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Abstract: As the effects of climate change are becoming severe, countries need to substantially reduce
carbon emissions. Small hydropower (SHP) can be a useful renewable energy source with a high
energy density for the reduction of carbon emission. Therefore, it is necessary to revitalize the
development of SHP to expand the use of renewable energy. To efficiently plan and utilize this energy
source, there is a need to assess the future SHP potential based on an accurate runoff prediction. In
this study, the future SHP potential was predicted using a climate change scenario and an artificial
neural network model. The runoff was simulated accurately, and the applicability of an artificial
neural network to the runoff prediction was confirmed. The results showed that the total amount of
SHP potential in the future will generally a decrease compared to the past. This result is applicable
as base data for planning future energy supplies and carbon emission reductions.

Keywords: artificial neural network; climate change; hydropower potential; small hydropower

1. Introduction

Hydropower is an important renewable energy source. It contributes to sustainability
by producing electricity with almost zero greenhouse gas (GHG) emissions [1,2]. In
particular, small hydropower (SHP) has the additional advantage of quickly responding
to short-term changes in the electricity demand in small-scale areas [3–5]. There have
been many studies regarding its positive and negative impacts (e.g., ecological impacts on
the fluvial ecosystem), as well as the method for mitigating those negative impacts (e.g.,
environmental flows) [1,2]. In particular, as it is considered to play a key role in mitigating
climate change, it has been actively promoted globally. Many studies have been conducted
to estimate the SHP potential, and accurately assessing the future potential of SHP is a
major concern [6–19].

SHP plants highly depend on climatic conditions; thus, it is crucial to accurately
predict the runoff under various climate change scenarios in order to assess the future SHP
potential [9,20]. In previous studies, a runoff was simulated using various hydrological
models to evaluate the impacts of climate change on the hydropower potential [9,21–25].
For conceptual and lumped models, Kim et al. (2012) predicted the future runoff using
the Tank model [26], and Chilkoti et al. (2017) used a conceptual rainfall-runoff model [9].
Depending on the scale and available information of the target area, the hydrological
models that can be used may vary [8]. By incorporating data such as the basin slope, curve
number, soil database, and digital elevation model (DEM), a more detailed model can be
applied. Liu et al. (2016) applied eight global hydrological models to project the impact of
climate change on the hydropower potential in China [27]. Kim et al. (2018) and Wang et al.
(2019) used a grid-based surface runoff model and variable infiltration capacity model to
study the impact of climate change on the future runoff and SHP potential [6,28]. Van Vliet
et al. (2016) pointed out the limitations of previous studies that used only one hydrological
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model and then used an ensemble of results from three global hydrological models [8].
However, the greater the input data used, the greater is the uncertainty of the model [8].

To this end, an artificial neural network (ANN), which is a machine learning model,
can be an alternative solution that can overcome the shortcomings of hydrological models.
An ANN model is based on the structure of neurons while taking into account nonlinearity
and shows highly accurate results in complex systems with less impact from outliers.
Because of these strengths, ANNs have been widely used in hydrological and environmen-
tal models to study complex nonlinear processes such as the rainfall-runoff process. In
particular, ANN has been applied to a wide variety of data and other models in order to
calculate and predict flood discharge. Campolo et al. (2003) used three different input data
(daily precipitation, hydrometric, and dam operation plan data) into an ANN model to
calculate the flood discharge, and they showed better results than regression models [29].
Kerh and Lee (2006) developed an ANN model based on upper stream station data and
basin characteristics to predict the characteristics of the lower stream stations, and the de-
veloped model yielded more accurate results than those from the Muskingum method [30].
Nesliihan (2011) predicted 543 ungauged basins in Turkey using two types of ANNs, and
Hidayat et al. (2014) applied ANN to tidal rivers and showed that ANN could perform
accurate predictions with less target station water level data [31,32]. Jahangir et al. (2019)
added Geographic Information System (GIS) data to an ANN model, and Bomers et al.
(2019) used a 1-D/2-D coupled hydraulic model to teach an ANN model to reproduce past
1809 flood events. Both studies recognized that their ANN model performed better than
existing models [33,34]. As such, research on predicting the future runoff by using an ANN
model has been conducted; however, there has been no research that has used the runoff
predicted by the ANN model to estimate the SHP potential.

Therefore, this study applied the ANN model to predict the future runoff and then
estimated the SHP potential based on the runoff prediction. The target SHP plant and
data are described, and the climate change scenario, ANN, evaluation metrics, and SHP
potential calculation are explained in Section 2. The results of the future SHP potential
prediction are presented in Section 3. The conclusions are presented in Section 4.

2. Data Descriptions and Methods
2.1. Target SHP Plant and Data

In this study, the Hanseok power plant in the Han River basin of South Korea was
selected as the target plant. As of 2015, there were 61 SHP plants currently in operation
in South Korea. The target plant was selected based on the following criteria: (1) the
existence of a rainfall station and a stage station with available weather and discharge data,
(2) the existence of over 2000 kW of power plant capacity that guarantees a stable power
plant operation, and (3) the possession of power generation data for 10 years or longer. In
particular, for the application of ANN, the training period should be at least two times
longer than the test period, and the available observed data was an important criterion for
this selection.

The Hanseok SHP plant is in the standard basin of the Saigokcheon junction. There
are two rainfall stations (Yeongwol and Yeongju) and a stage station (Danyanggun) in
operation near the plant (Figure 1). It has been generating electricity since its construction
in 1989, with an installed capacity of 2214 kW and an effective head of 3.8 m.

Weather data were collected from two nearby rainfall stations. These two stations,
Yeongwol and Yeongju, are under the control of the Korea Meteorological Administration
(KMA). The daily observed data for the precipitation, average temperature, average wind
speed, and average relative humidity for the period of 1995 to 2020 were collected. The
daily average discharge data for the same period were collected from the Danyanggun
stage station.
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2.2. Climate Change Scenario

A climate change scenario can be defined as the future carbon dioxide concentration
in the atmosphere to be used as the forced condition of a climate change model. The
Intergovernmental Panel on Climate Change (IPCC) has been developing future climate
change scenarios based on GHG emission scenarios and evaluating climate change re-
sponse strategies. In the IPCC fifth assessment report in 2014 (AR5), GHG concentrations
were determined based on the radiation to the atmosphere caused by human activities.
Representative Concentration Pathways (RCPs) were developed to indicate that socio-
economic scenarios may vary for one representative radiative forcing. The RCP scenarios
consist of four different cases (2.6, 4.5, 6.0, and 8.5) according to climate change response
policies (Table 1).

Table 1. Brief explanation of the RCP scenarios (2.6,4.5,6.0, and 8.5).

RCP Case CO2 Concentration

2.6 The Earth is able to recover the effects of
human activities (Impossible Scenario) 420 ppm

4.5 The green gas reduction policies are
implemented significantly 540 ppm

6.0 The green gas reduction policies are
realized at less than RCP 4.5 670 ppm

8.5 The greenhouse gases are emitted at the
current trend (without reduction) 940 ppm

RCP scenarios are materialized through global climate models (GCMs) and are used
as the most general climate change forecast data. GCMs are global atmosphere-ocean
circulation models based on complex interactions among various forces, such as solar
radiation energy, volcanic eruptions, greenhouse effect, and various other conditions
including the atmosphere, oceans, and ground surface. However, it is difficult to use GCMs
to analyze regional areas because of their low resolution (135 × 135 km). Therefore, a
spatial and temporal downscaling must be conducted to use a GCM at a regional scale.

To simulate the future climate of South Korea, the KMA is preparing a global cli-
mate change scenario using the Coupled Model Intercomparison Project phase 5 (CMIP5).
Among several CMIP5 models, the GCM of Hadley Center Global Environment Model-
Regional Climate Model (HadGEM3-RA) from the Hadley Center (UK Met Office) is
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widely used to understand climate change and provide future climate projections [35,36].
As aforementioned, it is difficult to use a GCM for South Korea. Therefore, the KMA uses
HadGEM3-RA, a regional climate model from HadGEM2-AO, for East Asia and the Korean
Peninsula. However, the regional climate model is still large for studying small areas such
as watersheds. Thus, the KMA offers fine-scale (1 × 1 km) climate change data over South
Korea. To prepare the fine-scale data, the KMA used the Parameter-elevation Regression
on Independent Slopes Model (MK-PRISM) and PRSIM-based Downscaling Estimation
Model (PRIDE) to downscale the HadGEM3-RA. This study used fine-scale data from the
KMA as future climate data.

We collected daily RCP 4.5 scenarios containing the precipitation, average temperature,
relative humidity, and average wind speed from 2021 to 2030. RCP 4.5 is mainly used to
estimate the long-term runoff and considers the substantial realization of GHG reduction
policies [37]. Because of the underestimation of precipitation data in the climate change
scenario, outlier testing and bias correction through quantile mapping are required [38].
Therefore, this study used quantile mapping for the bias correction and the box plot method
to detect outliers. After applying the two methods, we calculated the basin average value
of each meteorological factor in the observation data and climate change scenario data by
assigning the Thiessen polygon area ratio.

2.3. Artificial Neural Network

The ANN model, introduced by McCulloch and Pitts (1943), is a representative su-
pervised machine-learning algorithm [39]. The ANN model is based on the human brain
system and is generally used for the classification and prediction of specific factors using
only undefined mathematical relationships. The model is known to be an effective method
for analyzing nonlinear relationships between independent and dependent variables in
given datasets. Figure 2 illustrates the conceptual diagram of the ANN model.

Energies 2021, 14, x FOR PEER REVIEW 4 of 11 
 

 

analyze regional areas because of their low resolution (135 × 135 km). Therefore, a spatial 
and temporal downscaling must be conducted to use a GCM at a regional scale. 

To simulate the future climate of South Korea, the KMA is preparing a global climate 
change scenario using the Coupled Model Intercomparison Project phase 5 (CMIP5). 
Among several CMIP5 models, the GCM of Hadley Center Global Environment Model-
Regional Climate Model (HadGEM3-RA) from the Hadley Center (UK Met Office) is 
widely used to understand climate change and provide future climate projections [35,36]. 
As aforementioned, it is difficult to use a GCM for South Korea. Therefore, the KMA uses 
HadGEM3-RA, a regional climate model from HadGEM2-AO, for East Asia and the Ko-
rean Peninsula. However, the regional climate model is still large for studying small areas 
such as watersheds. Thus, the KMA offers fine-scale (1 × 1 km) climate change data over 
South Korea. To prepare the fine-scale data, the KMA used the Parameter-elevation Re-
gression on Independent Slopes Model (MK-PRISM) and PRSIM-based Downscaling Es-
timation Model (PRIDE) to downscale the HadGEM3-RA. This study used fine-scale data 
from the KMA as future climate data. 

We collected daily RCP 4.5 scenarios containing the precipitation, average tempera-
ture, relative humidity, and average wind speed from 2021 to 2030. RCP 4.5 is mainly used 
to estimate the long-term runoff and considers the substantial realization of GHG reduc-
tion policies [37]. Because of the underestimation of precipitation data in the climate 
change scenario, outlier testing and bias correction through quantile mapping are re-
quired [38]. Therefore, this study used quantile mapping for the bias correction and the 
box plot method to detect outliers. After applying the two methods, we calculated the 
basin average value of each meteorological factor in the observation data and climate 
change scenario data by assigning the Thiessen polygon area ratio. 

2.3. Artificial Neural Network 
The ANN model, introduced by McCulloch and Pitts (1943), is a representative su-

pervised machine-learning algorithm [39]. The ANN model is based on the human brain 
system and is generally used for the classification and prediction of specific factors using 
only undefined mathematical relationships. The model is known to be an effective method 
for analyzing nonlinear relationships between independent and dependent variables in 
given datasets. Figure 2 illustrates the conceptual diagram of the ANN model. 

 
Figure 2. Conceptual diagram of the artificial neural network model. 

The ANN model consists of three layers, namely the input, hidden, and output layers 
(Figure 2), each of which possesses a set of neurons that are fully connected with neurons 
in the following layer, and each layer has different weight values (w). The ANN model 
aims to reduce errors, defined as the difference between the estimated and targeted 
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The ANN model consists of three layers, namely the input, hidden, and output
layers (Figure 2), each of which possesses a set of neurons that are fully connected with
neurons in the following layer, and each layer has different weight values (w). The ANN
model aims to reduce errors, defined as the difference between the estimated and targeted
values, by modifying the weights using the backward propagation process. The backward
propagation process involves adjusting the parameters (e.g., weights, w, and biases, b) of
the model based on the loss provided from the previous iteration. Proper tuning results
ensure minimum errors, making the model reliable by increasing its generalization. The
ANN model was mathematically formulated using Equation (1):
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f1 = f (b1 + w11X1 + w21X2 + · · ·+ wn1Xn)
f2 = f (b2 + w12X1 + w22X2 + · · ·+ wn2Xn)

...
fm = f (bm + w1mX1 + w2mX2 + · · ·+ wnmXn)
Y = f (B0 + W10 f1 + W20 f2 + · · ·+ Wm0 fm)

(1)

where X is an input variable, f denotes an activation function for the layers, w repre-
sents the weight values between layers, and b and B indicate the biases in the hidden and
output layers, respectively. In the algorithms of the ANN model, the input X is multiplied
by the weight value, and the coupled value is then converted by the activation function.
Subsequently, it is transmitted to the next layer as a signal. Through these processes,
the final output Y is obtained. The representative activation functions generally used in
the ANN model include the sigmoid, hyperbolic tangent (tanh), and rectified linear unit
(Relu) functions.

2.4. Evaluation Metrics

In this study, the three metrics used for evaluating the performance of the ANN model
for runoff forecasting were the Nash–Sutcliffe efficiency (NSE), coefficient of coefficient
(CC), and percent bias (PBIAS).

NSE = 1 − ∑(ye − yo)
2

∑(yo − yo)
2 (2)

CC =
∑(ye − ye)(yo − yo)

∑(ye − ye)∑(yo − yo)
(3)

PBIAS =
∑ yo − ∑ ye

∑ yo
× 100 (%) (4)

where ye and yo denote the simulated and observed runoff, respectively, and ye and yo are
the average values of the simulated and observed runoff, respectively. The CC ranges from
−1 to 1 and describes a measure of how well the outputs are simulated by the model. A
value of 0 indicates that there was no correlation between the two runoff datasets. The
PBIAS indicates the ratio of the difference between the sum of simulated and observed
runoffs to the sum of the observed runoff. It is generally used to evaluate the modeling
performance of runoff volumes. The NSE denotes the predictive power of the model. It
ranges from −∞ to 1, and a value closer to 1 indicates a better performance of the model,
while a value below zero indicates that the average observed value is better than the
modeled value.

2.5. SHP Potential Calculation

The theoretical potential of SHP is the energy that can be obtained without consider-
ing the geographical and technical constraints. The theoretical potential was calculated
as follows:

Pt= ρ·g·Q·H (kW) (5)

where the water density is ρ (kg/m3), the runoff is Q (m3/s), the head is H (m), and g is the
acceleration due to gravity (m/s2). The density of water was taken as 1000 kg/m3, and the
acceleration due to gravity was approximately 9.8 m/s2. The effective head (He), the height
of the head, which determines the energy, was used as the head. The value of H can be
obtained by excluding loss head (head loss) from the gross head. The designed discharge
(Qd (m3/s)) value was applied. In this study, the maximum power generation potential
of the Hanseok SHP plant was taken as 53 MW, and the maximum runoff contributing
to power generation was 158.3 m3/s. Therefore, we calculated the potential by applying
158.3 m3/s as the design discharge.
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The technical potential can be calculated from the theoretical potential by considering
the efficiency of the plant (η) and the operation rate (L f ). The technical potential was
calculated as follows:

P = ρ·g·Qd·He·η·L f (kW) (6)

The total efficiency (η) varies according to the size and type of the plant. In this study,
the efficiency and operation rate were assumed to be 0.8 and 0.4, respectively [40].

3. Results
3.1. ANN Model Development

The ANN model used in this study had a standard three-layer network. It consisted
of an input layer, hidden layer, and output layer, and included a Relu activation function
in the hidden layer and a linear transfer function in the output layer. This study examined
the runoff prediction performance using various numbers of hidden layers, and the results
showed the most reliable results when using two hidden layers. The simulation function
of the algorithms for predicting the runoff was as follows:

Qt+m = f (Pt−n, Ht−n, Tt−n, Wt−n) (7)

where Qt−m is the predicted runoff with a lead time of m, and Pt−n, Ht−n, Tt−n, and Wt−n
indicate antecedent precipitation, humidity, temperature, and wind speed with a previous
time step of n, respectively. In this study, the input variables were obtained from two
weather stations, and different values of n were considered between one and four days of
the previous time steps. A fully connected layer with 40 neurons was used as the input
layer. In this study, for the runoff prediction using the ANN model, the training period
was from January 1995 to December 2015, the validation period was from January 2016 to
December 2020, and the test period was from January 2021 to December 2030.

3.2. Runoff Prediction under A Climate Change Scenario Using ANN Model

The trained ANN model was used for the verification and testing of runoff predictions.
Figure 3 illustrates the validation results for the runoff prediction using the ANN model
from January 2016 to December 2020. As shown in the figure, the model could accurately
capture the variability of the runoff in time and peak runoff. Statistical metrics showed
the predictive performance of the model. The values of CC, PBIAS, and NSE were 0.77,
16.8%, and 0.6, respectively. According to Moriasi et al. (2007) and Xiang et al. (2020), in
hydrologic modeling, an NSE value over 0.5 is considered acceptable, indicating that the
ANN model used in this study provided a sufficient predictive performance in forecasting
the runoff [41,42].
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3.3. SHP Potential Prediction

The future SHP potential (2021–2030) was predicted using future runoff simulation
results. The results of the monthly SHP potential are shown in Figure 4. In the prediction
period of 2021–2030, the SHP potential decreased as compared to that of the historic period.
This result can be attributed to a decrease in precipitation in future climate change scenarios.
The decreasing trend of precipitation in the 2020s has also been mentioned in previous
studies [43–45].
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Table 2 shows the comparison between the statistics of the monthly SHP potential
in the historic and future prediction periods. The maximum to mean value of the SHP
potential in the future period indicates a lower value than the values in the historic period,
with a change of −45.9% to −11.6%. On the other hand, the lower quartile (25%) and
minimum values showed an increase in the future period, with a change of 16.9% to 734.6%.
The monthly average potentials of each period are compared in Figure 5. Overall, the
average monthly potential decreased in the future period as compared to that of the historic
period, particularly from July to September. However, future increases in the monthly
average potential showed the largest change in June, with 59%. These results indicate that
the variation in the SHP potential will decrease in the future, similar to the characteristics
of precipitation in the climate change scenarios.

Table 2. The statistics of the monthly SHP potential in the historic and future periods.

Statistic Historic (2000–2020) Future (2021–2030) Change (%)

Max. 1581.69 855.63 −45.9%
75% 657.02 467.93 −28.8%
50% 371.07 328.09 −11.6%
25% 201.55 235.51 16.9%
Min. 9.41 78.55 734.6%
Mean 491.79 364.20 −25.9%
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4. Conclusions and Discussion

Efforts for achieving carbon neutrality are needed in order to mitigate global climate
crises. To this end, it is necessary to develop eco-friendly sources of energy and SHP. In
this study, we attempted to accurately predict the future SHP potential using a climate
change scenario and an ANN model. The Hanseok SHP plant was selected as the target
plant. The future runoff was simulated using the ANN model while considering climate
change, and the future SHP potential was subsequently predicted. The runoff simulation
results of the ANN model showed a sufficient predictive performance with a CC value
of 0.77, PBIAS of 16.8%, and NSE of 0.6. The results showed that the model accurately
captured the variability and peak runoff. The future SHP potential was predicted using
the future runoff. The results indicate that the SHP potential will decrease from 2021 to
2030. In particular, the maximum value of the monthly SHP potential in the future period
was predicted to decrease by 45.9% compared to that in the historic period. In addition,
the results of monthly average potentials showed that the average potential during July to
September was expected to decrease, while an opposite trend was shown in June.

This study contributes to improving the predictive performance of the future SHP
potential by using an ANN model. Though this study was conducted for a target SHP plant,
it can also be applied to any SHP plant. Owing to this limitation, we assumed the most
conservative value for the analysis, as the accurate operation rate and design discharge of
the plant were not available. In actual applications, more accurate predictions are possible
using more accurate values. In addition, machine learning models including ANN have
limitations that learn from observation data and make a prediction based on them, so that
the model is highly dependent on the learning data. Even if the length of the training
period is long enough and the characteristics of the selected training data can represent the
characteristics of the whole data, it is difficult to predict future extreme events that have
not occurred in the past. It is possible to make more accurate predictions by taking these
limitations into account and finding ways to complement those of existing models based
on the results of the models used in this study; it is then expected that this study can be
used to plan for future energy supplies and carbon emission reductions.
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