a
full day, with wind speed obviously increasing between 10:00 and 17:00 and decreasing
afterwards. The diurnal-temperature profile in Figure 6 is similar to the wind-speed profile
because vigorous air flow with higher temperatures above the ground or sea level can
induce higher wind speed. The daily strongest wind occurred at about 17:00 and had the
same trend as that of temperature.
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Figure 6. Mean diurnal profile of wind speed at multiple levels and temperatures.

The selected wind turbine (Vestas V80-2.0) for actual output estimation is located
at Changhua Coastal Industrial Park, as shown in Figure 7. The sensors on the hub
continuously measured the wind data (Figure 8a) but were located behind the blades.
Therefore, wind data were incompletely correlated with the power output (Figure 8b) of
the wind turbine. The LiDAR (Figure 4b) was installed to gather upstream wind data to
correspond with the power output of the wind turbine. As the measuring period was
shorter than the operation duration of a wind turbine, the MCP was employed to extend
the wind data of the LiDAR for further estimation. Figure 9 shows AEP estimation results
for between January 2019 and March 2020 based on synthesized wind data simulated by
MCP. It shows that the power output during winter period is generally high due to the
monsoon in Taiwan.

Figure 7. Selected wind turbine (N 24.157736, E 120.429382) for output estimation.
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Figure 8. (a) Wind speed on the wind-turbine hub;(b) wind turbine power output.

Figure 9. (a) Synthesized wind-speed trend chart (MCP); (b) synthesized wind rose map (MCP).

The Weibull distribution for the wind speed of the wind turbine and LiDAR was
modeled with the Windographer application. Figure 10 shows the shape parameters (k)
and scale parameters (A) of the Weibull distribution fit by the program. Figure 11a depicts
a graph of the wind-speed profiles for the wind turbine (Hub) and LiDAR (MCP), which
showed less of a difference in low wind speeds (<10 m/s) than that at a high wind speed
(>15 m/s). Correlation between the two methods was very strong (R2 = 0.991). Conversely,
Figure 11b shows that offshore wind speed could be analyzed with the nearshore wind
speed derived from MCP. The related correlation was lower (R2 = 0.895) because the corre-
sponding distance between turbine location and met mast was large, and the surrounding
terrains were distinct on the basis of their specific locations. The other reason is the rough-
ness difference between sea and land. The portion of low wind speed (<10 m/s) was higher
in Figure 10 than that in Figure 12. In contrast, the portion of high wind speed (>15 m/s)
was higher in Figure 12 than that in Figure 10. Wind-speed distribution is the key indicator
of insufficient wind data for offshore-wind assessment based on nearshore wind data. This
implies that insufficient wind data can be corrected by MCP derived from nearby long-term
wind data. This approach cannot overcome the short distance required to reach a high
correlation level (>0.9) for further estimation.
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Figure 10. Weibull distributions of wind speed by wind turbine and MCP.

Figure 11. (a) Wind speed for wind turbine (hub) and LiDAR (MCP); (b) wind speed for offshore met mast and nearshore
LiDAR (MCP).
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Figure 12. Weibull distributions of wind speed by offshore met mast and MCP.

Table 1 shows that the standard deviation, wind-speed variation, mean wind speed,
and both scale and shape factors from met mast data were higher than those from MCP.
The main reason seems to be that offshore wind speed is generally higher than onshore
wind speed because MCP data were predicted from an onshore wind turbine. The stronger
mean wind speed enlarged all other parameters shown in Table 1.

Table 1. Key parameters of wind distribution from met mast and MCP.

Standard
Deviation

(m/s)

Wind-Speed
Variation

(m/s)2

Mean Wind
Speed (m/s)

Scale
Factor (A)

Shape Factor
(k)

Met mast 5.804 33.686 9.992 11.292 1.836
MCP method 5.751 33.074 9.0352 10.161 1.671

The AEP (6817 MWh) derived from the wind data alone does not consider the physical
inertia of multiple components of the wind turbine and the other imperfect factors to
simulate the power output, as shown in Figure 13. Figure 14 depicts the actual performance
for wind power based on the practical output of the wind turbine. Due to the limited
data collection, the estimated AEP (6284 MWh) derived from the practical output was
based only on data from 2019. Many events can induce the power loss of a wind turbine,
including routine maintenance, unscheduled incidents, accidents, and repairs. Therefore,
the estimated net power output from the wind turbines based on the measured multiple-
level wind data (LiDAR) with corresponding correction factor was about 747.5 kW. The
above criteria establish the correlation between the output of the related wind turbines and
measured wind data.
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Figure 13. Gross mean power-output estimation (Vestas V80–2.0).

Figure 14. Wind-turbine practical-output trend chart.

Accordingly, the proposed approach to estimate nearshore or offshore wind power
can utilize measured or flexible short-term wind data for multiple levels. MCP is the most
efficient method for performing AEP estimation in the required time period, and LiDAR
fulfills the requirement of on-site measurement. The following describes the practical
estimation of AEP for various wind turbines.

4. Case Studies

Designers of wind-turbine generators need to consider factors such as the wind class
of the selected site, environmental requirements, turbine price, power capacity, energy
production, and the wake effect. Classical AEP methodology was applied to analyze
and calculate relevant indicators. To perform the feasibility study of an offshore wind
farm, electrical energy to be produced at the site first needs to be estimated [41]. Data
that reflect wind characteristics such as average speed, turbulence, standard deviation,
atmospheric pressure, temperature, and direction are essential for estimation. The collected
data for the evaluation of a wind resource in the studied site are summarized by the wind
rose, which reflects the distribution of the wind direction and speed frequency. LiDAR
can measure wind data at multiple hub heights (60–130 m) for various wind turbines,
producing efficient and practical AEP estimations for a specific wind turbine. This section
describes several wind turbines that have been proposed or installed in the sites of Taiwan
as potential candidates for AEP estimation. Some related performance indices are also
analyzed. Although five wind turbines were compared to demonstrate the approach
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of practical power output (AEP) estimation using short-term wind data (in Table 2), no
significant differences in the individual designed performance were identified, as shown in
Figure 15.

Table 2. 2019 Monthly net mean power output for five wind turbines.

Net Mean Power Output (kW)

Month
Vestas

V80-2.0 MW
(67 m)

HTW 5.2-127
(90 m)

AREVA Wind
M5000-116 (100 m)

GE 6.0-150
(100 m)

Vestas
V164-9.5

MW (110 m)

Jan 1136.4 3059.9 3154.20 3814.5 5713.7
Feb 975 2624.2 2736.2 3322.2 4943.0
Mar 714 1936.4 2064.5 2537.5 3693.4
Apr 483.1 1379.2 1509.6 1903.2 2643.8
May 482.9 1358.0 1474.5 1838.1 2598.7
Jun 258.4 798.6 905.5 1191.7 1564.0
Jul 295 891.2 1013.6 1323.6 1737.8

Aug 303.1 875.3 950.1 1216.7 1683.1
Sep 821.2 2218.7 2297.9 2795.5 4166.9
Oct 1063.1 2853.4 2929.8 3542.9 5333.3
Nov 1208.1 3195.5 3237.3 3902.2 5932.1
Dec 1080.8 2796.5 2885.5 3496.3 5208.2

Figure 15. Summarized net mean power-output profiles.

Generators generally operate at different output levels due to maintenance issues,
weather conditions (wind availability), fuel costs, or instructions from the electric-power
grid operator. Therefore, the capacity factor (CF) is a valuable tool for comparing the
efficiency of wind turbines. The comparison results in Table 3 and Figure 16 show that
the GE-6.0-150 turbine (overall CF = 44.73%) was the optimal option based on the same
criteria and situation for the five candidates. GE-6.0-150 is not the most powerful wind
turbine (which is V164-9.5 MW) among the five options, but it represents the optimal power
for the specific site based on the highest capacity factor with a power-loss effect, and it
may include maintenance, and weather conditions such as wind and other related events.
Table 2 and Figure 15 show that the net mean output during winter from September to
March is significantly higher (about two times) than that during the summer period from
April to August because wind speed is high during the monsoon in Taiwan.
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Table 3. 2019 Net capacity factors for five wind turbines.

Net Capacity Factor (%)

Month
Vestas

V80-2.0 MW
(67 m)

HTW 5.2-127
(90 m)

AREVA Wind
M5000-116 (100 m)

GE 6.0-150
(100 m)

Vestas
V164-9.5

MW (110 m)

January 56.82 58.84 57.64 63.58 59.99
February 48.75 50.47 49.56 55.37 51.89

March 35.70 37.24 36.11 42.29 38.78
April 24.15 26.52 24.85 31.72 27.76
May 24.15 26.11 24.96 30.63 27.28
June 12.92 15.36 13.89 19.86 16.42
July 14.75 17.14 15.38 22.06 18.24

August 15.15 16.83 15.96 20.28 17.67
September 41.06 42.67 42.00 46.59 43.75
October 53.15 54.87 54.00 59.05 55.99

November 60.41 61.45 60.51 65.04 62.28
Decemebr 54.04 53.78 52.48 58.27 54.68

Overall 38.42 40.19 39.04 44.73 41.36

Figure 16. Summarized monthly net capacity-factor profile conclusions.

Here, we presented the met-mast and MCP methods for achieving wind distributions
of a specific site in Taiwan and computed the AEPs and CFs of five different WTGs on the
basis of the obtained wind distributions using both schemes. The valuable findings of this
study are summarized as follows:

1. Wind distributions obtained by the met-mast and MCP methods can efficiently repre-
sent offshore-site wind resources in Taiwanese sites.

2. The MCP method based on an onshore turbine can quickly, accurately, and economi-
cally achieve useful wind-resource distribution for a specific site.

3. The CFs of five offshore WTGs showed that the most suitable and efficient turbine
from the achieved wind distribution and considering power loss on a turbine was the
machine with the 6.0 MW rated output (GE 6.0-150).

4. The correlation of wind speed between the MCP method and wind turbine was
around 99%, which was significantly higher than that between the MCP method and
offshore met mast (~90%), as shown in Figure 11b. On-site measurement within a local
area is fundamental for wind-farm assessment to achieve appropriate estimations.
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5. Conclusions

The potential wind power of west-central Taiwan offshore sites was assessed on
the basis of the met-mast and MCP methods. These data were utilized to evaluate the
corresponding AEPs and CFs of five selected WTGs. The standard deviation, mean wind
speed, and scale and shape factors from the met-mast data were 5.804, 9.992, 11.292, and
1.836 m/s. Those by the MCP method were 5.751, 9.0532, 10.161, and 1.671 m/s. Met-mast
data can provide accurate AEP and turbine selection for west-central Taiwan offshore
sites. The considered CFs of five turbines in 2019 with power loss were between 38.42%
and 44.73%.

Intuitively, the highest or lowest power output of WTG could be considered to be the
best candidate based on a certain index; however, CF is the index to indicate the ratio for
wind-turbine efficiency annually derived from the local wind resource. Therefore, optimal
CF performance reflects the fitness between WTG and annual wind distribution instead
of the highest power output or lowest-rated wind speed. The highest power output of
WTG is restricted by higher-rated wind speed (~15 m/s), but the lowest is confined by
slower wind (8.7 m/s) at a lower level (67 m) of hub height. In contrast, the measures of
rated wind speed (~12 m/s) and annual wind speed (9.1 m/s) at hub height (100 m) of GE
6.0–150 were superior to those of the others. The results showed that the power density of
west-central Taiwan is significantly high.

Empirical results demonstrate the application of AEP estimation in selecting the opti-
mal types, quantity, and location of wind turbines in planned development projects. Local
short-term wind data with the practical coefficient of wind turbines fulfill the require-
ments for AEP estimation. The proposed method can have strong practical application
for estimating wind power, using both related wind data and wind-turbine output. Off-
shore applications can also be considered on the basis of corresponding wind data and
WTG derived from the proposed approach. In addition, although long-term wind data
can be adopted in AEP estimation, this is more expensive and complicated than using
local short-term wind data. Here, we presented the MCP method to reduce the duration
and expense of wind-resource distribution. The MCP method can quickly and accurately
estimate wind power for a specific site at minimal cost. The proposed MCP approach can
shorten the preprocessing period within a degree of uncertainty in wind-farm development
projects, enabling fast and frequent estimation based on distant wind data or short-term
and adequate estimation with on-site wind data.

Future work on the advanced approach is to acquire short-term wind data around off-
shore wind turbines. The corresponding wind-distribution profiles could fit with previous
profiles for further analysis. The related curves of AEP and CF can also be fine-tuned for
those derived from the proposed approach to efficiently set up applicable offshore-wind-
power estimation models.
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