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Abstract: Plaster has, from ancient times, been used as a decorative material. However, the ad-
vances in materials engineering such as thermal and moisture control provide new opportunities.
Superabsorbent polymers (SAPs) have been found to possess passive moisture control that may
find utilization in modern buildings. However, the main drawback is associated with a limited
number of applicable SAPs due to mechanical strength loss. In this regard, concurrent utilization of
cellulose fibers may provide additional benefits linked with the reinforcing of plaster structure and
preservation of superior hygric properties. In this regard, this study investigates the combined effect
of SAP and cellulose fibers on the material properties of cement-lime plaster in terms of its mechanic,
thermal, and hygric properties. To access the capability of such modified plasters to control the
interior moisture fluctuations, the moisture buffering value is determined. Obtained results show
the effect of both applied admixtures on material performance, whilst the synergic effect was most
obvious for humidity control accessed through the moisture buffer coefficient.

Keywords: cellulose fiber; superabsorbent polymer; synergy; reinforcement; mechanical perfor-
mance; moisture buffering

1. Introduction

Recent developments in materials science brings new opportunities for the modifi-
cation of traditional building materials, including finishing plaster [1]. While the role of
this material was predominantly decorative in the past, a tailored modification may extend
the functionality of this material [2–5]. This issue was subjected to several investigations
aiming at improvements in terms of hygrothermal performance, durability, protective coat-
ings, and service life. [6–9]. Due to recent challenges, the passive maintenance of indoor
climates poses a major issue for new building material design, plasters included [10]. In
particular, the preservation of the quality of the indoor environment has attracted intensive
attention due to increased awareness of sick building syndrome and extensive energy con-
sumption [11]. In this sense, the optimal range for indoor relative humidity lies between
35–65% [12,13]. The particular importance of indoor moisture level is shared by issues such
as furniture durability and health issues. To be more specific, plasters with lightweight
aggregate, silica gel, minerals, and charcoals have been designed and consequently studied
to provide satisfactory indoor humidity control [14–17]. In this regard, the effect of total
pore volume, shape, and pore size distribution were found to be promising research lines
towards the passive modulation of indoor relative humidity [18]. Specifically, the appli-
cation of perlite or vermiculite increased the pore volume by about 20%, thus increasing
moisture buffering [19,20]. In this regard, the application of sodium olefine-sulphonate and
superabsorbent polymers (SAPs) achieved very beneficial results in terms of shifting the
moisture buffering value [21,22]. The work of Fořt et al. [23] exhibited the great potential
of SAPs in the mitigation of humidity peaks during diurnal loading. As revealed, even
relatively small dosages of SAPs provide substantial improvements in moisture buffering
performance thanks to their great swelling capabilities [24]. On the other hand, several
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drawbacks are associated with the limited workability of the fresh mixture, and a loss of
mechanical strength has been revealed [25]. These findings may be viewed as a major
barrier for the broader application of SAPs in conventional building materials despite the
benefits linked with passive moisture control [26].

Taking into account the mechanical strength issues associated with the utilization
of SAPs in plasters, the application of reinforcing fibers can be viewed as a possible
solution [27]. During recent decades, various types of fibers have been studied with
partial success, including with regard to their mechanical strength and thermal and hygric
parameters in particular [4,28,29]. Apart from synthetic fibers such as polypropylene, glass,
and carbon fibers, a wide range of natural fibers have been investigated as environmentally
friendly reinforcers. For example, the application of hemp fibers provides substantial
improvements in adhesion and flexural strength [4]. The work of Lee et al. [14] described
that fiber incorporation has a substantial effect on material porosity, and consequently may
result in the modification of water absorption capability, as well as water vapor storage
properties. However, the increase in apparent porosity is accompanied by a deterioration
in mechanical strength in cases where the proportion of cellulose fibers is too high [30,31].

In this regard, this study reveals the potential of the application of cellulose fibers
applied together with SAP admixtures. Cellulose fibers have, in the past, been found to be
a suitable component for the development of multifunctional plasters with good thermal
insulation properties as well as the ability to control the moisture level in building interiors.
The effect of both applied additives is described from the point of view of the thermal,
hygric, and mechanical properties to provide an understanding of the humidity control
capability of such modified plasters.

2. Experimental
2.1. Used Materials

The superabsorbent polymer Hydropam (Evonic Degussa International, Krefeld,
Germany) was used to modify cement-lime plaster composed of cement, lime, and sand at
a respective ratio of 1:1:5. The particle size of the applied SAPs (see Figure 1) ranged from
200 µm to 1000 µm, with d50 = 433 µm determined by the laser diffraction device Bettersizer
S3 Plus (Liaoning, China). According to the data provided by the SAP manufacturer,
Hydropam is composed of sodium salt and acrylamide/acrylic acid copolymer with a
density of 690 kg/m3.
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Figure 1. Particle size distribution of SAP.

The cellulose fibers came from the CIUR a.s. Company, (Brandýs and Labem, Czech
Republic). The fiber lengths ranged between 2 and 4 mm. Information about the used cel-



Energies 2021, 14, 3679 3 of 12

lulose was obtained by Scanning Electron Microscopy (SEM). The analysis was performed
by using an electron microscope JSM 6510 LV-Jeol (Tokyo, Japan) with a magnification of
about 5–300,000. The SEM detail of applied fibers is shown in Figure 2. Hydrated lime CL
90-S (Mokrá Plant, Carmeuse Czech Republic) was applied together with cement CEM I
32.5 R (Cemex, Czech Republic) as base binders for the designed plasters. Particular plaster
mixtures were derived from previous experiments aimed at the investigation of the effect
of SAP admixture only [23]. The cellulose fibers were applied in 1, 2, and 3% dosages and
compared to reference mixture and plaster without SAP admixture. The modifications of
studied plasters are described in Table 1.
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Figure 2. SEM image of cellulose fiber.

Table 1. Composition of the studied plasters.

Mixture SAP (%) Cellulose (%)

PR - -
PS0.5C1 0.5 1
PS0.5C2 0.5 2
PS0.5C3 0.5 3
PS1C1 1 1
PS1C2 1 2
PS1C3 1 3

PS1.5C1 1.5 1
PS1.5C2 1.5 2
PS1.5C3 1.5 3

All prepared samples were cured in a highly humid environment (RH = 95%) after
sample demolding for 24 h. Such treated samples were dried in an electric oven at 65 ◦C
until steady-state mass was reached.
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2.2. Determination Methods

The bulk density, matrix density, and open porosity were determined to access the
main differences in the basic material properties. The results of the dry bulk density
were obtained by weighing the dried samples and volume determined by using a digital
caliper. The matrix density was given by a helium pycnometer Pycnomatic ATC (Thermo
Scientific, Waltham, Massachusetts, USA) device. Consequently, the total open porosity
was calculated from the results of the bulk- and matrix density [32].

A hydraulic testing device, VEB WPM Leipzig, with a stiff loading frame and a
maximal capacity of 3000 kN was used for the determination of the compressive and
flexural strength of plaster samples after 28 days of curing at a highly humid environment
on prismatic samples having dimensions of 160 mm × 40 mm × 40 mm. The compressive
strength was measured on the leftover prisms broken during the bending test (loading area
was 40 × 40 mm2) [33].

Regarding the thermal properties of studied plasters, the portable instrument ISOMET
21114 (Applied Precision, Rača, Slovakia) was employed for the determination of thermal
conductivity and thermal diffusivity [34]. The measurement range of the thermal conduc-
tivity was from 0.015 to 6 W/mK, with an accuracy of 5% of reading and reproducibility of
about 3% of reading in the temperature range from 0 to 40 ◦C.

The water vapor transmission parameters of plaster samples were studied by the dry-
cup method arrangement with additional temperature/relative humidity probes placed
above and under the sample for better accuracy [35]. Five circular samples with a thickness
(diameter of 100 mm) of about 30 mm were sealed into aluminum cups filled with silica gel
and placed in the climatic chamber. Here, conditions of about 21 ◦C and 50%RH were set
for the whole experiment. The cups were periodically weighted to obtain the mass increase
in time for the consequent calculation of water vapor transmission properties.

The liquid water transport was calculated through the water absorption coefficient
derived from the following equation [36]:

i = A ·t1/2 (1)

where i (kg/m2) is the cumulative mass of water, A (kg/m2s1/2) is the water absorption
coefficient, and t is the time (s).

The moisture diffusivity was obtained from:

κapp =

(
A

wsat − w0

)2
(2)

where wsat (kg·m−3) is the saturated moisture content and w0 (kg·m−3) is the initial mois-
ture content.

The ability of the samples to absorb and release water vapor was measured by deter-
mining the moisture buffering [37]. A moisture buffering test was carried out at isothermal
conditions (21 ◦C) using a 30%/70% humidity scheme as depicted in Figure 3. The material
response of particular samples was monitored by a very sensitive DVS-Advantage device
for 120 h (5 = complete cycles). Consequently, the moisture buffer value was obtained from
the following formula:

MBV =
∆m

S·∆%RH
(3)

where ∆m is the weight variation, S is the exposed surface of the sample, and ∆%RH is the
change in relative humidity level—between 30% (8 h) and 70% (16 h).
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Figure 3. Time-dependent relative humidity variations during MBV experiment.

3. Results and Discussion

The effect of separately incorporated SAPs and cellulose fibers have been studied in
the past; however, their coeval impact on material properties has not yet been described.
The results of the bulk and matrix density measurement completed by calculated values of
the total open porosity are shown in Table 2. The concurrent application of both admixtures
resulted in substantial modification to the material structure. Despite the preservation
of the matrix density, the bulk density was significantly reduced. Specifically, the matrix
density slightly varied around 2550 kg/m3, and the bulk density ranged from 1588 kg/m3

to 1185 kg/m3. As given by obtained results of bulk density and material porosity, a more
critical impact is associated with the application of SAPs over cellulose fibers even at very
low dosages. In this regard, the increased cellulose dosages induced only minor changes.
The most obvious modification was observed for mixtures having 1.5 wt.% of SAP where
some dissonance between both admixtures also revealed substantial deterioration in line
with the increased content of applied cellulose fibers. On the other hand, for 0.5 wt.% SAP,
the incorporation of 1 and 2 wt.% of cellulose did not cause any distinct modifications. The
total open porosity varied in a similar manner. The lowest porosity was reached by the
reference mix and the highest by mixture with 1.5% SAP and 3% cellulose. Such results
comply with previously published research papers [25–27,29] that studied these admixtures
separately. The revealed modification correlates with characteristics of used admixtures
by meaning their size, swelling capability (SAP), amount of used water, and powder
density [38]. The substantial shift in material porosity also depends on the amount of the
used batch water that must be adjusted during the preparation of the mixture as a result of
decreased workability of fresh mixtures. Similar issues were noted for concrete mixtures
designed with SAP, however, the application of superplasticizers in plasters is rather
sporadic compared to concrete [39]. Nevertheless, this approach should be considered in
follow-up work.
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Table 2. Basic material properties of studied plasters.

Mixture Bulk Density (kg/m3) Matrix Density (kg/m3) Total Open Porosity (-)

PR 1588 ± 25 2556 ± 11 0.38
PS0.5C1 1546 ± 31 2543 ± 13 0.39
PS0.5C2 1540 ± 26 2549 ± 11 0.40
PS0.5C3 1433 ± 27 2561 ± 10 0.44
PS1C1 1463 ± 30 2540 ± 15 0.42
PS1C2 1408 ± 25 2539 ± 11 0.45
PS1C3 1372 ± 19 2558 ± 12 0.46

PS1.5C1 1377 ± 42 2562 ± 10 0.46
PS1.5C2 1269 ± 27 2541 ± 14 0.50
PS1.5C3 1185 ± 23 2550 ± 12 0.54

The achieved mechanical parameters of designed plasters with various SAPs and
cellulose admixtures are plotted in Figure 4. As one can see, the amount of applied ad-
mixtures caused significant changes in the mechanical performance. In particular, two
opposite effects can be distinguished. While the lower dosages of both admixtures had
a beneficial effect on materials strength, the further increase resulted in substantial wors-
ening in both compressive and flexural strength. Generally, the SAP admixture showed
more pronounced changes despite the lower dosages compared to cellulose. Considering
the material response, the application of up to 1% of SAP or 2% of cellulose caused an
improvement in the mechanical strength if used together with the lowest dosage of the
second admixture. Other cases resulted in substantial material deterioration that may pose
a substantial barrier for the material application. To be more specific, a plaster mixture
with 3% of cellulose and 1.5% of SAP reduced the compressive strength by more than 50%,
even more than 67% in the case of flexural strength. In other words, the advantages of both
materials can be used only in a relatively narrow interval of their amount, and exceeding
the optimal dose causes significant degradation of the plaster in terms of their useful
properties [40]. Such material response is probably inflicted by limited material worka-
bility and a shift in material porosity. On the other hand, the elucidation of the material
strengthening lies rather in improved internal curing secured by SAPs and the reinforcing
effect of applied cellulose fibers. Variations in the reinforcement effect of applied cellulose
refer to limited bonds formed between the material matrix and applied cellulose fibers.
The possible solution for the strength improvement can be found in coating treatment to
increase the interfacial bonding between cementitious matrix and used fibers [41]. The
finding of the threshold values for dosage of both admixtures, therefore, poses a very
important task for the sufficient design of such modified plasters.

The effect of applied admixtures on the thermal parameters of plaster by measure of
the thermal conductivity via the impulse method is shown in Figure 5. Given results repre-
sent average values obtained from 5 independent measurements. As is visible, the thermal
conductivity was dropped in line with the decreased porosity from the initial 0.55 W/(mK)
to 0.43 W/(mK). The utilization of both admixtures resulted in a relatively small im-
provement; however, according to similar research performed by Gueardia et al. [42] and
Lee et al. [43], only minor changes were expected. In particular, the increased water
absorption capability of SAP diminished the beneficial effect of increased open porosity
on thermal resistance due to the formation of highly conductive hydrogels having higher
thermal conductivity. The influence of applying cellulose fibers was rather minor, which
complies with findings revealed by Nindiyasari [44]. In this regard, the achieved modifi-
cations in the thermal conductivity properties are caused by two opposing phenomena:
a reduction driven by the shift in the material porosity; and an increase caused by the
presence of highly conductive hydrogels.
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Since the motivation of the paper is driven by the effect of applied admixtures on
water transport properties, free water uptake and moisture diffusivity experiments were
carried out (see results in Table 3). Looking at the presented data, one can see a slight
increase in water uptake capability influenced by both applied admixtures. While the work
of Senff et al. [40], did not describe any notable changes in hygric performance due to uti-
lization of hydrophobized cellulose fibers, results depicted in the present study pointed to
an increase in both monitored parameters. This effect is associated with increased material
porosity, but also with the hydrophilic nature of both applied admixtures [45]. Therefore,
the effect of pure cellulose fibers can be derived from the research of Nindiyasari et al. [44]
or Dalmay et al. [46]. On top of that, the swelling capability of SAP further increased the
water uptake in accordance with Vieira et al. [22], who described the dependency between
the amount of applied SAP and water absorption. Beyond the work of You et al. [17], the
substantial swelling characteristics of SAPs were almost equal to the effect of cellulose
fibers, thus the moisture diffusivity was modified by both admixtures to a similar extent.



Energies 2021, 14, 3679 8 of 12

Specifically, the difference in incorporation between 1% and 3% of cellulose fibers caused
variations of around 15%, and the effect between 0.5% and 1.5% of SAP was quite similar.

Table 3. Hygric properties of studied plasters.

Mixture A (kg/m2s1/2) K (m2/s)

PR 0.164 4.94 × 10−7

PS0.5C1 0.166 5.01 × 10−7

PS0.5C2 0.174 5.22 × 10−7

PS0.5C3 0.181 5.66 × 10−7

PS1C1 0.176 5.25 × 10−7

PS1C2 0.184 5.98 × 10−7

PS1C3 0.192 6.13 × 10−7

PS1.5C1 0.194 6.22 × 10−7

PS1.5C2 0.204 6.63 × 10−7

PS1.5C3 0.215 6.89 × 10−7

The water vapor resistance factor of studied plasters is shown in Table 4. As shown,
the water vapor resistance factor gradually decreased from an initial 15.33 to 11.06. The
achieved trend in obtained values clearly reflected the amount of both applied admix-
tures as reported for other material parameters. On the other hand, our results did not
decreased as sharply as those of Goncalves et al. [21]. The explanation can be found in
the limited modifications of the total open porosity and different characteristics of applied
SAPs [47]. The variations in chemical composition and particle size may lead to significant
changes in the swelling capability driven by dissolute ions in water solution as reported
in Fořt et al. [48]. As the data sheets provided by the SAP producers describe, the real
SAP sorption performance should be verified by additional experiments taking into ac-
count the ions concentration in the used solution. As reported by Snoeck et al. [49], this
parameter may vary significantly, thus reflecting the expected results. All obtained material
parameters were reflected in changes in the moisture buffering potential as accessed in
Figure 6. The lowest hygroscopic capacity, as well as the potential for passive moisture
moderation, was obtained for the reference plaster that can be classified as moderate (the
typical classification of the majority of plasters according to the Nordtest method [50]).
In contrast, the best performance was achieved by PS1.5C3 plasters, having almost three-
times better capability for moisture moderation. In this regard, all plasters with 1.5% SAP
dosages represent excellent moisture buffering performance. This effect is assured by the
combined effect of the increased material porosity and strong water absorption capacity of
SAP particles [50].

Table 4. Water vapor resistance factor.

Mixture µ (-)

PR 15.33
PS0.5C1 14.76
PS0.5C2 14.38
PS0.5C3 13.76
PS1C1 14.43
PS1C2 13.98
PS1C3 13.66

PS1.5C1 12.45
PS1.5C2 11.79
PS1.5C3 11.06
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The correlation between the flexural strength of studied plasters and moisture buffer-
ing is illustrated in Figure 7. Samples with 0.5% SAP and up to 2% cellulose content
exhibited the synergic effect in terms of improvements in both monitored parameters.
On the other hand, other mixtures proved only the capability to improve the moisture
buffering while the mechanical strength was reduced significantly. Interestingly, a very
similar mechanical performance was obtained for mixtures PS1C3 and PS1.5C1, although
the moisture buffering of plasters with higher SAP content provides more favorable mois-
ture buffering. In other words, the effect of SAPs dominates over cellulose in the case
of hygric properties. Concurrently, even such a small variation in dosage may cause a
substantial deterioration in material microstructure. The observed phenomenon can be
assigned to the huge impact of SAPs on fresh mixture workability. Apart from the increased
material porosity, the effect of SAP, as well as cellulose, on setting time should be taken into
account [22,27]. As reported in the research of Barnat-Hunek et al. [38] or Senff et al. [40],
the incorporation of a hydrophilic admixture brings with it several adverse effects linked
to water/binder ratio adjustments and changes in the material porosity.
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4. Conclusions

The results of the experimental analysis of the combined effect of cellulose fibers
and the superabsorbent polymer were described in this work. To provide a more de-
tailed analysis of material performance, the mechanical, hygric, and thermal properties
were determined.

First, the application of cellulose fibers did not provide any notable strengthening
of the plaster, only minor improvement was noted for lower dosages. Obtained results
point to the necessity of additional treatment of fibers that may improve the reinforcing
performance [41]. In contrast, the application of untreated cellulose fibers provides side
benefits such as enhanced hygric properties. To find the rational compromise, mixture
PS1C1 provides the best overall score considering the relevant increase in both selected
indicators. Mixture PS1.5C1 is a material that shows satisfactory mechanical performance
while the moisture buffering value was double that of the reference value. Moreover, this
material exhibit significantly higher moisture buffering at the same mechanical strength
level. The mixtures modified by 0.5% SAP did not reveal any significant improvements
in terms of moisture properties, while also shifting the mechanical performance. The
synergic effect was most obvious for humidity control performance accessed through the
moisture buffer coefficient. In this regard, follow-up research aimed at in situ investigation
of material performance should be carried out together with the energy balance calculation.
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