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Abstract: A complete cell consisting of NiO-Ce0.8Sm0.2O3−δ//Ce0.8Sm0.2O3−δ//(La0.6Sr0.4)0.95Co0.2

Fe0.8O3−δ elaborated by a co-tape casting and co-sintering process and tested in operating fuel
cell conditions exhibited a strong degradation in performance over time. Study of the cathode–
electrolyte interface after cell testing showed, on one hand, the diffusion of lanthanum from
(La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ into Sm-doped ceria leading to a La- and Sm-doped ceria phase. On
the other hand, Ce and Sm diffused into the perovskite phase of the cathode. The grain boundaries
appear to be the preferred pathways of the cation diffusion. Furthermore, a strontium enrichment was
clearly observed both in the (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ layer and at the interface with electrolyte.
X-ray photoelectron spectroscopy (XPS) indicates that this Sr-rich phase corresponded to SrCO3.
These different phenomena led to a chemical degradation of materials and interfaces, explaining the
decrease in electrochemical performance.

Keywords: Sm-doped ceria; La0.6Sr0.4Co0.2Fe0.8O3−δ; cationic diffusion; interface; impedance spec-
troscopy; X-ray photoelectron spectroscopy

1. Introduction

One of the current global challenges is to find novel, clean and efficient techniques
for energy production. The use of hydrogen into fuel cells, particularly into Solid Oxide
Fuel Cells (SOFC) which offer one of the best yields and volumetric power densities, is one
of the solutions [1]. However, classical SOFC systems based on yttria-stabilized zirconia
(YSZ) as electrolyte operate at high temperatures, typically more than 800 ◦C, leading to
low durability. Notably, when associated with lanthanum strontium manganite (LSM),
YSZ tends to form SrZrO3 or La2Zr2O7 interfacial insulating phases during the sintering
process [2,3]. Furthermore, such high temperatures imply the use of expensive interconnect
materials such as LaCrO3 [4]. Thus, to allow greater durability of cells and promote their
insertion into the energy market, it is necessary to decrease the working temperature.

To achieve this objective, many researchers have focused on the use of ceria-based
compounds as the electrolyte material. In rare-earth-doped ceria, oxygen vacancies are
introduced by the substitution of Cerium with a trivalent element resulting in high mobility
of oxygen ions and, thus, high ionic conductivity, even at 600 ◦C [5,6]. This ionic conduc-
tivity is strongly affected by dopant concentration, oxygen vacancies and local structure
defects [7]. Among the different doped ceria, Ce0.8Gd0.2O2−δ (GDC) and Ce0.8Sm0.2O2−δ
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(SDC) have attracted much attention [8–10]. However, Sm3+, which has an ionic radius
very close to Ce4+, promotes less structural distortion, and thus more phase stability [4].
Furthermore, Sm-doped ceria (Ce0.8Sm0.2O2−δ noted SDC) exhibit an ionic conductivity
higher than 10−2 S·cm−1 at 600 ◦C [11,12]. Due to this high value, SDC is one of the most
promising electrolytes for intermediate temperature solid oxide fuel cell (IT-SOFC) [13–15].

The anode part of the cell is the side of the Hydrogen Oxidation Reaction (HOR).
NiO, reduced in situ into Ni and combined with electrolyte, is currently the most used
anode material [16]. Other metals such as Co, Fe, Ru and Cu have been investigated in
the past decades; however, Ni is still the most suitable metal due to its excellent catalytic
activity regarding the HOR [17]. In addition, Ni exhibits good electrical conductivity, a
thermal expansion coefficient similar to SDC and a price significantly lower than the other
candidates [18].

On the cathode side, reducing the operating temperature leads to an inevitable drop
in cell performance, particularly due to the less efficient Oxygen Reduction Reaction
(ORR) [19,20]. One of the strategies to improve ORR at intermediate temperatures is the
use of Mixed Ionic Electronic Conductors (MIEC) such as Sm0.5Sr0.5CoO3−δ (SSC) and
La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) [21,22]. However, SSC cannot be used as the cathode with
SDC electrolyte due to a strong thermal expansion coefficient mismatch (~12 × 10−6 K−1

for SDC and ~24 × 10−6 K−1 for SSC) [23]. By comparison, LSCF exhibits an acceptable
thermal expansion coefficient of 15.4 × 10−6 K−1 for utilization with SDC electrolyte [24].
The main drawback of LSCF is the strontium segregation occurring during sintering or
under cell operation conditions [25–29].

In addition to lowering the operating temperature, a second important objective to be
pursued is the use of low-cost and easily scalable manufacturing methods. The tape casting
technique is widely recognized as one of the most promising fabrication processes [30].
The most frequently used method is indeed tape casting for the fabrication of the anode-
electrolyte half-cell, followed by co-sintering at approximately 1400 ◦C. Finally, the cathode
layer is deposited on the top of the half-cell and sintered at 1000–1200 ◦C [31]. This double
thermal treatment increases the possibility of generating cation diffusion across interfaces,
resulting in variation of chemical structure, formation of new resisting phases [32,33] or
even delamination of the layers [34].

In this work, a NiO-SDC//SDC//LSCF cell was fabricated by co-tape casting and
co-sintering procedures. The evolution of the SDC–LSCF interface after cell manufacturing
and 40 h of operation was investigated. The novel methodology presented in this study
consists of a microstructural and bulk chemistry analysis prior to a selective dissolution of
the cathode layer in order to study the cathode–electrolyte interface by surface chemistry
characterization.

2. Materials and Methods

Cells were fabricated by a co-tape casting process followed by a single step sintering
to enhance the adhesion between the different layers. All the starting powders were
provided by fuel cell materials (FCM, Ohio, USA). Ce0.8Sm0.2O2−δ, referred to as SDC
(Ref: SDC20-N, Lot #9C007, Item #111202, surf. area 201.3 m2·g−1), was used for the
electrolyte material, mixed NiO-Ce0.8Sm0.2O2−δ, referred to as NiO-SDC (Ref: NISDC-P
Lot #BD105, Item #121205, surf. area 5.8 m2·g−1), was chosen for the anode material,
and LSCF corresponding to (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ (Ref: LSCF-P, Lot #BD105, Item
#121205, surf. area 5.8 m2·g−1) was used for the cathode material. The commercial SDC
powder was not suitable for tape casting due to its high specific surface; a thermal treatment
at 800 ◦C was thus applied to reach a specific surface of 18 m2·g−1.

Complete cells were composed of five layers: NiO-SDC with pore former (graphite) as
the anode, NiO-SDC without pore former as the anode functional layer (denoted AFL), SDC
as the electrolyte, LSCF-SDC without pore former as the cathode functional layer (denoted
CFL) and LSCF with pore former (graphite) as the cathode. Slurries were prepared by the
following procedure: ceramic powder and eventually carbon graphite as pore-former were
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mixed with ethanol and methyl ethyl ketone (MEK) as solvents and triethanolamine (TEA)
as the dispersant. This preparation was mixed in a Turbula-T2F device (Willy A. Bachofen
AG Group, Muttenz, Switzerland) for 16 h. In the second step, polyvinyl butyral (PVB) as
the binder and polyethylene glycol (PEG) and benzylbutyl phthalate (BBP) as plasticizers
were added to the preparation and ball milled for 24 h. Quantities used for each slurry are
given in Table 1.

Table 1. Quantities used for slurries preparation.

Slurries Powder (g) Graphite (g) Ethanol (g) MEK (g) TEA (g) PVB (g) PEG (g) BBP (g)

Cathode (LSCF) 25 1.9 5.9 5.6 1.2 2 0.8 0.8

Cathode
Functional layer

(LSCF-SDC)

LSCF-SDC
12-12 1.9 5.9 5.6 0.8 2 0.8 0.8

Electrolyte (SDC) 22 0 6.8 6.8 0.8 2 0.8 0.8
AFL (NiO-SDC) 22 0 4.5 4.5 1 1.75 0.7 0.7

Anode (NiO-SDC) 63 5 13 13 2 5 2 2

The cathode slurry was firstly tape casted on a glass plate using an automatic tape
caster Elcometer 4340 (Elcometer, Manchester, UK) at a casting rate of 1 cm·s−1. The blade
gap thickness was fixed by taking into account the sintering shrinkage. The cathode layer
was air-dried at room temperature for half an hour before the cathode functional layer
was tape casted above. After a drying period of 1 h, the tape was punch-cut to the desired
dimensions, 18 mm in diameter, before the electrolyte layer was directly tape casted onto.
After a new period of drying, the anode functional layer was deposited, always by the
same method. The last step consisted of the anode, which was tape casted after a final
period of drying. The complete cell was co-sintered at 1380 ◦C for 5 h at a heating and
cooling rate of 1 ◦C per minute; two hours isothermal at 300 ◦C was applied to eliminate
binder and plasticizers. The final size of the cell was 22 mm in diameter with a cathode of
16 mm in diameter.

Electrochemical Impedance Spectroscopy (EIS) measurements were performed using
an Autolab PGSTAT302N, the sample being placed in a Norecs ProboStat during the analy-
sis. Obtained impedance spectra were fitted using Nova software (Version 2.1, Kanaalweg,
Netherlands). After electrical measurements, a selective dissolution of the cathode was
carried out, consisting of HCl 6M chemical etching for 20 min at room temperature.

The microstructure and chemical composition analysis were investigated by scanning
electron microscopy (SEM) on a Hitachi SU1510 coupled with a Bruker XFlash6I10 energy-
dispersive X-ray (EDX) analyzer. Low incidence X-ray diffraction was performed on a
Bruker D8 Discover using a Cu Kα source and a Lynxeye XE detector; the incident angle
was 2◦. The obtained XRD pattern was refined by the Rietveld method using Fullprof
software (Version 2.0, Saclay, France). X-ray photoelectron spectroscopy (XPS) was carried
out on a XPS PHI 5000 VersaProbe with a monochromatized Al Kα1 source (1486.7 eV).
All the binding energies were calibrated from the C 1s of the adventitious carbon peak at
284.8 eV. Casa XPS software (Version 2.3.23, Teignmouth, UK) was used for data processing.

3. Results
3.1. Impedance Measurements

The complete cell sintered at 1380 ◦C was tested by EIS from 105 Hz to 10−1 Hz with
an amplitude of 50 mV at 550 ◦C. The cell was fed by air at a pressure of 1.6 bar (6 L·h−1) to
the cathode side and by H2 at a pressure of 1.25 bar (6 L·h−1) at the anode side for the entire
duration of testing (40 h). Figure 1a shows the evolution of the Nyquist plots at 550 ◦C
over time. All spectra exhibited a similar shape, i.e., a short inductive tail, characteristic of
electrical wires and cables, followed by two overlapped semi-circles at high and medium
frequencies (hf and mf) and a partial semicircle at low frequencies (lf). Experimental data
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were fitted using the equivalent circuit presented in Figure 1a and the fitted elements are
listed in Table 2. This circuit gave a reasonable fitting (less than 10% error) over the whole
range of aging spectra. The time constants (denoted as τhf, τmf and τlf) were calculated
using the frequency at the maximum value of the impedance’s imaginary part, and are
highlighted in the Bode plot in Figure 1b. The intercept at high frequency with the real
axis corresponds to the ohmic resistance (noted RΩ), mainly related to the electrolyte. The
evolution of the resistances over the time are presented in Figure 1c.
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Figure 1. Electrochemical measurement at 550 ◦C of the cell sintered at 1380 ◦C at t = 0, 17 and 40 h
(a) Nyquist plots, the numbers reported in the figure indicate the log of the frequency; (b) Bode
plots; and (c) evolution of the electrolyte resistance RΩ and of the single contributions to polarization
resistance Rp over time.

Table 2. Fitted elements and mean time constants of the three semicircles.

Time L (H) RΩ

(Ω·cm2)
Rhf

(Ω·cm2)
CPEhf (F)

(nhf)
τhf (s) Rmf

(Ω·cm2)
CPEmf (F)

(nmf)
τmf (s) Rlf

(Ω·cm2)
CPElf (F)

(nlf)
τlf
(s)

0 h 1.3 × 10−6 22.4 0.6 2.4 × 10−3

(0.60) 3.4 × 10−4 3.0 2.3 × 10−2

(0.60) 2.3 × 10−2 24.4 7.6 × 10−2

(0.87)
5.5

17 h 1.2 × 10−6 25.2 0.5 3.5 × 10−4

(0.75) 2.1 × 10−4 5.5 3.1 × 10−2

(0.45) 1.8 × 10−2 31.6 5.2 × 10−2

(0.88)
4.9

40 h 6.6 × 10−7 33.8 3.3 1.9 × 10−3

(0.57) 1.7 × 10−4 4.7 7.3 × 10−3

(0.74) 1.8 × 10−2 37.6 3.3 × 10−2

(0.86)
4.4

The experimental conditions were not adjusted in order to separate the contributions
related to anode and cathode, respectively, by the variation of different partial pressures
of fed gases. However, as determined in previous investigations by the authors, it can be
assumed that the wide resistance arc at low frequencies is related to the oxygen reduction
reaction at the cathode side, while the process at intermediate frequencies (around 102 Hz)
can be associated with the anode kinetics [35]. Starting from the parameters obtained by
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equivalent circuit analysis, as reported in Table 2, the capacitance from CPE values was
calculated according to the relation proposed by Musiani et al. [36], and the results are
given in Table 3. An order of magnitude of 10−2 F·cm−2 was obtained for the low frequency
capacitance (three orders of magnitude higher than the calculated hf capacitance). Such a
large value can be actually related to chemical capacitance, corresponding to the charge
stored as oxygen vacancies in the cathode bulk [12,37,38]. Considering that the activity
of LSCF is also hindered by its limited oxygen surface exchange [39], these findings give
additional support for the low frequency arc to be attributed to the cathodic process.

Table 3. Equivalent capacitances for the three mechanisms, calculated according to Musiani [36].

Equivalent Capacitance, Ceq [F cm−2]

Aging Time hf Mf Lf

0 h 3.06 × 10−5 3.87 × 10−3 8.33 × 10−2

17 h 1.94 × 10−5 3.57 × 10−3 5.56 × 10−2

40 h 4.14 × 10−5 2.23 × 10−3 3.41 × 10−2

The values of the resistances presented in Table 2 are relatively high in comparison
with the results from Liu et al. at 550 ◦C [40]. An explanation of such high values will be
given in the discussion section. CPE exponential values at low frequencies indicated a
capacitive behavior, while values approaching 0.5 highlighted a diffusion-related behav-
ior [41].

Looking at the trends of the complex plots (Figure 1a) and of the Bode plots (Figure 1c),
it is apparent that all resistances increased over time. The greatest contribution to the
global polarization resistance Rp derived from the low frequency process (Rlf, evident in
Figure 1b), while the one that underwent the greatest increment (450%) was the resistance
at high frequencies (Rhf), which is associated with charge transfer at the cathode/electrolyte
interface.

According to these considerations, the microstructural investigation contributes to
shed light on the degradation mechanism both at the cathode–electrolyte interface and in
the bulk cathode itself, as detailed in the following paragraphs.

3.2. Microstructural Investigations and Bulk Chemistry Analysis

The interface between the cathode (dark grey) and the electrolyte (light grey) after co-
sintering at 1380 ◦C (Figure 2a) and after co-sintering at 1380 ◦C and testing 40 h at 550 ◦C
(Figure 2b) was examined by SEM micrograph in Back Scattered Electrons (BSE) mode.
The EDX mappings are also reported in order to show the distribution of the elements
The studied area is the cathode on which the electrolyte layer was deposited, viewed from
above. The elemental content evolution on either side of the cathode–electrolyte interface
is exhibited in Figure 3a for the tested sample and on Figure 3b for the non–tested sample.
The surface of the tested cell appeared highly densified whereas the cell without electrical
testing exhibited a porous microstructure. It is assumed that the tested cell underwent
dramatic grain growth in this part of the sample. As shown in the micrograph at the
top of Figure 3a, the rest of the tested sample was not as well densified. As presented
on the EDX mappings, for both samples, Ce and Sm were uniformly distributed in the
electrolyte layer. The cathode–electrolyte interface was very sharp for Ce whereas it was
more diffused for Sm. La and Fe were also well dispersed within the cathode layer with
a sharp cathode–electrolyte separation for Fe. Little Co appeared in the cathode layer.
Additionally, some Sr-rich or Sr-depleted areas were observed in both samples.
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Figure 3. Elemental content evolution in the cathode and the electrolyte layers as a function of the
distance from the interface, represented as a dashed line, for (a) the tested sample and (b) the non-
tested sample. EDX point measurements were acquired at each cross on the SEM-BSE micrograph
inserted at the top of the figures.

The evolution of the content (at%) of the elements (La, Sr, Co, Fe, Ce and Sm) in the
cathode and electrolyte layers depending on the distance from the interface after 40 h
of cell testing is shown in Figure 3a. Only cation-related signals recorded are reported.
EDX measurements were acquired at each cross on the SEM-BSE micrograph inserted at
the top of the figures. Content variations of La, Sr and Fe were observed in the cathode
layer. For the following interpretation, La and Sr are assumed to occupy to the A-site of
the perovskite whereas Fe and Co to belong to the B-site. The A-site/B-site ratio ranged
from 0.95 to 1.16, which is higher than the theoretical value of 0.95. The La/A-site ratio
was also higher than the expected value of 0.60, varying from 0.67 to 0.78 with an average
value of 0.72, while the Co/B-site ratio was much lower than the theoretical value of 0.20,
ranging from 0.01 to 0.05. In the electrolyte layer, Ce and Sm contents were stable, reaching
a Sm/(Ce + Sm) ratio of 0.19 ± 0.01, close to the 0.20 theoretical value. Lanthanum was
also detected in the electrolyte layer up to a distance of 8 µm, while significant amounts of
Sm and Ce were observed in the cathode layer up to a distance of 7 µm.
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Considering the size of the cations, 0.97 Å for Ce4+ and 1.079 Å Sm3+ in cubic site,
La3+ (ionic radius of 1.16 Å in cubic site) could not easily occupy the cationic site of the
ceria structure [42]. However, the substitution of Ce4+ with Sm3+ creates oxygen vacancies
and therefore enhances the reduction of Ce4+ into Ce3+, which has an ionic radius of
1.143 Å [43,44]. In that configuration, depending on the reduction of cerium, La3+ could
substitute for Ce3+ in the structure. Several authors have studied the incorporation of La
into SDC; for example, Giannici et al. highlighted a diffusion up to 30% at 1150 ◦C while
Chang et al. noticed a diffusion of La into SDC up to 15% at 1000 ◦C [33,45].

The A-site of the perovskite (12-coordinate site), occupied by La3+ and Sr2+ with
ionic radii of 1.36 Å and 1.44 Å, can also host Sm3+ and Ce4+ ions, which have ionic radii
of 1.24 Å and 1.14 Å respectively in the 12-coordinate environment [42]. Moreover, Sm
presents a good chemical affinity with Sr and Fe, as evidenced by the Sm0.5Sr0.5FeO3−δ
compounds [46], and Ce can also be incorporated into the LSCF structure as highlighted in
the La0.54Ce0.06Sr0.4Co0.2Fe0.8O3−δ compound [47].

In order to investigate the origin of the cationic diffusion, i.e., during co-sintering or
during cell operation, another cell, elaborated by the same procedure and co-sintered at
1380 ◦C without any electrochemical testing, was studied by SEM-EDX. Figure 3b shows
the elements’ content evolution as a function of the distance from the cathode–electrolyte
interface. In the cathode layer, La, Fe and Co contents were more stable than in the tested
sample, the Sr amount showed important variation, and Ce and Sm were detected up to a
distance of 5 µm. The (La + Sr)/(Co + Fe) ratio was 1.04 ± 0.05; La/A-site ratio was 0.62 ±
0.03, not far from the theoretical value; and the Co/B-site was a little larger than the tested
sample and is equal to 0.07 ± 0.02. In the electrolyte, Ce and Sm had the same profile as
the tested sample, the Sm/(Ce + Sm) was 0.18 ± 0.01 and lanthanum was detected in a
significant amount up to a distance of 7 µm.

3.3. Structural and Surface Chemistry Analysis

In order to study the SDC–LSCF interface, the cathode layer was selectively dis-
solved in HCl after cell testing. Figure 4 exhibits the SEM-BSE micrograph of the cathode–
electrolyte microstructure interface after the selective dissolution of the cathode. The light
area represents SDC grains while the dark clusters correspond to LSCF grains that were
not totally dissolved.
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Figure 4. BSE-SEM micrograph of the cathode–electrolyte interface after selective dissolution of
LSCF.

The low incidence angle X-ray diffractogram of the cathode–electrolyte interface
after the selective dissolution of LSCF is reported in Figure 5. The major phase obtained
was a cubic fluorite structure with a Fm-3m space group corresponding to the doped
ceria phase; since LSCF was not totally dissolved, traces of perovskite were also detected.
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Rietveld refinement was performed on the diffractogram and is presented in supplementary
Materials (Figure S1). The refined lattice parameter of the doped ceria phase was 5.465 Å. As
a comparison, X-ray diffraction was also carried out on the same sample on the electrolyte
area 2 mm far from the cathode layer. The refined lattice parameter was 5.426 Å, similar
to the 5.432 Å obtained by Mandal et al. for Ce0.8Sm0.2O1.9 (ICDD 04-013-0036) [48]. The
increase in the lattice parameter of the ceria structure at the cathode–electrolyte interface
cannot be imputed to defects generated by the sintering step and evidences the co-doping of
cerium by lanthanum and samarium doped Ce1-x(Sm,La)xO2−δ, denoted LSDC. The LSCF
phase can either be cubic perovskite (space group Pm-3m) or rhombohedral perovskite
(space group R-3c) [49,50]. As presented in supplementary saterials, where the XRD pattern
of the raw LSCF powder is shown (Figure S2), the rhombohedral structure presented a
separation of the peak, which is clearly visible at 68◦. In the diffractogram presented in
Figure 5, this separation is not clearly visible (zoom of 66–70◦ part of the diffractogram is
presented in Supplementary Materials in Figure S3). Therefore, the LSCF after co-sintering
and cell testing is assumed to be cubic perovskite. The refined lattice parameter of the cubic
LSCF phase was 3.8896 Å; as a comparison, Hardy et al. obtained a cubic lattice parameter
of 3.9250 Å [51]. The lower value of the lattice parameter obtained is consistent with the
ex-solution of Sr and the diffusion of La. The low amount of Sm and Ce diffusion into the
LSCF structure resulted in a decrease in the lattice parameter.
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Figure 5. Low incidence angle (2◦) X-ray diffractogram of the cathode–electrolyte interface after the
selective dissolution of LSCF.

Two areas were selected for XPS surface chemistry analyses, one corresponding to
the cathode–electrolyte interface (denoted tested interface) and one corresponding to
the electrolyte area which is not in contact with LSCF material (denoted reference SDC).
Furthermore, another cell sintered at 1380 ◦C without any electrochemical testing was
analyzed to give a reference for the LSCF layer. The elemental content of each area obtained
is presented in Table 4. Compared to the theoretical composition, oxygen was more present
than expected, due to adventitious oxygen such as OH, C-O and O-C=O bonding. The
obtained Sm/(Ce + Sm) ratios for the tested interface and for the reference SDC were both
0.18, not far from the theoretical value of 0.20. In the reference LSCF, the ratio La/A-site
was 0.23, almost three times lower than the expected 0.6, suggesting a Sr-rich phase at the
extreme surface of the cathode. Due to interference with iron characteristic peaks, cobalt
was excluded from the analysis.
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Table 4. Elemental composition (atomic%) of the tested interface, reference SDC and reference LSCF
obtained by XPS. Adventitious carbon, cobalt and residual chlorine were removed from the elemental
composition. ND (Non Determined).

Area C Ce Sm La Sr Fe O

Tested interface ND 10.2 2.2 4.6 4.1 11.3 67.7
Reference SDC ND 19.4 4.4 ND ND ND 76.2
Reference LSCF 8.5 ND ND 4.7 15.4 5.7 65.7

Figure 6 shows the Ce 3d (Figure 6a) and Sm 3d5/2 (Figure 6b) core-level spectra of the
tested interface and reference SDC and the La 3d (Figure 6c), Sr 3d (Figure 6d) and Fe 2p
(Figure 6e) core-level spectra of both the tested interface and reference LSCF. Furthermore,
the C 1s spectrum (Figure 6f) of the reference LSCF is also presented in Figure 6. The
Ce 3d spectra, typical of a ceria environment, can be decomposed into four spin–orbit
components. The peaks labeled v and u refer to 3d5/2 and 3d3/2 spin–orbit components
respectively. The peaks denoted v, v”, v”’, u, u” and u”’ are characteristic of Ce ions in the
+IV oxidation state, while the v′ and u′ peaks correspond to cerium ions in the +III oxidation
state [52–54]. Both samples exhibited Ce4+ and Ce3+ characteristic peaks. The percentage
of reduced cerium ion can be obtained by summing the relative area of the v′ and u′

peaks. The obtained %Ce3+ were 7.8% and 12.9% for the reference SDC and the tested area,
respectively. Several studies showed that lanthanum incorporation into the ceria structure
promotes the reduction of Ce4+ into Ce3+ [55,56]. Thus, the higher concentration of Ce3+

in the tested area can be attributed to lanthanum incorporation into the ceria structure.
The Sm 3d5/2 core level spectra exhibited two peaks at 1079.3 eV and 1082.6 eV for the
reference SDC and 1081.7 eV and 1084.3 eV for the tested interface. The contribution at high
binding energy for the two samples corresponds to Sm in the +III oxidation state while the
one at 1079.1 eV corresponds to charge transfer of the unpaired 4f electron [52,57,58]. The
coordination number induces a chemical shift of the binding energy [59–62], however, the
Sm 3d5/2 spectrum of the tested interface was too noisy to separate the contributions of
Sm3+ from SDC and Sm3+ from LSCF. The La 3d spectra presented well separated spin–
orbit components and each spin–orbit component was split into doublets. The degree of
splitting and the position of the doublet allow the determination of the element’s chemical
environment [63,64]. In the case of the reference LSCF, the doublet at 832.9 eV showed
a split of 3.9 eV corresponding to LSCF [65,66]. A satellite component was added to fit
the asymmetric shape of the doublet [67]. The tested interface presented two doublets,
suggesting two different chemical environments. The doublet at the lower binding energy
(833.1 eV) with a split of 4.0 eV is attributed to LSCF that was not totally dissolved. The
second doublet at 835.4 eV had a split of 3.9 eV. By taking into account the previous
deduction concerning La diffusion, the second doublet is assigned to lanthanum in the
ceria environment. The classical figure of Sr 3d spectra in LSCF exhibits two contributions,
the one at low binding energy corresponding to the bulk and the one at high binding energy
corresponding to the surface [68–70]. Thus, for the tested interface, the doublet at 131.6 eV
was attributed to the bulk component and the doublet at 134.2 eV to the surface component.
However, the reference LSCF could not be fitted by only two spin–orbit components. A
third contribution at 133.4 eV was added to fit the spectra. According to the literature,
this contribution is assigned to strontium carbonate [71,72]. This assignment is supported
by the C 1s core-level spectra of reference LSCF, which exhibited a peak at 289.1 eV, well
corresponding to strontium carbonate. Thus, the strontium-rich areas highlighted by EDX
mappings correspond to SrCO3. During the selective dissolution of the cathode, SrCO3
was also dissolved, resulting in only two contributions of Sr in LSCF in the Sr 3d window
of the tested interface. The Fe 2p presented well separated spin–orbit components and
a satellite. The two samples present the classical figure of iron from LSCF, where each
spin–orbit component can be fitted by two contributions, the one at low binding energy
corresponding to iron +III oxidation state while the one at higher binding energy belongs
to iron +IV oxidation state [50,73,74].
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4. Discussion

The two chemical behaviors, the strontium segregation and the lanthanum diffusion
towards SDC, highlighted in this study are depicted in Figure 7. As investigated by several
authors, Sr segregation generally occurs during cell operation and long-term testing. For
example, Simner et al. pointed out a significant performance degradation at 750 ◦C/0.7 V
after 500 h due to Sr segregation [27]. Wang et al. highlighted a tremendous increase in
Sr-rich areas after cell testing at 800 ◦C/OCV for 800 h [75]. In this work, a massive increase
in the cathodic polarization resistance was found after only 40 h of cell operation. As
suggested by Kubicek et al. and Dai et al., this rapid degradation is caused by the high
temperature sintering [76,77]. According to the XPS results, the strontium segregated into
SrCO3, consisting of SrO formation at high temperature followed by carbonation after
returning to room temperature. The degradation of the cathode surface by SrCO3 resulted
in a decrease in the ORR sites. This led to mass transfer process deterioration, i.e., oxygen
surface adsorption and desorption and surface diffusion of the species, thus inducing an
increase in the cathodic polarization resistance (Rlf) [78,79].
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The La 3d XPS spectrum of the tested interface clearly indicated that lanthanum was
present both in LSCF and in ceria. The La/(Ce + Sm + La) ratio in the electrolyte layer
at 2.5 µm from the interface with LSCF obtained by EDX quantification was 0.04 after
cell testing. Lanthanum was also detected in significant quantities in the electrolyte layer
near the interface in the non-tested sample, indicating that lanthanum diffusion occurs
mainly during sintering. Moreover, this diffusion is assumed to be mainly surface diffusion.
The grain boundaries have more crystallographic defects than the bulk, implementing a
facilitated pathway for cation diffusion [80]. Thus, cations diffuse preferentially through
the grain boundaries; however, bulk diffusion is also possible, creating a concentration
gradient from the grain boundaries to the bulk of the grain [81,82].

The high sintering temperature led to an increase in the mobility of cations, causing
the interdiffusion of Ce and Sm from the electrolyte and La from the cathode. The La
diffusion into the electrolyte led to the high RΩ resistance value highlighted in Table 2 due
to the decrease in oxygen vacancies mobility and/or defect clustering as well as lattice
strains [83,84]. Moreover, the increase in RΩ during cell testing suggests that the cation
interdiffusion continued under operating conditions. On the other side, diffusion of both
Sm and Ce into the cathode layer caused the slight increase in Rhf.

As highlighted before, Sr-segregation is widely reported, which is not the case for the
diffusion of lanthanum. In the classical YSZ-based SOFC, an SDC or GDC layer is added
as a diffusion barrier layer between YSZ and LSCF [85,86]. The results presented in this
work suggest that GDC is more effective than SDC to hinder lanthanum ion diffusion.
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5. Conclusions

Impedance measurement of a Ni-SDC//SDC//LSCF cell fabricated by a cost-effective
process consisting of co-tape casting and co-sintering showed a strong degradation in
performance after the first 40 h of operation. EDX and XPS observations evidence:

• That lanthanum diffused into the SDC electrolyte layer while cerium and samarium
diffused into the cathode layer, the preferred diffusion paths appearing along the grain
boundaries. This occurred both during co-sintering at 1380 ◦C and cell operation,
leading to the formation of La- and Sm-doped ceria and resulting in a slight increase
in the ohmic resistance.

• The incorporation of Sm and Ce into the LSCF structure involved an increase in the
resistance related to the charge transfer at the cathode–electrolyte interface. On the
other hand, strontium segregation into SrCO3 clusters at the interface and at the
surface of LSCF grains was also highlighted.

• This mechanism occurred during sintering and possibly persisted during cell oper-
ation, leading to a significant increase in the cathode polarization resistance. This
chemical degradation was caused by the destabilization of the perovskite structure
during thermal treatment due to the segregation of the strontium ions out of the LSCF
phase.

• Finally, strontium segregation was very detrimental for the cell performance, while
lanthanum diffusion into Sm-doped ceria only resulted in a small increase in the
reduction of cerium.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14123674/s1, Figure S1: Rietveld refinement of the cathode–electrolyte interface after the
selective dissolution of LSCF using FullProf software (Red: experimental data, black: fitting curve,
blue: difference between the experimental data and the fitting curve). Figure S2: X-ray diffractogram
of the raw LSCF powder. Figure S3: Zoom of the X-ray diffractogram of (a) the cathode–electrolyte
interface after the selective dissolution of LSCF and (b) the raw LSCF powder.
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