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Abstract: For the future development of integrated energy systems with high penetration of renew-
able energy, an integrated community energy systems (ICES) dispatch model is proposed including
various renewable energy sources and energy conversion units. Energy coupling matrices of ICES
based on traditional energy hub (EH) models are constructed. Uncertainties of long-term forecast
data of renewable energy sources and internal loads are depicted by multi-interval uncertainty sets
(MIUS). To cope with the impacts caused by uncertainties of renewable energy sources and internal
loads, the whole dispatch process is divided into two stages. Considering various constraints of
ICES, we solved the dispatch model through the improved particle swarm optimization (IPSO)
algorithm in the first stage. The optimal evolutionary dispatch is then proposed in the second stage to
overcome the evolution and errors of short-term forecast data and obtain the optimal dispatch plan.
The effectiveness of the proposed dispatch method is demonstrated using an example considering
dramatic uncertainties. Compared with the traditional methods, the proposed dispatch method
effectively reduces system operating costs and improves the environmental benefits, which helps to
achieve a win-win situation for both energy companies and users.

Keywords: integrated community energy system; energy hub; renewable energy source; optimal dis-
patch

1. Introduction

The gradual scarcity of fossil energy reserves and the increasingly serious environ-
mental pollution have forced people to reform the existing energy consumption patterns;
integrated energy systems (IES) are the important technical support for this reform [1–5].
As an important member of various types of IES, integrated community energy systems
(ICES) have a bright prospect with their complete functions and easy implementation. To
achieve energy saving and emission reduction, various kinds of renewable energy sources
have been absorbed in ICES. However, there is a large amount of abandoned energy in
ICES caused by randomness and volatility of renewable energy sources [6–8]. If the aban-
doned energy can be utilized through proper dispatching, the economic and environmental
benefits of ICES could be significantly improved. Applying the functions of ICES flexibly
to effectively improve energy efficiency and promote the consumption of renewable energy
has attracted attention recently.

In order to avoid the energy abandonment, the techniques for forecasting renewable
energy such as wind energy and solar energy has developed greatly in recent years [9].
In [10], a short-term forecast method based on cuckoo search and differential evolution al-
gorithms was proposed. In [11], the authors provided the method for long-term forecasting
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of intermittent wind and photovoltaic resources, which depended on an adaptive neuro
fuzzy inference system. Although the current forecasting technology for wind turbines
(WTs) and photovoltaic units (PVs) has made great progress, certain deviations still exist in
the forecast accuracy. These deviations become uncertain factors of the scheduling process.

Several recent scientific studies on power grids focus on handling the uncertainty of
parameters. The authors of [12,13] show that robust optimization based on cardinality
set or stochastic optimization is a viable technique to deal with uncertainty of parame-
ters. However, the uncertainty of ICES is more complicated than that of the grid system.
Uncertainty modeling alone cannot be used to improve the operation effect. An overall
dispatching strategy needs to be proposed to improve the renewable energy consumption
capacity of ICES.

ICES can combine various kinds of energies in a certain region, which is the key to
solving energy abandonment and improving system performance. In [14,15], the authors
studied the operation plans that transfer abandoned wind and solar energy to electric
boilers for heating. In [16], hydrogen energy storage technology is employed to convert
redundant wind and solar power. These references illustrate the role of energy coupling
and energy storage in absorbing renewable energy output. However, using electric–thermal
coupling equipment as the consumptive channel of energy is restricted by seasons and
regions. Hence, these kinds of schemes have no universal applicability. Hydrogen storage
technology is still immature and cannot be used on the large scale in the short term.

Different kinds of optimization methods are also helpful in improving the renewable
energy consumption. The authors of [17,18] used robust optimization to obtain a day-ahead
scheduling scheme, which is robust under the wind and solar power uncertainties and
takes into account the system safety as well. However, schemes by robust optimization are
too conservative for operation and tend to sacrifice some economic benefits.

Power to gas (P2G) is a kind of technology that converts electric energy into methane
through the chemical reaction of water electrolysis and methanation, which deepens the
coupling between the power system and the natural gas network in the ICES [19,20]. P2G
units can transform redundant electric energy to natural gas P2G units and cooperate with
gas storage equipment to store the converted energy. This process can effectively absorb
the redundant electricity generated by WTs and PVs in the ICES [21]. As natural gas is
easier to store than electric energy, P2G units have a good application prospect in ICES.
P2G units are selected as an important part in the ICES model of our work.

Considering preview problems, we propose a dispatch process to optimize the opera-
tion of ICES to fully absorb the WTs’ and PVs’ output under the uncertainties of renewable
energy sources and internal loads. An energy hub (EH) model of ICES including P2G units
is built to provide operational flexibility and improve economic performance. To decrease
the conservatism of dispatch results, a strategy that can dynamically adjust the operation
plan according to the short-term forecast is introduced to consume renewable power as
much as possible. The detailed contributions of this article are as follows:

• Multi-interval uncertainty sets (MIUS) for the forecast data of renewable energy
sources and internal loads are introduced. Multiple forecast scenarios are generated
in the day-ahead dispatch stage through MIUS and generate a day-ahead scheduling
plan for each forecast scenario. They fully consider the uncertainty of the forecast data
and ensure a sufficient time for the actual dispatch work.

• Considering that the short-term forecasting data (SFD) will continue to evolve, optimal
evolutionary dispatch plan (OEDP) is proposed. OEDP will make timely adjustments
according to the evolution of SFD to make the dispatch plan performance better.

• Real-time Adjusting Strategy (RAS) is proposed to solve the impact which caused
by the deviation between SFD and the actual situation of dispatch process. It further
improves the utilization rate of renewable energy and ensures the safety of users’
energy demand.

The rest of this paper is organized as follows. Section 2 describes the details of models
and methods we designed. In Section 3, the simulation results of the dispatch process and
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examples for comparison is exhibited, superiority of the dispatch process is discussed and
validated in this section. Finally, Section 4 concludes the paper.

2. Models and Methods

In this section, the details of proposed methodology including energy hub (EH) models
for ICES, multi-interval uncertainty sets (MIUS) for day-ahead long-term forecast data
(DLFD), improved particle swarm optimization (IPSO) algorithm for optimal deterministic
dispatch and optimal evolutionary dispatch are elaborated. Figure 1 demonstrates the
framework of the proposed methodology. The description of all types of parameter symbols
and their units are listed in Table 1.

Figure 1. The framework of optimal evolutionary dispatch for integrated community energy systems.

Table 1. Description of all types of parameter symbols.

Parameter 1 Description (Units)

Px
x,x

Px
x,x Electric power (MW)

Qx
x,x Cooling/Heating power (MW)

Vx
x,x Gas volume (m3)

Cx
x,x Cost (USD)

cx
x,x Energy price (USD)

1 This table lists all the types of parameter symbols used in this article. The upper and lower corners of the symbol
are not fixed and “x” is determined according to the specific meaning of the symbol.

2.1. Energy Hub (EH) Models for Integrated Community Energy Systems (ICES)

The EH model is used to establish ICES, which is a model that can illustrate the
conversion, distribution and storage of multiple energy sources [22–24]. The EH model
consumes energy at its entrance and provides necessary energy services at its output
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side. Inside the EH model, energy is converted into different forms through coupling
devices [25–27]. The EH model topology is exhibited in Figure 2a.

Figure 2. Diagrams of EH models: (a) the topology diagram of EH models; (b) the schematic diagram of the EH model for
ICES which is established in this paper.

Various energy coupling devices are applied in the ICES model of this paper to allow
flexible conversion of various energies. The ICES consists of an electrical power system,
natural gas system, district heating system, and multi-energy loads. The diagram of the
ICES investigated in this article is given in Figure 2b. Units marked by “#” in Figure 2b
are only enabled in the optimal evolutionary dispatch, and units without any marks are
enabled in both day-ahead deterministic dispatch and optimal evolutionary dispatch. The
energy storage system, such as battery and gas tank, can be equipped to improve the
reliability and economy of the system [28,29].

The energy conversion relationship in the IES model can be described as follows:
PL,e
QL,c
QL,h
VL,g

 =


1− vEC − vEB ηCHP,e 1 1
u2vECCOPEC u2ηCHP,hCOPAC 0 0

u1vEBηEB,h u1(ηCHP,h + ηGB,h) 0 0
0 1− vCHP − vGB 0 0




Pbuy,e
Vbuy,g
PW,e
PS,e

 (1)

where PL,e, QL,c, QL,h and VL,g represent the electric load (EL), cooling load, heating load
(HL) and gas load (GL) in the model, respectively; Pbuy,e, Vbuy,g, PW,e and PS,e represent
the power purchased from the grid, the gas purchased from the gas network, the power
generated by WTs and PVs, respectively; vEC, vEB, vCHP and vGB are the distribution
coefficients of electric conditioner, electric boiler (EB), combined heat and power unit (CHP)
and gas boiler (GB), respectively; ηCHP,h is the waste heat recovery coefficient of CHP; ηEB,h
and ηGB,h are the heating coefficient of EB and GB, respectively; COPEC and COPAC are
the refrigeration coefficients of EC and absorption chiller, respectively; u1 and u2 are the
binary variable representing the season, u1 + u2 = 1&u1, u2 ∈ {0, 1}.

2.2. Multi-Interval Uncertainty Sets (MIUS) for Day-Ahead Long-Term Forecast Data (DLFD)

Though the current forecasting technology is advanced, there are still many uncertain-
ties. We need to build uncertainty sets to describe uncertainties [17,18]. In the dispatch
problem of energy systems, the commonly used uncertainty set for modeling the uncertain-
ties in renewable energy and load is as follows [30,31]:

U =

{
ut : −∆ut 6 ut −

...
ũ

t
6 ∆ut, ∑

t∈T

∣∣∣ut − ũ
t
∣∣∣/∆ut 6 Γ

}
(2)
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where ut is the uncertainty parameter, ∆ut is the deviation of ut,
...
ũ

t
is the nominal value of

ut, and Γ is the budget of uncertainty.
Equation (2) describes a single-interval uncertainty set (SIUS), which defines the value

of ut on a single interval. The SIUS needs no probability information about the forecast
error, while it results in strong conservatism. Inputting uncertainty data with strong
conservatism into the dispatch strategy will result in poor performance to the final output
dispatch plan. In order to embed more information into the uncertainty set to reduce the
conservatism, the uncertainty sets are divided into multi-interval to construct a MIUS [32],
as follows:

U =

{
ut : ut = ũt ·

(
1 + vt

u
)
, vk,t

u ε
k,t 6 vt

u 6 vk,t
u ε

k,t, εk,t ∈ {0, 1}, ∑
k∈K

εk,t = 1, ∑
t∈T
εk,t = Γk

}
(3)

where vt
u is the deviation ratio of ut, vk,t

u and vk,t
u are the lower bound and upper bound of

the interval k of vt
u, respectively, εk,t is binary variable to indicate whether vt

u is located in
the interval k. Γk is the budget of the interval k, and k is the index of each interval. Based
on the assumption that the deviation ratio vt

u is independent and identically distributed,
the budget Γk can be calculated by

Γk = Nd

∫ vk
u

vk
u

f(v u)dvu (4)

where f(vu) is the probability density function of vt
u.

Compared with the SIUS, the MIUS embeds more distribution information of the
uncertainties and the dispatch results can be less conservative. In this paper, the DLFD is
brought into the MIUS model to obtain the multi-group data considering multi-interval
uncertainties. The specific process of this step is shown as Figure 3a.

Figure 3. Process diagrams of method to obtain the multi-group data and a series of ODDP: (a) process to obtain the
multi-group data; (b) process to obtain a series of ODDP.

2.3. Improved Particle Swarm Optimization (IPSO) for Optimal Deterministic Dispatch

Before the optimal evolutionary dispatch, the day-ahead optimal deterministic dis-
patch plan (ODDP) must be gained firstly. In this part, the multi-group data obtained in
the previous part is regarded as multiple deterministic data groups input to the solution
algorithm for obtaining a series of ODDP. In the model, Cu, Ce, Cg and Cenv are decision
variables. Three power balance constraints are used as equality constraints of the model.
The inequality constraints of the model include power grid constraint, gas pipeline con-
straint and equipment constraints. The specific process of this part is demonstrated in
Figure 3b.
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2.3.1. Objective Function

Considering the minimization of the economic cost and environmental cost of the IES
as the optimization objective, the objective formulation can be described as follows:

Cobj = min
{

Cu + Ce + Cg + Cenv
}

(5)

where Cu is the cost of all units in the ICES, Ce and Cg are the system cost of power and gas
purchase, Cenv is environmental protection cost which is applied to limit the greenhouse
gas emission.

Cu = CCHP + u1CGB + u1CEB + u2CEC + u2CAC + CW,f + CS,f (6)

Equation (6) shows the cost of all units in the ICES, where CCHP is the cost of CHP units;
CEB and CGB are the costs of EB and GB, respectively; CEC and CAC are the costs of EC and
AC, respectively; CW,f and CS,f are the cost of WTs and PVs that only consider forecast data,
respectively.

Ce =
T

∑
t=1

ct
ePt

buy,e∆t (7)

Equation (7) describes the cost of system power purchase, where ct
e is grid electricity price

for each period; Pt
buy,e is the power bought from the grid for each period; ∆t is the length

of time period.

Cg =
T

∑
t=1

cgVt
buy,g (8)

Equation (8) describes the cost of system gas purchase, where cg is the gas price that is
bought from the gas network; Vt

buy,g is the amount of gas that is bought from the gas
network for each period.

Cenv = βεg

T

∑
t=1

(
Vt

CHP,g + Vt
GB,g

)
(9)

Equation (9) shows the cost of environmental protection, where β is the cost of CO2
emission for per unit volume; εg is the CO2 emission coefficient for per unit volume of gas;
Vt

CHP,g and Vt
GB,g are the gas consumption of CHP and GB for each period, respectively.

2.3.2. Constraint Condition

• Power balance constraints

According to EH energy coupling matrix, the coupling relationship between input
and output power can be obtained. Equations (10)–(12) represent the coupling relationship
of ELs, HLs, CLs and GLs, respectively:{

Pt
buy ,e + Pt

GT,e + Pt
W,f,e + Pt

S,f,e = Pt
L,f,e + u1Pt

EB,e + u2Pt
EC,e

u1 + u2 = 1&u1, u2 ∈ {0, 1}
(10)

{
u1

(
Qt

EB,h + Qt
GT,h + Qt

GB,h

)
+ u2

(
Qt

EC,c + Qt
AC,c

)
= u1Qt

L,h + u2Qt
L,c

u1 + u2 = 1&u1, u2 ∈ {0, 1}
(11)

{
Vt

buy ,g = Vt
GT,g + u1Vt

GB,g + Vt
L,f,g

u1 ∈ {0, 1}
(12)

Specifically, Equation (10) represents electric power balance; Equation (11) represents
cooling and heating balance, respectively; Equation (12) describes gas supply and demand
balance.

• Network constraints
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Network constraints include power network constraint and natural gas network
constraints. Specifically, we have:

Pmin
buy, e 6 Pt

buy, e 6 Pmax
buy, e (13)

Vmin
buy, g 6 Vt

buy, g 6 Vmax
buy, g (14)

where Equation (13) is power grid constraint, Equation (14) is gas pipeline constraint.

• Energy supply equipment and energy coupling equipment constraints

The types of energy supply equipment and energy coupling equipment include PVs,
WTs, CHP, GB, EB, AC and EC. The unified constraint model is shown as the following
equations.

0 6 Pt
m 6 Pmax

m (m ∈ M) (15){
∆Pmin

m 6 ∆Pt
m 6 ∆Pmax

m
∆Pt

m = Pt+1
m − Pt

m
(m ∈ M ) (16)

where M is the collection of all energy supply equipment and energy coupling devices in
the system; Pt

m represents the output value of equipment m in a certain period, and Pmax
m is

the maximum output value of equipment m; ∆Pt
m is the absolute value of the input power

variation of energy supply equipment m from period t to (t + 1); ∆Pmax
m and ∆Pmin

m are the
upper and lower limits of the variation.

2.3.3. Optimization Algorithm

We developed the IPSO algorithm to obtain a series of day-ahead optimal dispatch
plans. In the normal PSO, each solution is represented by a group of particles, pbest and
gbest, respectively, represent the personal best solution of particle i and the global best
solution among all particles. In order to achieve the optimal solution, the formula for
updating velocity vi and position xi are described as follows:{

vNcur+1
id = ωVNcur

id + c1r1

(
pNcuc

best,id − xNcur
id

)
+ c2r2

(
gNcur

best − xNcur
id

)
xNcur+1

id = xNcur
id + vNcur

id

(17)

where c1 and c2 represent acceleration constants; r1 and r2 are random numbers distributed
between (0, 1);ω is inertia weight, which is used to balance local exploration and global
exploration, inertia weight can be determined by:

ω = ωmin + (ωmax −ωmin)
Ncur

N
(18)

in the iterative process, the inertia weight obeys a linear evolution, where ωmax and
ωmin are the maximum and minimum values of the inertia weight, respectively. N is the
maximum number of iterations and Ncur is the current number of iterations.

The normal PSO algorithm has advantages of having fewer parameters and easy
implementation. However, it may converge prematurely or fall into a local optimum when
handing complex problems such as the optimal dispatch problem discussed in this paper.
To solve this problem, the IPSO algorithm is proposed.

The inertia weight factorω is an important parameter of PSO [33,34], which is applied
to control previous velocity influence on the current velocity. Therefore, in the improved
algorithm proposed in this paper, the inertia weightω evolution method in the iterative



Energies 2021, 14, 3644 8 of 16

process is changed. Under the new evolution method, inertia weight is described as
follows: 

ω = ωmax − (ωmax −ωmin)×
[
1− 2/(e2Ncur/N + 1)

]
rand(Ncur) > 0.45
ω = ωmax − (ωmax −ωmin)×

[
1− 2/(e2Ncur/N + 1)

]
rand(Ncur) 6 0.45

(19)

where rand(Ncur) is the random probability of the current iteration number. This strategy
makes the adjustment range of ω be gradually compressed and shows a nonlinear decreas-
ing trend as a whole. The addition of probability judgment enhances the randomness ofω
under the overall decreasing trend, preventingω from falling into a monotonous evolution
trend, and improving the diversity of particles.

To further prevent the algorithm from easily falling into the local extremum during the
iterative process, the best solution perturbation operator (BSPO) is proposed to adjust the
personal best solution and the global best solution among all particles. The BSPO updated
formula can be determined as follows:

BSPO = dmax −
dmax − dmin

sum(1 : Ncur)
(N−Ncur) (20)

where dmax and dmin are the maximum and minimum values of the BSPO, respectively.
The BSPO decreases nonlinearly as the iteration number increases, which allows particles
to perform a large-scale search in early-stage iterations and perform a more precise search
in the later stage. The addition of BSPO significantly increases the probability of finding
the optimal solution. The updated formula of vi and xi after the introduction of BSPO
becomes:{

vNcur+1
id = ωVNcur

id + c1r1

(
BSOP× pNcur

best,id − xNcur
id

)
+ c2r2

(
BSOP× gNcur

best − xNcur
id

)
xNcur+1

id = xNcur
id + vNcur

id

(21)

2.4. Optimal Evolutionary Dispatch Plan (OEDP)
2.4.1. Evolution of Forecast Data

Forecast of renewable energy sources and internal loads can be divided into short-term
and long-term ones in line with the leading time scale. Though forecast technologies have
been rapidly developing, uncertainties still bring a great challenge for making feasible and
beneficial decisions.

The short-term forecasts are more reliable compared with long-term forecasts, but they
are limited by forecast horizon which is only several hours. The short-term forecasts are
dynamically updated in real time, the forecast data keep evolving and forecast uncertainties
would be different as time proceeds. The forecaster releases information for the next a
few hours at the current period on the basis of climate information obtained. Hence, the
forecast data is not static, evolution existing all the time [35].

2.4.2. Selection and Jointing Strategy of Day-Ahead Deterministic Dispatch Plans

For the optimal dispatch for ICES including renewable energy source, the accuracy
of renewable energy source output forecast data can influence the dispatch plan quality
significantly.

The applications of long-term forecast give managers and decision makers sufficient
time to make proper arrangements for all units in the system, but the long-term forecast
data may have a large gap with the actual situation; the dispatch plan made by it always has
poor performance. Short-term forecast accuracy is much higher than that of the long-term
ones. However, the late announcement time of short-term forecasts makes it not really
feasible to dispatch the system.
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Hence, a dispatch strategy is proposed to combine the advantages of long-term forecast
data and short-term forecast data. Its specific process is as follows:

Selection and Joining Strategy of Day-Ahead Deterministic Dispatch Plans

Step1: Dividing the dispatch period into several equal parts and obtaining short-term forecast
data of each part in chronological order.
Step2: The short-term forecast data of each part is compared with series group of long-term
forecast data. The long-term forecast data with the highest similarity to the short-term forecast
data of each part is selected as best fit data.
Step3: Joining the dispatch plans corresponding to each group of best fit data selected in Step2 to
obtain a complete dispatch plan.

The Euclidean distance is used as a criterion to select the best fit data with the highest
similarity to the short-term forecast data of each part. The criterion formula is as follows:

ki = min
{

EDij
}

EDij =

√
T
∑

t=x

(
st

i − ltj
)2 (22)

where i and j are group numbers of short-term forecast data and long-term forecast data,
respectively; t is time period number and values of x and T depend on the division of the
dispatch period; ki is the group number of the long-term forecast data which has been
selected by short-term forecast data i; EDij is the Euclidean distance between short-term
forecast data i and long-term forecast data j; st

i and ltj are the data of short-term forecast
data i and long-term forecast data j, respectively, and both of them are at period t.

The complete dispatch plan obtained through the above strategy can be regarded as a
composite scheme established by a series of ODDP. The long-term forecast data is used to
derive the day-ahead deterministic dispatch plan, giving managers and decision makers
enough time to make reasonable arrangements for the ICES. The short-term forecast data
has also been used, which enables the dispatch plan to be able to adapt to the evolution
of forecast data in the dispatch process and improve the performance of whole plan. The
dispatch plan derived from the strategy proposed in this part is termed as the optimal
evolutionary dispatch plan (OEDP).

2.4.3. Real-Time Adjusting Strategy (RAS) for ICES

The strategy proposed in the previous section considers multiple uncertainties and
evolution of the forecast data. Nevertheless, there are still some deviations between the
data applied in the dispatch plan and the actual situation faced in the dispatch process.
In this step, P2G units and energy storage devices, which are not enabled in the previous
steps, are turned on to further balance the energy redundancy or shortage caused by the
gap between the data and the actual situation. The strategy proposed in this part can be
divided into two parts, which are the RAS considering the balance of electric and the RAS
considering the balance of natural gas, respectively. The specific process of the strategy is
illustrated in Figure 4.

• RAS considering the balance of electric power.

Acquiring the actual data of WTs output (Pt
W,a,e), PVs output (Pt

S,a,e) and ELs (Pt
L,a,e).

Subtracting those actual data with the data applied in OEDP (Pt
W,OE,e, Pt

S,OE,e and Pt
L,OE,e)

and obtaining the error of renewable energy sources (ePt
R,e) and the error of ELs (ePt

L,e).Then,
taking the difference between ePt

R,e and ePt
L,e to get the error of electric power (ePt

e). If
ePt

e is less than zero, the electric energy is redundant. If ePt
e is greater than zero, power

shortage occurs. When ePt
e is equal to zero, the electric power can maintain the balance

state as that in OEDP.
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Figure 4. The process of real-time adjusting strategy: (a) real-time adjusting strategy considering the balance of electric
power; (b) real-time adjusting strategy considering the balance of natural gas.

When power redundancy occurs (ePt
e < 0), judging whether the redundant power

is less than the capacity of the P2G units (Pcap
P2G,e). If

∣∣ePt
e
∣∣ ≤ Pcap

P2G,e, then all the energy
is transferred to the P2G units (Situation 1). Otherwise, judging whether the redundant
power is less than the sum of Pcap

P2G,e and the battery residual capacity (rePt
B,e). If

∣∣ePt
e
∣∣ ≤

Pcap
P2G,e + rePt

B,e, the redundant power that is below Pcap
P2G,e is transferred to the P2G units, the

part in which excess Pcap
P2G,e is charged into the battery (Situation 2). Otherwise, only if the

redundant power exceeds the sum of Pcap
P2G,e and rePt

B,e, energy abandonment phenomenon
will occur (Situation 3).

When power shortage occurs (ePt
e > 0), judging whether the shortage part is less than

the existing electric power of the battery (exPt
B,e). If ePt

e ≤ exPt
B,e, all the shortage part can

be supplied by the battery (Situation 4). Otherwise, purchasing the insufficient part from
the power grid (Situation 5).

• RAS considering the balance of natural gas.

Acquiring the actual data of GL (Vt
L,a,g). Subtracting those actual data with the data

applied in OEDP (Vt
L,OE,g) and obtaining the error of internal GL (eVt

L,g). If eVt
L,g is greater

than zero, the natural gas is redundant. If eVt
L,g is less than zero, gas shortage occurs. When

eVt
L,g is equal to zero, the natural gas can maintain the balance state as in OEDP.
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When gas shortage occurs (eVt
L,g < 0), first judging whether the shortage part is less

than the existing gas volume of the GT (exVt
GT,g). If

∣∣∣eVt
L,g

∣∣∣ ≤ exVt
GT,g, then all the shortage

part of gas is supplied by the GT (Situation 6). Otherwise, if the shortage part is more than
the existing gas volume of the GT, transferring all the gas in gas tank to the community
users and the insufficient part is purchased from the gas network (Situation 7).

When gas redundancy occurs (eVt
L,g > 0), the gas purchase plan in the OEDP must be

reduced immediately (Situation 8).

3. Case Study

In this section, a case is presented to verify the superiority of the dispatch method
proposed in this article. The ICES model in Figure 2b is used as the basis of this part, and
the dispatch method which we need to verify operates on it. A typical day in winter is
simulated when the outdoor temperature ranges from −25.2 to −13.6 ◦C. The gas price of
this case is 0.5 USD/m3, β is set to 10 USD/t and εg is set to 2 × 10−3 t/m3. The electricity
price at each period of the day is not constant. The electricity price from 1:00 a.m. to
7:00 a.m. and from 21:00 p.m. to 24:00 p.m. is 7 × 10−2 USD/kWh. The electricity price of
8:00 a.m. and from 13:00 p.m. to 15:00 p.m. is 14 × 10−2 USD/kWh. The electricity price
from 9:00 a.m. to 12:00 p.m. and from 16:00 p.m. to 20:00 p.m. is 21 × 10−2 USD/kWh.
Table 2 shows the capacity and conversion efficiency of the main units in the ICES. Three
subcases are set as follows:

• Subcase 1.

This subcase applies traditional robust optimization method to dispatch. Applying
DLFD to get a day-ahead optimal dispatch plan and use it as final operation plan. If there
is energy redundancy, the redundant part is directly regarded as abandoned energy; if
there is energy shortage, the shortage part is completely purchased from outside.

Table 2. Capacity and conversion efficiency of the main units.

Equipment Capacity (MW) Conversion Efficiency 1

CHP 85
Power generation: 0.3

Heating: 0.5
GB 80 0.85
EB 70 0.9
EC 100 3.5
AC 100 1.2
P2G 10 0.65

1 The conversion efficiency represents the efficiency of converting 1 MW electric power into corresponding kinds
of energy. There are two examples. Example 1: When 1 MW electric power input EC units, the output of EC units
is 3.5 MW cooling power. Example 2: When 1 MW electric power input P2G units, the P2G units can output a
certain volume of natural gas containing 0.65 MW power.

• Subcase 2.

This subcase applies the MIUS to get a series of ODDP and considering the evolution
of SFD to get OEDP. We use OEDP as final operation plan, without introducing RAS. If
there is energy redundancy, the redundant part is directly regarded as abandoned energy,
if there is energy shortage, the shortage part is completely purchased from outside.

• Subcase 3.

This subcase includes P2G units and energy storage equipment. We introduce MIUS
to get a series of ODDP and consider the evolution of SFD to get OEDP. Finally, the RAS is
introduced to get the final operation plan.

Among the above subcases, Subcase 3 is completely according to the method proposed
in this article, and Subcases 1 and 2 are used for comparison. All simulations are performed
on a computer with a 3.40 GHz CPU and 16 GB RAM. The programming is based on the
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MATLAB R2020a and Yalmip. The MATLAB R2020a is used to solve the programming
problem.

3.1. Input Data of Case

A group of test data obtained online is regarded as DLFD [36]. On this basis, we
substituted DLFD into MIUS to obtain the multi-group data considering multi-interval
uncertainty. We assumed that the forecast error of renewable energy sources and internal
loads follow the symmetric normal distribution. The uncertainty set of the deviation ratio
was divided into six intervals, i.e., [−2σ, −σ], [−σ, −0.5σ], [−0.5σ, 0], [0, 0.5σ], [0.5σ, σ],
and [σ, 2σ], where σ is the standard deviation ratio. In the case we proposed, the standard
deviation ratio σ was set to 0.1. Except DLFD, other groups of data were divided into two
levels according to the degree of uncertainty. Figure 5 shows the data of WTs and ELs to
demonstrate the interval division method of MIUS and the multi-group data considering
multi-interval uncertainty.

Figure 5. Multi-group data considering multi-interval uncertainty: (a) data of WTs; (b) data of ELs.

3.2. Dispatch Results of Case
3.2.1. Subcase 1

The DLFD was entered directly into the IPSO to get the ODDP, and the ODDP was
used as the final scheduling plan, as shown in Figure 6. Although IPSO can output an
ODDP, due to the difference between DLFD and the actual situation of the operating ICES,
this subcase will produce vast abandoned energy, it is necessary to frequently adjust the
power purchase plan during the peak period of electricity consumption. The economic
and environmental benefits of Subcase 1 are not good. The operating cost of ICES in this
subcase is USD 6.73 × 105, of which environmental costs account for USD 1.06 × 105.
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Figure 6. ODDP of Subcase 1: (a) dispatch situation of electric power; (b) dispatch situation of heating energy.

3.2.2. Subcase 2

We took OEDP as the final operation plan. The uncertainty of renewable energy and
internal load was considered, and the evolution of SFD was also considered. The dispatch
situation of electric power of Subcase 2 is shown in Figure 7. The dispatch plan in each
short-term forecast period is highly matched with the actual situation of the ICES. However,
there are also some mild errors in the SFD, and the phenomenon of energy abandonment
will still occur. The operating cost of ICES in this subcase is USD 4.57 × 105, of which
environmental costs account for USD 8.17 × 104.

Figure 7. Dispatch situation of electric power of Subcase 2 OEDP.

3.2.3. Subcase 3

OEDP is equivalent to making a dispatch plan for the next four hours based on SFD in
four hours advance. Although SFD in four hours advance has high accuracy, there still exist
deviations from the actual situation when the system is operating. The RAS is introduced
to solve this problem, as shown in the Figure 8.

The introduction of RAS can further absorb the energy that cannot be absorbed in
OEDP through P2G units and energy storage equipment. From 1:00 a.m. to 7:00 a.m., P2G
units absorbed wind power to avoid energy abandonment. At 16:00 p.m., the actual WT
output differs greatly from the SFD, which exceeds the capacity of the P2G units. The
excess is charged into the battery, and this part of the electric energy is offered to users
when there is a power shortage at 17:00 p.m. The wind energy absorbed by the P2G units is
converted into gas for storage and put into utilization when the actual gas demand in the
ICE differs from the SFD. Introducing RAS and applying OEDP simultaneously can further
improve the economic and environmental benefits of ICES. The operating cost of ICES in
this subcase is USD 4.57 × 105, of which environmental costs account for USD 6.26 × 104.
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Figure 8. Final dispatch plan introducing RAS: (a) dispatch situation of electric power; (b) dispatch situation of natural gas.

4. Conclusions

In this paper, an evolutionary dispatch method was proposed to solve the energy
abandonment problem of ICES under the uncertainties of renewable energy sources and
internal loads. Various renewable energy sources and energy conversion units were mod-
eled basing on EH model to improve the flexibility of system. The MIUS was introduced to
obtain the multi-group data, which integrated more forecast information than the data only
considering single-interval uncertainty. In the whole dispatch process, DLFD is applied
to ensure sufficient decision time, and SFD is used to guarantee the performance of the
dispatch plan. During the actual operation of the ICES, the renewable energy utilization is
further improved through the RAS we proposed.

The proposed method could not only ensure the economic and environmental benefits
of the system but also improve the renewable energy utilization. The results of case study
illustrated that the uncertainties of renewable energy sources and internal loads have
considerable influence on the dispatch results. Compared with the subcase without the
method we proposed, the subcase applied in our method has better performance, especially
in improving the capacity of renewable energy consumption. However, the application of
MIUS will increase the computational time complexity of the model, which also increases a
certain amount of calculation cost. Larger computing costs will bring certain challenges
to hardware facilities and economic strength, but the increased cost is far less than the
benefit brought by the increase in the utilization of renewable energy most of the time.
The results of this article indicate that it is necessary to take the uncertainty of renewable
energy sources and internal loads into consideration in the dispatch decision of ICES. The
achievement obtained in this paper can further improve the renewable energy consumption
capacity of ICES and provide a reference for future research on further improving energy
efficiency. Moreover, many other factors, such as random occupant behaviors and district
heating system transmission, also have a dramatic impact on system performance, which
could be our next topic.
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