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Abstract: Mounting interest in ambitious clean energy goals is exposing critical gaps in our under-
standing of onshore wind power potential. Conventional approaches to evaluating wind power
technical potential at the national scale rely on coarse geographic representations of land area re-
quirements for wind power. These methods overlook sizable spatial variation in real-world capacity
densities (i.e., nameplate power capacity per unit area) and assume that potential installation den-
sities are uniform across space. Here, we propose a data-driven approach to overcome persistent
challenges in characterizing localized deployment potentials over broad extents. We use machine
learning to develop predictive relationships between observed capacity densities and geospatial
variables. The model is validated against a comprehensive data set of United States (U.S.) wind
facilities and subjected to interrogation techniques to reveal that key explanatory features behind ge-
ographic variation of capacity density are related to wind resource as well as urban accessibility and
forest cover. We demonstrate application of the model by producing a high-resolution (2 km x 2 km)
national map of capacity density for use in technical potential assessments for the United States. Our
findings illustrate that this methodology offers meaningful improvements in the characterization of
spatial aspects of technical potential, which are increasingly critical to draw reliable and actionable
planning and research insights from renewable energy scenarios.

Keywords: wind power; capacity density; technical potential; renewable energy; machine learn-
ing; geospatial

1. Introduction
1.1. Problem Overview

Clean technologies are reshaping the energy landscape. Wind technology advance-
ment and learning by doing are driving down costs [1] and fostering growing deployment
around the world. In the United States (U.S.), state and federal clean energy policies have
further facilitated adoption, resulting in major increases in installed capacity over the past
two decades [2]. Continued growth in wind power is expected based on the improving
economics [3] as well as increasingly ambitious clean energy targets in many states [4]. As
interest in deep decarbonization expands, potentially driving order of magnitude increases
in additional wind deployment relative to current levels [5,6], an urgent need to critically
evaluate wind energy potential at local to national scales has emerged [7,8].

Investigations into high renewable energy penetration futures have traditionally fo-
cused on technical and economic aspects of deployment viability [9,10]. These research
thrusts have illuminated the techno-economic conditions that enable broad-scale deploy-
ment of wind power. However, sufficient understanding of the central drivers of spatial
deployment patterns remains a key limitation as comparably less attention has been paid
to the geographic dimension of the energy transition [11,12]. Specifically, expansion of
wind energy poses challenges from the perspective of energy planning, which requires a
robust accounting of technical potential across time and space [13].
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Moreover, perceptions of low energy density of wind power relative to sources that
use conventional fossil fuels [14,15] contribute to narratives around expansive wind power
footprints and attendant land requirements. The nature of wind energy requires sufficient
spacing between turbines and siting around other land uses—such as agriculture, occupied
structures, and roads—which, in turn, results in larger footprints for wind energy facilities
compared to photovoltaic or conventional generation plants. These siting constraints vary
substantially across the country and there remains considerable uncertainty in the land
area requirements of wind power when viewed from a national perspective.

Improved understanding of land area requirements is critically needed to assess
geographic potential [16] as well as to evaluate potential local and cumulative impacts
of wind power deployment and to contrast those against impacts from alternative land
uses. During the past decade, significant advancements have been made in modeling wind
energy potential. The development of more accurate, higher fidelity representation of
wind resource [17] and technology [18] have resulted in better estimations of wind energy
generation potential. Moreover, studies increasingly make use of high-resolution data on
spatial exclusions [7,19,20], providing greater granularity in the accounting of deployment
constraints and barriers.

Although estimates of technical potential have generally improved over time, insights
into the geographic variation of this potential remain limited, in part, because of persistent
challenges with the representation of spatial characteristics of wind technology deploy-
ment [7]. In particular, simplistic assumptions regarding land area requirements for wind
power, measured in terms of areal capacity density, are routinely used to determine the
amount of nameplate capacity attainable for a given land area. These assumptions stand
in contrast to observed sizable variance in reported areal capacity densities (hereafter
referred to as capacity density) for onshore utility-scale wind farms [21-23] and contribute
to uncertainty in the quantification of technical potential that is sensitive to land area
requirements. However, in the absence of granular data or models for inferring how land
requirements vary across space, broad geographic generalizations about capacity density
have been established as the de facto approach for estimating how much wind power may
be obtained over a given area.

These practices limit the understanding of wind energy technical potential with
propagation of geographically uniform capacity density assumptions creating further
downstream implications for regional energy planning and developing state renewable
portfolio standards (RPS). For example, assumed geographically uniform densities at the
national scale may either overestimate or underestimate the available capacity, misrepre-
senting localized opportunities for wind energy that inform the state, regional, and national
potential [24]. Estimates of technical potential that are based on a single national aver-
age capacity density may be particularly unreliable for applications that require spatially
robust information including interregional grid integration studies and power system
improvement plans.

With wind energy projected to undergo significant geographic expansion over the next
several decades [25], more precise and localized representation of land area requirements
will be increasingly needed to draw reliable planning insight from high renewable energy
penetration scenarios [26]. Overcoming these challenges requires an alternative modeling
approach to produce spatially-explicit predictions of capacity density that reflect localized
capacity potential as a function of wind technology, resource, and geospatial variables. In
addition to directly informing technical potential, these data-driven insights into wind
power capacity density would notably benefit other dimensions of sustainability that
relate to the footprint of renewable energy sources. For instance, improved representation
of capacity density is needed to better understand the land area constraints of wind
versus other clean energy technologies [21]. This information also offers direct insight
into competing land occupancy between wind farms and other requirements (e.g., urban
growth, conservation, and agricultural) and could illuminate broader ecological and social
implications of wind development.
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1.2. Aim and Contributions

In the present work, we address knowledge gaps in spatial aspects of capacity density by
proposing a novel machine learning technique to predict localized capacity densities based
on geospatial variables. In contrast to conventional practices that assume capacity density
to be uniformly distributed (i.e., a single capacity density) at the national or regional scale,
we implement a new approach to explicitly model geographic variation in capacity density
at high spatial resolution. Specifically, we trained and validated a machine learning model
using geospatial variables and based on observed capacity densities at wind farms located
throughout the United States and applied it to create a national map of predicted capacity
density. Our primary objective was to map the spatial variability of capacity density as driven
by geographic factors across large areas including national and potentially continental scales.
Secondary objectives included cultivating deeper understanding of capacity density as it relates
to spatial drivers of wind energy deployment patterns and establishing geospatial machine
learning methods to advance future investigations of renewable energy technical potential. In
addition, we provide an in-depth examination of regional differences in predicted capacity
density, offering insights into the driving tvariables.

Our primary contributions are to present a novel methodology for quantifying spatially-
varying wind power capacity density at national and continental scales. Our predictive
method is unique in that it enables examination of geographic variability in capacity density
at high resolution in contrast to existing approaches that assign uniform land requirements
across broad geographic extents. To accomplish this, we use machine learning to establish
predictive relationships between observed capacity densities at operational wind plants
and geospatial drivers. We present an overview of the dominant methodologies that
assume spatially uniform capacity densities and differentiate our work by advancing a
quantitative method for predicting localized capacity densities that reflect variation in wind
power nameplate capacity installation potential. This study exposes the potential range of
spatially varying capacity densities across the United States. The observed variability is
expected to have a large impact on a wide range of applications including technoeconomic
assessments, future capacity expansion modeling, grid integration studies, technology
R&D investment, and ecological impact assessments. Moreover, policy decisions made by
local, state, and federal actors are best served by a detailed understanding of the quantities
and qualities of available wind energy capacity. The enhanced characterization of land
use requirements and influential variables (in determining these requirements) detailed
here will allow more effective decisions to be made around wind energy deployment and
utilization within both the research and policy communities.

2. Background

Assessments of technical potential are routinely conducted to evaluate wind energy
potential at regional to global scales. These studies provide decision makers with insights
into the spatial distribution of potential renewable resources along with an upper-bound
estimate of the technically feasible supply that “represents the achievable energy generation
of a particular technology given system performance, topographic limitations, environmen-
tal, and land-use constraints” [27]. Although technical potential modeling is a data-driven
process, it is subject to assumptions about resource, technology, and the environment [28].
Notably, these broad scale estimates of potential differ substantially from individual wind
plant siting decisions, which utilize a variety of plant based optimization approaches to
balance competing objectives spanning resource, technology, permitting, and costs.

2.1. Terminology and Derivation of Capacity Density

A fundamental component of wind energy technical potential is capacity density,
which represents the nameplate capacity (i.e., megawatts (MW)) that can potentially be
installed over a given area (typically measured in MW /km?). For an individual wind farm,
capacity density is computed by summing the installed turbine capacities and dividing by
the wind farm area. In practical terms, capacity density represents the potential to extract
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power over a given area based on an estimate of the land area occupied by turbines and
their combined generation capacity [23]. It does not account for variations in capacity
factor, curtailment, operational availability, or wake effects.

In reviewing the literature, it is apparent that capacity density is frequently used
interchangeably with “power density” though they can reflect different spatial quantities
and are often expressed in different units [21,29]. To aid in interpretation of our work, here
we draw a clear distinction between our focus on capacity density and the similarly termed
“wind power density”, which is a normalized measure of the accessible kinetic wind energy
flux (W/m?) [30]. The critical difference is that capacity density refers to the nameplate
installation capacity that may be attained over a horizontally-defined ground area (i.e., how
many megawatts worth of turbines can potentially be installed within one square kilometer
of land?). In contrast, wind power density is a measure of the strength of the wind resource
and describes the specific power flow within a vertical, cross-sectional domain (i.e., how
much wind power can be generated per square meter of rotor swept area?). In addition,
wind power density has been studied more intensely in the literature compared to capacity
density. Numerous methods exist for quantifying wind power density (e.g., Mohammadi
et al. [31]) whereas there are no established techniques for spatial modeling of capacity
density as far as we are aware. We caution the reader that ambiguity and inconsistency
in the usage of these terms among disciplines complicates interpretation and comparison
across studies.

2.2. Role of Capacity Density in Technical Potential Modeling

Capacity density is a core component within the technical potential modeling domain
alongside wind resource, system performance, and siting constraints [27] (Figure 1). In a
traditional technical potential assessment, capacity density is used to estimate the amount
of potentially installable capacity (in megawatts) and scales the estimates of turbine per-
formance (i.e., capacity factors) to represent potential annual generation within a given
areal extent [32]. Capacity density imposes operationally defined limits to areal energy
production capacity and establishes a baseline for evaluating capacity expansion scenarios
for future wind deployment [33].

Wind Capacity
resource (B density

Figure 1. Major components of wind power technical potential. Turbine technology specifications
determine the amount of energy that may be captured from the local wind resource. Capacity
density establishes the maximum nameplate power capacity of turbines that is installable over a
given area and reflects turbine spacing and siting requirements. In combination with spatial data on
non-developable areas (i.e., land exclusions), these components are used to assess technical potential.

The annualized technical potential for each spatial unit (k) is computed using the
following formula:
Ex = (Axdx )1acar, CFyc-8,760h @

where Ej is the technical potential for wind energy (MWh/year), Ay is available land
area (km?), Ok is the capacity density (MW/ km?), 1a, is the availability factor, #,, is
the array efficiency factor, and CF; is the localized capacity factor for a selected turbine
and hub height. Values used for availability factor (7,,) and array efficiency (74,) may
reflect long-term averages estimated using multiple years of generation data or may
correspond to a typical year. 8760 is the generalized total annual hours (h) of operation.
Although we express Jy, 14, , 1lar, using the k sub-index to reflect that these quantities
are spatially variable, in practice, they are conventionally considered to be homogeneous
across broad geographic extents, as discussed further below. Our goal in this paper is to



Energies 2021, 14, 3609

50f 28

illuminate spatial variation of capacity density (J;) across the United States, which has
critical downstream implications for estimation of wind power technical potential (Ey).

2.3. Approaches to Representing Capacity Density

The traditional approach to representing capacity density for wind technical poten-
tial applications has been one of simplification—assigning a uniform value across broad
geographic regions [27]. Within this paradigm, methods for inferring capacity density
generally fall into two categories (Table 1). A common method is to estimate the average
capacity density using observations of operational wind farms that include their installed
capacity and associated land area (i.e., project footprint). Though this has the benefit
of grounding estimates of technical potential based on observed densities, by reducing
wide-ranging observations to an average value, this type of characterization fails to persist
the geographic variation associated with the underlying observations. Downstream effects
of the averaging method on modeling technical potential can be significant because of the
considerable geographic variation in observed capacity densities that exists at national
scales [22,23,34]. Considering the diverse sociopolitical, physiographical, and environmen-
tal factors with influence over the proceedings of wind farm development, it should not
be surprising that wind farm configurations and associated land use are complex [35-37].
Still, it is common practice for findings from limited observational studies to be applied to
national or global extents despite these generalizations being based on data obtained from
individual wind projects and lacking broader geographic representation.

A second method assumes that capacity densities can be estimated exclusively as a
function of turbine technology. Using a turbine model’s rotor diameter, general rules of
thumb regarding spacing of turbines with and orthogonal to prevailing wind direction are
applied to estimate required land area per megawatt. Although each method for estimating
capacity density has its own set of tradeoffs to approximate real-world installation patterns
and representativeness of turbine specific spacing requirements, both are typically applied
in ways that ignore geographic differences in potential installed capacity. In some cases,
land suitability models have been used to partition the landscape into areas amenable for
wind development [38-40], though this approach is independent of any consideration of
geographic variation in capacity density.

Capture of this geographic variation in potential installed capacity has remained elu-
sive in published studies where the application of uniform capacity densities is established
as standard practice (e.g., [27,38,41-44]). Considerable uncertainties in the assessment
of technical potential can arise from assumptions about capacity density. In an in-depth
analysis of global land-based wind energy potential and its sensitivity to input parame-
ters, Zhou et al. [36] found that capacity density had a significant impact on wind energy
potential with global estimates (petawatt-hours) varying between —60% and +80% of
a reference scenario (5 MW /km?) based on the magnitude of assumed capacity density
(2-9 MW /km?). In a more recent study analyzing wind economic potential within the
context of urbanization, Herran et al. [45] found capacity density was the single-most
important factor affecting potential aside from economic parameters.
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Table 1. Examples of conventional approaches to inferring spatially-uniform estimates of capacity density for wind technical

potential modeling applications.
Approach for Assumed Capacity
Representing Capacity Description Application Density ! Reference
Density (MW/km?)
Relies on

empirically-derived

estimates of capacity
density based on

project-level
Average wind turbine information on wind

farm footprint and Us 5 [27]

installation density
methodology

installed capacity.
Resulting capacity
densities are
considered to be
spatially uniform (i.e.,

they do not vary
geographically).
Global; land suitability
factors combined with
fixed capacity density 4 [39]
to adjust local
geographic potential
5; range of
2-9 MW/km?
Global evaluated for [36,45]
sensitivity analysis
U.S. 3 [13]
India 9 [26]
Europe 19.8
Us. 21.7 [16]2
China 48
Estimates
turbine-specific
capacity density using
. . ! ulle of thumk.) Global; turbine spacing
Turbine spacing minimum spacing :
. computed using 9 [38]
methodology requirements based on
. 4D x 7D
rotor diameter (D).
Resulting densities are
implemented as
spatially uniform.
Finland; turbine
spacing computed 5.3-10.6 [44]
using 5D x 7D
Global; turbine spacing
computed using 8.9 [43]
4D x 7D
Global; turbine spacing

computed using
5D x 10D; local
geographic potential 6.5 [40]
adjusted following
Hoogwijk et al. [39]
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Table 1. Cont.

Approach for
Representing Capacity
Density

Assumed Capacity
Description Application Density ! Reference
(MW/km?)

Europe; turbine
spacing computed
using 4.375D x 4.375D 11.1 [19]
based on Enevoldsen
and Valentine [46]

Saudi Arabia; turbine
spacing computed 4.9-79 [47]
using 5D x 7D

! In cases where authors only reported turbine spacing we converted these requirements to capacity density to facilitate comparison among
studies. We used information on turbine spacing and rotor diameter to determine area requirements and used reported turbine capacity to
quantify capacity density as outlined in the Materials and Methods Section. 2 We present the mean capacity density reported by the authors
for a subset of the geographies assessed. They recommend using the mean density as an appropriate reference when estimating the upper
bounds of achievable capacity installation using their calculations.

2.4. Spatial Drivers of Capacity Density

Developing generalizable intuitions about capacity density is challenging because it
is highly variable across sites and because multiple spatial factors influence wind farm
configurations, which drive land requirements [39]. From an engineering perspective, ca-
pacity density reflects design principles that seek to maximize array efficiency and energy
production while minimizing wake losses to downwind turbines. In reality, however, wind
projects are subject to siting regulations, require negotiation of turbine placement with
land owners, and are otherwise constrained by additional criteria, including minimiza-
tion of construction costs. In addition, wind farm configurations are known to differ by
land cover type [23], implicating a regional component in capacity density variation. As
observed by Denholm et al. [23], adherence to these practical considerations creates project
configurations that differ from what may be expected via theoretical approaches.

Diffendorfer and Compton [48] conducted a detailed geospatial analysis of land
transformation due to wind development. Though they did not explicitly focus on capacity
density, their findings have important implications for wind potential. In addition to
discovering that land cover and topographic variables accounted for observed differences
in the magnitude of land transformation across wind farms, they found that turbine spacing
varied by landscape setting. Consistent with findings reported by Denholm et al. [23],
Diffendorfer and Compton [48] noted that wind farms in agricultural areas exhibited larger
distances between turbines than those in untilled landscapes, with spacing becoming
progressively tighter in forest, grassland, hay, and shrub cover types. These patterns in
agricultural lands, they hypothesized, were produced as a result of lease agreements with
landowners and also reflected setbacks due to zoning regulations. Holding constant all
other factors, increased turbine spacing leads to decreased capacity density. These findings
shed light on some of the plausible mechanisms driving geographic variation in capacity
density and further highlight the need to incorporate this information into energy planning.

3. Materials and Methods

In the following section, we describe our quantitative approach to developing spatially-
explicit predictions of capacity density. We first establish a comprehensive collection of
observed capacity densities for operational onshore wind farms in the United States.
Using this set of information, we then train a machine learning algorithm to predict
observed capacity densities based on a curated set of geospatial variables and validate the
model against independent test data. We generate spatially-explicit predictions of capacity
density for the United States. Lastly, we use model interrogation techniques to interpret
mechanisms driving model behavior and compare the predictions from our validated
model against a leading capacity density benchmark frequently used in U.S. wind power
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technical potential assessments. A high-level visual overview of this workflow is provided
in Figure 2. We explain each of these steps in more detail in the subsequent sections.

—

Explanatory Variables

@| Wind power potential w L
g gl | Training Data | Application _
= 2[ Directional wind power |

&' equitability ’\

Geospatial Data {+ _ Train Boosted
A Regression Tree model

!

; Generate spatially-
; || explicit predictions to
/ produce national map |—» [ ional predicti
of capacity density Directional feature
contributions (DFCs)

| Fractional forest cover

E | Fractional cropland
'y

>
ﬁl Fractional water cover l

| Fractional ridge landform

| Urban accessibility

| Housing unit density

Social

Compare against
benchmark

| Landscape contagion |

Figure 2. Schematic showing the data-driven workflow used to generate spatially-explicit predictions
of capacity density for the United States (U.S.). We compile observed capacity densities for a
comprehensive set of operational wind farms in the U.S. and associate those with geospatial variables
characterizing physical, social, and environmental drivers that explain geographic variation in
capacity density. The boosted regression tree model is trained using a subset of the observations and
validated against independent test data to assess its ability to generalize to other locations. We use the
validated model to generate a national map of capacity density and apply evaluation techniques to
interpret and compare our predictions against a standard benchmark that assumes spatially-uniform
capacity densities. Workflow visualization inspired by Lee et al. [49].

3.1. Wind Farm Data

We obtained spatial data on wind turbine installations from the U.S. Wind Turbine
Database (USWTDB; [50]), which provides a comprehensive snapshot of land-based and
offshore wind turbines that accounts for more than 58,000 operational turbines. Spatial
coordinates along with project information and turbine specifications are provided for
each record. We grouped turbines into distinct wind farms based on a unique project
identifier. Project-level properties were computed for each farm describing the number of
turbines, installed capacity, and turbine vintage. Wind farms were selected according to
multiple criteria to ensure they would sufficiently represent contemporary wind deploy-
ment patterns. For the purposes of this analysis, we defined relevant wind farms as those
land-based farms constructed in the conterminous United States (CONUS) after 2005 and
having a minimum installed capacity of 20 MW [23]. We considered these to reflect con-
temporary utility-scale wind projects. Collectively, this set of farms represents 81,273 MW
or 92.7% of total installed capacity in the United States. Multiphase farms are typically
built incrementally over time, expanding outward from existing farms and sharing similar
names with previous developments (e.g., Wind Farm I and Wind Farm II). We applied
Levenshtein’s distance algorithm [51], which scores sets of text strings based on a similarity
measure, to identify multiphase farms based on their project name. We excluded all phases
of multiphase farms to ensure that derived capacity densities would accurately depict total
land requirements. Idiosyncrasies in phased development patterns could otherwise lead to
erroneous estimates. In total, we excluded from this analysis 282 wind farms representing
individual phases of development (28,047 MW). Doing so allowed us to focus on capturing
cumulative as opposed to incremental development patterns.
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3.2. Wind Farm Area Estimation

Quantification of wind farm area is necessary for evaluating capacity density but can
be challenging because it requires defining spatial boundaries around turbines that lack an
observable, comprehensive geographic footprint. Attempts to estimate wind farm land
use generally fall into two categories that differ in terms of geographic scope: (1) twind
farm area may be described narrowly in terms of direct impact area (i.e., surface area
affected during turbine construction and experiencing ongoing impacts that are due to
associated infrastructure) or (2) more broadly in terms of total project area that includes
areas surrounding impacted zones and encompasses leased area when known [23,52].
Direct impact area is estimated to comprise 2-5% of total area on average based on the
broad definition of project area. Here, we focused on total wind plant area as a relevant
unit for understanding comprehensive space requirements of wind farms. Using this
definition, we considered total area to encompass all lands occurring within the outermost
perimeter of the turbine layout. Assuming a typical setback distance of 300 m [53], we
constructed convex hull polygons around each farm’s turbines to produce the minimum
convex geometry containing all turbines. We computed wind farm area using the convex
hull geometries. Note that these geometries do not explicitly account for non-turbine
features associated with the plant (e.g., substation, operation, and maintenance building).

3.3. Capacity Density Characterization

Capacity density quantifies the attainable level of energy generating capacity per unit
area. We defined wind farm capacity as the aggregate sum of installed turbine capacities.
Specifically, we computed capacity density for each wind farm (k) as:

b = (itwm)mk @
i=1

where ¢y is the capacity density (MW /km?) for farm (k), t_cap; is the rated capacity (MW)
of turbine (i), n is the number of installed turbines at farm (k), and Ay is the estimated wind
farm area (km?) at farm (k).

To manage the uncertainties associated with our methods for quantification of area
for very small and linear wind farms, we excluded farms with capacity densities exceeding
the 95th percentile of observed capacity densities (7.1 MW /km?). Wind farms included in
this analysis had a mean observed capacity density of 2.74 4+ 1.40 MW /km?.

3.4. Spatial Sampling of Wind Farm Characteristics

We considered capacity density as a wind farm-level attribute that can be explained
by geospatial variables describing characteristics of the farm. In order to capture fine-
grain geographic variation that exists among these variables, particularly for larger farms
that may be spread out over significant distances and in heterogenous environments, we
sampled geospatial characteristics at all turbine locations within each farm. This sampling
approach produced a set of spatially replicated observations [54] linking observed farm-
level capacity densities with spatial variables characterized for each turbine (Figure 3).
Turbine-level samples may be considered non-independent at the farm-level, however.
Thus, to minimize pseudoreplication that would result from the use of non-independent
samples [55] in our modeling, we utilized a random subset of turbine samples from each
farm. We controlled for the number of samples selected according to farm size, sampling
in proportion to the square root of the number of turbine installations at each farm. This
procedure ensured that larger farms had comparatively greater numbers of samples (with a
sample’s geospatial characteristic obtained at the turbine-level) than small farms based on
the need for higher density sampling to adequately capture geographic variation occurring
within the footprint of large wind farms.
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Wind farms used in analysis
X Training

O Testing

Figure 3. Spatial distribution of wind farm facilities used in model training and testing. Centroids of
selected wind farms from the U.S. Wind Turbine Database [50] are displayed here in tandem with
wind regions defined by the Department of Energy’s Office of Energy Efficiency and Renewable
Energy (DOE EERE) [2]. As shown here, training and testing datasets were each designed to include
observations of wind farms located in all regions of the country. This selection was done to minimize
geographic biases that could otherwise limit the ability of the model to generalize across regions.

3.5. Geospatial Data

Based on prior observation of wind farm layouts, we hypothesized that geospatial
factors relating to wind resource, land cover, terrain, land use/ownership, and population
density would influence capacity density. To develop predictive relationships with capacity
density, we produced a suite of geospatial characterizations for a total of 19 variables related
to these themes. All variables were characterized at 2 km resolution based on the grid of
the wind resource [56]. A description of the candidate explanatory variables is presented in
Table 2. Methodological details and additional metadata are provided in the Supplementary
Materials. Explanatory variables were stacked to produce multiband images and sampled
at each turbine location using Google Earth Engine [57]. This produced a train/test dataset
containing capacity density and associated variables along with wind farm IDs.

Table 2. The candidate set of geospatial variables used to model capacity density. Descriptive statistics are provided for the
conterminous United States (CONUS).

Variable

Standard

Description Minimum Maximum Mean

Deviation

ACC*

BUI

Urban accessibility
measured through
travel time to
nearest urban
center (minutes);
[58]
Built-up intensity
of residential and

commercial 0 1.1 x 107
buildings (m?2);
derived from [59]

0 9.45 x 102 1.21 x 102 93.2

2.65 x 103

3.27 x 10%
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Table 2. Cont.

Variable

Description

Minimum

Maximum

Mean

Standard
Deviation

CLF

CON *

CRG

DIV

GAP

HUD *

LBL

LC1*

LC2

LC3

LC4*

Fractional areal
extent of cliff
landform
(unitless); derived
from [60]
Landscape metric
describing
contagion (i.e., the
spatial
“clumpiness” of
unsuitable lands;
wind exclusions);
derived from [7]
Fraction of pixel
containing ridge
landform
(unitless); derived
from [60]
Fractional areal
extent of divide
landform
(unitless); derived
from [60]
GAP 1&2 status
protected lands
(%); derived from
[61]
Housing unit
density
(units/km?) [62]
Wind regions
defined by
Lawrence Berkeley
National
Laboratory [2]
Fractional areal
extent of water
land cover class
(unitless); derived
from [63]
Fractional areal
extent of
developed land
cover class
(unitless); derived
from [63]
Fractional areal
extent of barren
land cover class
(unitless); derived
from [63]
Fractional areal
extent of forest
land cover class
(unitless); derived
from [63]

N/A

38

1.00 x 102

27

1.58 x 10%

N/A

1.00 x 102

1.00 x 102

1.00 x 102

1.00 x 102

491 x 1072

71.3

32.1

6.19 x 1072

6.85 x 1072

17.2

N/A

1.84

545

1.16

249

0.64

233

0.47

0.72

0.023

1.08 x 102

N/A

9.98

12.9

7.67

31.2




Energies 2021, 14, 3609

12 of 28

Table 2. Cont.

Variable

Description

Minimum Maximum

Mean

Standard
Deviation

LC5

LC7

LC8*

LC9

LFR

LSpP

LU1

MWS

POP

RDG *

RIX

SLF

Fractional areal
extent of
shrubland cover
class (unitless);
derived from [63]
Fractional areal
extent of
herbaceous land
cover class
(unitless); derived
from [63]
Fractional areal
extent of
planted/cultivated
land cover class
(unitless); derived
from [63]
Fractional areal
extent of wetlands
land cover class
(unitless); derived
from [63]
Landform regions;
derived from [64]
Fractional areal
extent of lower
slope landform
(unitless); derived
from [60]
Land use class
(level I); derived
from [65]
Mean long-term
wind speed at 80 m
hub height (m/s);
derived from [56]
Population density
(persons/km?);
derived from [66]
Fractional areal
extent of ridge
landform
(unitless); derived
from [60]
Fractional areal
extent exceeding
critical slope
threshold
(unitless); derived
from [67]
Fractional areal
extent of suitable
landforms (i.e., not
cliff or valley;
unitless); derived
from [60]

0 1.00 x 102

0 1.00 x 102

0 1.00 x 102

0 1.00 x 102

N/A N/A

0 1.00 x 102

N/A N/A

1.35 14

0 3.18 x 10%

1.90 1.00 x 102

221

14.7

22.7

5.02

N/A

39.3

N/A

6.26

41.3

1.59

6.30-1072

86.2

33.0

25.7

31.2

13.8

N/A

15.7

N/A

1.08

2.58 x 102

3.77

0.17

10.8
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Table 2. Cont.

Variable

Description

Minimum

Maximum

Mean

Standard
Deviation

TRC

USP

VLY

WEQ *

WEX

WND *

Fractional areal
extent of tree
cover); derived
from [60]
Fractional areal
extent of upper
slope landform
(unitless); derived
from [60]
Fractional areal
extent of valley
landform
(unitless); derived
from [60]
Power equitability
metric describing
the evenness of
wind energy
contributions at
100 m hub height
across compass
directions; derived
from [56]
Fractional areal
extent of wind
exclusions; derived
from [7]
Dimensionless
wind energy at 100
m hub height
(unitless); derived
from [56]

1.00 x 102

1.00 x 102

70

99

1.94 x 102

26.0

43.3

13.0

90.7

96.4

28.2

15.2

9.47

8.46

25.0

An asterisk (*) indicates the variable was selected for use in the final predictive model after screening candidate variables based on

correlation coefficient.

3.6. Machine Learning Using Boosted Regression Trees

Research applications of machine learning have increased dramatically within the last
decade [68], supporting new insights through modeling. Although well known for their
predictive abilities and success across disciplines, these methods have been criticized as
black boxes, perceived to offer no insight into their inner workings and decisions. However,
the advent of tools to explore model functionality have enabled advances in model inter-
pretation [69,70], providing researchers with richer insight into machine learning models
and expanding their utility.

In particular, boosted regression trees, a class of ensemble machine learning techniques
that leverage collections of relatively simple models (i.e., weak learners [71,72]) have shown
remarkable success on a wide variety of tasks without sacrificing interpretability [73,74].
Several desirable features of boosted tree models, commonly known as gradient-boosted
models, have contributed to their popularity. These features include the ability to accom-
modate continuous and categorical explanatory variables, robustness and insensitivity to
outliers, modeling of interactions, and tools for interpretation [75]. The boosting algorithm
refers to a sequential tree-building process wherein trees are built in successive steps to
explain model residuals produced at the previous stage. Contributions of each tree are lim-
ited by a learning rate hyperparameter to prevent overfitting that would otherwise occur.
Other key hyperparameters that control elements of the learning process include number of
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trees, maximum tree depth (i.e., interaction depth), and regularization parameters intended
to penalize more complex models.

Model Building

We partitioned the data into separate training and test sets containing 80% and 20%
of the records, respectively. In theory, a model trained on a subset of samples from
a given wind farm could produce highly accurate predictions for another subset from
the same farm while being a poorly performing model in other “unseen” contexts. To
encourage generalization and prevent overfitting to known capacity densities, training and
test datasets were produced in a stratified fashion according to wind farm IDs, thereby
ensuring records for individual wind farms would appear exclusively in either the dataset
used to develop the model or the dataset used to evaluate the trained model. We further
discouraged artificial inflation of model performance estimates by sampling one record per
farm for the test dataset. Combined, the training and test datasets contained 1233 samples
from 190 and 50 unique farms respectively.

Hyperparameter tuning of machine learning models is a dataset-dependent task
and is a necessary step toward model optimization. We created a tune grid defining the
extent of our hyperparameter space focusing on number of trees (100-1000), maximum
tree depth (3-14), and learning rate (0.001-0.050). To guard against the construction of
overly complex trees, we enabled post-pruning using a tree complexity value of 0.01.
We performed a randomized search of the tune grid, evaluating model performance for
200 unique hyperparameter combinations against a withheld portion of the validation
data created using three-fold cross-validation. We selected the set of hyperparameter
values that best minimized mean squared error (MSE) on the training dataset. We used
correlation analysis to identify less relevant and redundant variables known to mask
variable importance and hinder model performance in boosted regression trees. Variables
with an absolute correlation > 0.4 were dropped, giving preference to those hypothesized
to have a clearer or more direct linkage (i.e., mechanism) with wind plant capacity density.
The nine explanatory variables included in the final model are identified in Table 2.

Using the boosted regression trees algorithm, we modeled observed capacity densities
for wind farms contained in the training set using the geospatial predictor variables
presented in Table 2. Next, we validated the trained model against the independent test set
to characterize its ability to generalize to other wind farm locations. We used the validated
model to generate localized predictions of capacity density at greater than two million
locations across the United States to produce a national map. Lastly, we interpret the
model predictions using model interrogation techniques and compare our findings with
established benchmarks in the field of wind power technical potential modeling. For an
overarching visual depiction of this analysis workflow, we refer the reader to Figure 2.

Modeling was conducted using the TensorFlow Boosted Trees (TFBT) implementa-
tion [76] built on the TensorFlow machine learning framework [77]. All analyses were
performed using the Python programming language [78].

4. Results

In this section, we present an overview of our results. We begin with a rigorous
validation assessment of our trained model against independent test data. We then use the
model to present our spatially-explicit predictions of capacity density for the United States,
providing additional interpretation to explain the mechanisms driving model behavior.

4.1. Validation

Hyperparameter settings and accuracy metrics for the best performing model are
provided in Table 3. Against the independent test set, the boosted regression tree model
achieved mean absolute error (MAE) of 1.02 MW /km? and a root mean squared error
(RMSE) of 1.25 MW /km?. As expected, the model performed better on the training set than
on the test set, despite implementing regularization techniques (e.g., low learning rate and
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post-pruning). Explanatory power measured against the test set produced an r-squared
(R?) of 0.40, which is a more robust characterization of how well the model generalizes.

Table 3. Results for the best model including model configuration as determined via hyperparameter optimization and

accuracy metrics obtained against an independent test set. Accuracy metrics are mean absolute error (MAE), root mean
squared error (RMSE), and r-squared (R2).

Number of Trees

Maximum Depth Learning Rate MAE RMSE R?

200

10 0.005 1.02 MW /km? 1.25 MW /km? 0.40

Inspection of the residuals indicates that model error is centered on zero and that
predictions lack bias according to the residual distributions (Figure 4). In addition, test
set residuals are more uniformly distributed and show that the model does not tend to
systematically over- or underpredict capacity density. Although we found a stronger
fit on the training set according to the R? metric (0.72), we note that the distribution of
residual error observed in these samples indicates that our implementation of regularization
techniques (low learning rate and post-pruning) were effective.

Residuals

1s 20 25 30 35 40 45 50 5%
Predicted value (MW/km?)
Figure 4. Residual plot showing prediction errors for train and test sets. The accompanying density
plot (right-hand side) shows that the distribution of residuals centers around zero for both sets used

in model evaluation.

4.2. Model Interpretation

Because not all model variables contribute equally, we gauged their contributions
to the model using a feature importance method established by Friedman [79]. Feature
importance values indicate the relative importance of a variable within a boosted tree model
and are scaled such that they sum to one when aggregated across all variables. A feature’s
importance is characterized by measuring its improvements to the model averaged over all
trees. Features with greater importance values tend to be more influential. Figure 5 depicts
global feature importance in the model indicating that directional wind power equitability
(WEQ), urban accessibility (ACC), forested land cover (LC4), and dimensionless wind
energy (WND) have the greatest overall contributions, according to this measure (see Table
2 for variable descriptions). Extent of ridge landforms (RDG), housing density (HUD), and
extent of planted/cultivated land (LC8) expressed moderate feature importance values,
while extent of water cover (LC1) had the least importance.



Energies 2021, 14, 3609

16 of 28

Feature importance

LCa4

WND

CON

RDG

HUD

LCE

LC1

0.00 0.05 0.10 0.15 0.20 0.25 030

Figure 5. Feature importance values for the selected set of explanatory variables (Table 2), showing
contributions to the boosted regression tree model. These values collectively sum to one across model
variables. In order of decreasing feature importance, the top four variables are directional wind
power equitability (WEQ), urban accessibility (ACC), forested land cover (LC4), and dimensionless
wind energy (WND).

To expand our understanding of model behavior, we employed a technique pioneered
by Palczewska et al. [69] to gain more granular insight into the basis for individual pre-
dictions. Directional feature contributions (DFCs) describe the nature of a variable’s effect
on the outcome and illuminate how different variables affect individual predictions. To
compute DFCs, each prediction instance is run through the ensemble of trees, traversing
the appropriate decision path and attributing changes in the predicted value to the variable
included at each node split [80]. This technique complements the feature importance assess-
ment and affords deeper insight into model behavior by enabling analysts to scrutinize how
various model features (i.e., variables) contribute to specific predictions. Contributions
indicate the magnitude and direction of influence for feature variables on the predicted
value for capacity density. Contributions are standardized relative to the distribution of
capacity density observed in the training set such that a contribution of zero indicates that a
feature has not shifted the predicted capacity density value from the mean observed value.
Positive contributions indicate that the feature value increased the prediction relative to
the mean observed capacity density and negative contributions indicate the opposite. An
intuitive property of DFCs is that for any particular example the sum of these contributions
plus the bias term (i.e., mean value of capacity density from the training set) equals the
predicted value. Aggregation of DFCs across a representative set of examples (i.e., a model
evaluation set) to produce a distribution of contributions yields a global depiction of these
effects [81].

Figure 6 shows DFCs for a prediction made for a sample wind farm from the test set.
Deviations from zero (i.e., the mean capacity density from the training set) indicate a feature
has had a positive effect (increase) or negative effect (decrease), respectively, on the predicted
value relative to this mean. For this particular example, WND and HUD had the greatest
effect on capacity density, both causing an increase in the predicted value. ACC and LC4
decreased the capacity density prediction, though these contributions were minimal in this
instance. DFCs for this prediction case are shown alongside the global distributions to illustrate
that feature contributions vary among samples. These distributions are generated in reference
to predictions made for samples from the test set. The distribution of WND contributions are
centered on zero and have a long right tail indicating that capacity density predictions for some
samples were greatly increased (upwards of 0.5 MW /km?) due to contributions by the WND
variable. In contrast, contributions of LC4 tended to be negative, indicating that the forest
cover variable largely had the effect of reducing predicted values of capacity density for test
set instances. For the samples contained in the test set, the urban accessibility (ACC) variable
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tended to decrease capacity density predictions though these contributions were variable as
indicated by the high variance evident in the global distribution.

Feature
value

WND i o n

HUD flg o [}

ACfha20]| u

LC8g 0 n

LC4fioo [} Feature contribution distribution
‘ W Contributions for example

-0.2 00 02 04
Contribution to predicted capacity density

Figure 6. Feature values (left side) and contributions for the top five features for an example
wind farm sampled from the test set. Variables are described in Table 2. Contributions indicate
the magnitude and direction of influence for feature variables on the predicted value for capacity
density. Contributions are described relative to the mean capacity density value from the training set,
with positive contributions indicating that the feature value increased the prediction and negative
contributions indicating the opposite. Distributions describe feature contributions taken from all
samples from the testing set.

4.3. Spatially-Explicit Predictions of Capacity Density

A map of predicted capacity density for CONUS is shown in Figure 7. Including all
lands, we found a mean predicted national capacity density of 2.82 = 0.75 MW /km? with
values ranging between 1.6 and 5.7 MW/km?. Findings were similar when a standard
set of land-based exclusions [27] were used to exclude likely undevelopable areas, with a
mean predicted capacity density of 2.76 + 0.72 MW /km?.

The following results are representative of the non-excluded land area of CONUS
(i.e., are deemed suitable for wind deployment as described above). Investigation of the
cumulative distribution of capacity densities revealed differences among wind regions
(Figure 8). We found predicted capacity densities to be generally lowest in the Great Lakes
region and highest in the West, with median values of 1.9 and 3.0 MW /km?, respectively.
At 2.8 MW /km?, the Northeast had the second-highest capacity density as measured using
the median predicted value. Interestingly, we found similar median capacity densities
for the interior of the country (2.6 MW/ km?2) and the Southeast (2.5 MW /km?). Areas
of low capacity density (<2.0 MW /km?) were present in all regions as were areas with
high capacity density (>5.0 MW /km?), with the exception of the Great Lakes, where the
maximum capacity density was 4.8 MW /km?.

4.4. Mechanisms Driving Capacity Density Predictions

At the national extent, intraregional and interregional variability in capacity density
are apparent, reflecting the influence of regional- and local-scale drivers. We mapped our
CONUS predictions to their corresponding directional feature contributions to further
aid in model interpretation and to provide spatial contextualization of the mechanisms
driving model behavior. Figure 9 uses the concept of DFCs introduced earlier to show
how key variables differentially contribute to capacity density predictions in terms of both
magnitude and direction of effect. These interpretations deconstruct grid-level predictions
to explain them on the basis of individual variables. As described above, DFC values
are presented relative to the mean capacity density observed in the training set, so a
negative value for a location indicates that a variable within that sample (i.e., location) has
contributed to a predicted capacity density value less than the observed mean. Positive
values indicate the opposite. Large-scale drivers include regionally varying wind resource
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as characterized by wind rose equitability (WEQ) and potential energy (WND). Inspection
of the DFC maps show that WEQ tends to decrease capacity density predictions across
large sections of the Midwest, Southeast, and coastal portions of the Northeast. These areas
correspond with high wind rose equitability, which indicates that sites whose potential
energy is evenly distributed across multiple compass directions (i.e., lack a predominant
wind direction) are associated with lower capacity densities, holding constant all other
factors. In contrast, the presence of strong unidirectional wind resources leads to increased
capacity density predictions. Although speculative, we hypothesize that this relationship
may reflect how wind farms are configured to maximally capture wind resources with
more concentrated spacing and thus higher capacity densities expected at sites where wind
energy flows in a predominant direction.

18 5
Predicted capacity density (MW/km?)

Figure 7. Map of predicted capacity density for CONUS. Areal capacity density represents potential
nameplate capacity installation per unit ground area and is measured in MW /km?. Predictions are
made at a 2 km x 2 km spatial resolution based on the Wind Integration National Dataset (WIND)
Toolkit wind resource dataset [56]. As described in previous sections, variations in capacity density
reflect that wind farm land requirements are driven by multiple variables and that these phenomena
contribute to substantial differences in both observed and predicted capacity densities across the
country. Information on capacity density is needed to quantify wind deployment potential and is a
key input into technical potential analysis and other downstream assessments (e.g., supply curve
modeling). The histogram shows the distribution of predicted capacity density at the national scale.

The DFC maps reveal a more nuanced relationship between capacity density and
wind energy potential. For example, high wind energy potentials found in the country’s
wind belt were associated with both neutral and slightly negative contributions to capacity
density predictions. On the other hand, wind potential was found to have a positive
contribution to capacity density throughout central Appalachia, the northernmost reaches
of the Northeast, and the West, with the exception of valleys characterized by low wind
resource. The lack of a clear association here may indicate an interaction of wind potential
and other variables. Although the presence of a strong interaction could potentially
confound a univariate interpretation, an inquiry into these secondary effects was beyond
the scope of this analysis.
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Figure 8. Cumulative distribution of predicted capacity density for major wind regions over non-
excluded land areas. Dashed vertical lines refer to uniform capacity densities applied for estimates of
U.S. wind power technical potential (3 MW /km?: Mai et al. [13]; 5 MW /km?: Lopez et al. [27]). See
Lopez et al. [27] for definition of standard wind exclusions.

Figure 9. Directional feature contributions (DFCs) explaining the extent to which grid-level
(2 km x 2 km) capacity density predictions for CONUS are attributable to the four most influential
variables according to a feature importance measure: (a) wind energy equitability (WEQ), (b) urban
accessibility (ACC), (c) forest cover (LC4), and (d) wind energy (WND). DFCs quantify the contribu-
tion of individual variables to each prediction and provide a local interpretation of model behavior.
Intuitively, individual predictions are the sum of DFCs for all model variables plus the bias (i.e.,
mean capacity density value from the training set). DFCs are evaluated at a 2 km x 2 km spatial
resolution based on the WIND Toolkit wind resource dataset [56].

Distinct patterns in the capacity density surface are also attributable to variation
in urban accessibility (ACC), an indicator of remoteness as measured by travel time to
the nearest city [58]. Here, the extent of a city is defined based on either the contiguous
area exceeding a density of 1,500 people per square kilometer or a region characterized
by predominantly built-up land cover and adjacent to a population source that exceeds
50,000 people. These patterns are expressed as concentric rings extending from urban
centers and reflect significant regional differences in remoteness. Interestingly, the model
tends to predict higher capacity densities for areas characterized by low (i.e., remote)
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to moderate levels of accessibility. While the mechanisms behind this phenomenon are
unclear, we speculate that it could be related to the presence of various land use constraints
in moderately developed landscapes that lead to more confined turbine layouts and thus
greater capacity densities. The ring of higher capacity density around Shreveport, LA, in
Figure 8 is an example of how low urban accessibility bounded spatially by mostly forested
area can result in distinct patterns of capacity density. Figure 9 shows how this pattern is
explained in the model via urban accessibility, forest cover, and regional patterns of the
wind resource. Regions with greater accessibility are likely to have more urbanization-
related constraints (e.g., residences and roads). Accounting for these factors in working
landscapes could require irregular turbine placement, effectively increasing wind farm
areas and decreasing capacity densities accordingly.

In addition to these influences, we found high-density forest cover to be largely
associated with increased capacity density predictions. This relationship is evident in the
Northeast and Pacific Northwest and is also present in major forested mountain regions,
including the Sierra Nevada, Rocky Mountains, and Appalachian Mountains. These
findings are consistent with prior observations that wind farm layouts vary by land cover
type [23] and that wind turbines tend to be more closely spaced in forested landscapes than
in open (e.g., agricultural) landscapes [48]. As noted earlier, although multiple factors could
contribute to why turbine spacing tends to be greater in agricultural settings, Diffendorfer
and Compton [48] hypothesize that these patterns may be driven by the presence of land
lease agreements and zoning restrictions that fragment developable areas, resulting in
disjoint siting of turbines.

Considering all mechanisms that drive capacity density predictions, we find that
regions with complex topography possessing robust wind resource and unimodal wind
energy directionality combined with moderate forest cover and remoteness (i.e., are less
accessible) appear to have the greatest capacity densities when generalized at the national
level. In addition to these primary drivers, we attribute finer-grain variability in predicted
capacity density to localized features that include terrain (RDG) and spatial development
patterns as captured by housing density (HUD) and fragmentation of lands deemed suitable
for wind deployment (CON).

5. Discussion
5.1. Comparison with Other Findings

To the best of our knowledge, this is the first map of capacity density that has been
produced for a large geographic region such as the conterminous United States. Moreover,
we are not aware of any other studies that have explicitly predicted localized capacity
density at this scale. Conventional approaches applied to similarly large geographic
areas and reported in Table 1 either assign geographic averages based on wind farm
observations or estimate capacity density based on generic turbine spacing requirements.
In addition, layout optimization analyses tend to be narrowly defined at the project level
in terms of turbine technology, operations, and siting criteria and would be a poor basis for
comparison. We therefore lack alternative sources from which to make a direct comparison
against our model or predicted capacity density surface. Still, we find that the range of
predicted capacity densities is generally in line with previously reported numbers. Among
developable lands we found a mean predicted capacity of 2.76 MW /km? which is similar
to the 3 MW /km? used by Mai et al. [13] and Lopez et al. [7], but substantially less than
the 5 MW /km? used by Lopez et al. [27] for United States specific technical potential
assessments. Nevertheless, as we have demonstrated, the spatially varying aspect of
capacity density is a critical feature for the assessment of wind technical potential that is
persistently overlooked. In assessing our findings in aggregate, we caution that a focus on
national averages obscures important regional and sub-regional variation that is captured
by our approach. Geographic limitations of conventional representations of capacity
density are visualized in Figure 10, which highlights key regional deviations in predicted
capacity density relative to a uniform benchmark.
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Figure 10. Differences between our geospatial predictions of capacity density and the 3 MW /km?
benchmark used in recent national studies of wind power technical potential (e.g., Lopez et al. [7];
Mai et al. [13]). Deviations (MW /km?) shown in the map illuminate where gross average estimates
of capacity density applied uniformly at the national scale fail to capture local and regional variation
with downstream implications for technical potential. Negative deviations indicate that our model
predictions are less than the 3 MW /km? benchmark whereas positive deviations indicate the opposite.
The histogram shows the national distribution of these deviations.

5.2. Model Evaluation

Evaluation metrics indicate that the model achieved suitable generalizability against the
independent test set (MAE =1.02 MW/ km?2, RMSE = 1.25 MW /km?). In particular, we believe
that the prediction surface provides a useful depiction of spatially varying capacity density
and is an improvement over existing approaches that assume a uniform capacity density
across geographic space. Because capacity density is effectively used to scale the magnitude
of available wind capacity and potential generation in assessments of technical potential [32],
our achieved level of accuracy is suitable for supporting those types of inferences. Given the
complexity of factors and decision-making processes that influence siting, design, and the
ultimate success of wind energy projects, we believe that the observed performance (R? = 0.40)
constitutes valuable explanatory power for real world data.

Moreover, we contend that while site-specific predictions have room for improvement,
the regional trends identified in Figure 7 are meaningful and provide insight to the wind
and general energy modeling community. Recognizing that other factors outside the scope
of our analysis affect capacity density, we would expect a portion of the variance in capacity
density to remain unexplained. These findings are consistent with our expectations of a
meaningful and credible model yet allow for continued improvement in the future with the
incorporation of finer-grain explanatory datasets and increases in training data afforded by
additional wind farm deployment. For example, we hypothesize that many of these factors
are at least, in part, social in nature and that bringing them to bear on future wind energy
research will require sophisticated geospatial analysis of fine-grained ownership, zoning,
and development data. Cumulative deployment effects may also impact regional capacity
densities over time due to potential wind resource, social, and ecological considerations.
Each of these are active areas of research that we anticipate will help cultivate more-precise
geospatial insights of wind technical potential as it relates to additional spatial phenomena
moving forward.

The ability to draw inference from the boosted regression tree model to implicate those
factors found to be most important in explaining observed variation in capacity density
is integral to formulating insights about key drivers and the nature of their association
with capacity density. Employing model interrogation techniques, we determined that the



Energies 2021, 14, 3609

22 of 28

most important features were related to wind resource characteristics (WEQ and WND),
accessibility to urban centers (ACC), and forest cover (LC4). Other relevant but less
impactful features included the spatial patterning of lands considered unsuitable for wind
development (CON), extent of ridge landforms (RDG), housing unit density (HUD), and
extent of agricultural lands (LU8). DFC maps (Figure 9) provide additional insight into
the predicted capacity density surface, explaining how these spatial variables contribute to
model predictions.

These findings add to a focused and emerging body of evidence documenting the
complexities of land area requirements of wind power. Although we demonstrate that
geospatial factors shape the physical settings for wind farm development, they do so along-
side sociopolitical, ecological, and engineering influences [39,48] that are difficult to capture
at a national scale. In addition, we acknowledge that large-scale atmospheric processes
control critical dynamics for the wind industry. For example, geophysical processes are
known to limit the rate at which kinetic energy may be extracted from the atmosphere [82],
setting the upper limit to hypothetically achievable capacity density [22]. Though from an
operational perspective, the economic, social, and technical constraints are more likely to
impose realized limits to wind potential [83].

Employing boosted regression trees as the modeling framework enabled the capture
of these types of multidimensional relationships via their tree-based structure [75]. This is
because models possessing deep trees with many splits (i.e., branches) effectively describe
nuanced relationships that include variable interactions [73]. Although our current scope
did not allow for investigation of variable interactions per se, we suspect that further
assessment of the model would reveal key relationships within the interplay of topographic,
land cover, wind resource, and social factors that affect wind energy potential. Additional
research to crystallize these relationships would help further illuminate how regional
patterns of deployment are affected by energy and zoning policies as well as other factors
of interest to researchers and decision makers.

Development of meaningful machine learning applications requires that input training
data are of high quality and are sufficiently representative to capture variation in the process
being modeled. These design principles are reflected in our data curation and sample
design. For example, to both support and evaluate the model’s ability to generalize across
regions, we trained and tested model performance using samples distributed throughout
all regions of the country possessing operationally active commercial wind farms (Figure 3).
Although we explicitly accounted for regional variation in model development and testing,
we recognize that not all regions of the United States are represented by current wind farm
deployment. However, to the extent that the associations between geospatial variables and
capacity density captured by our model are translatable across geographies, we believe
that spatial predictions for the Southeast are insightful for understanding relative regional
differences in expected capacity density. Furthermore, we believe that the driving variables
associated with wind resources, topography and other physical characteristics, and spatial
development patterns are of universal relevance to wind farm deployment and are therefore
likely to apply to other regions independent of their physical proximity to existing wind
farms. Thus, rather than viewing the geographic distance between sites used for model
development and prediction as relevant for inferring the model’s ability to extrapolate, we
see this challenge primarily as one that involves interpolation in variable as opposed to
physical space.

6. Applications and Conclusions

The map of predicted capacity density presented here is representative of the spacing
characteristics of current wind farm deployments and their associations with geospatial
variables. As the wind industry continues to evolve [2], it will be important to monitor
for changes in technology or geospatial deployment that could boost attainable capacity
densities. For instance, wake steering technology innovations that enable higher turbine
installation densities with mimimal impacts to energy production may be creating new
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opportunities for wind deployment in land-constrained regions [84]. Absent fundamental
shifts in the capacity density landscape, however, we believe that our derived capacity
density layer provides a useful representation of wind potential for contemporary farms
across the conterminous United States. Moreover, this machine learning approach is
sufficiently generalizable to be extended to other countries where broad-scale planning
and assessment of wind power potential is needed. Those efforts would benefit from the
collection and curation of country-specific data on wind power deployment and geospatial
characteristics and would enable deeper examination of spatial variation in potential
capacity densities as demonstrated here.

Although future research will presumably improve upon our efforts, we believe that
this approach reflects a step change in the research community’s ability to characterize
wind energy technical potential across broad geographic extents. Our hope is that making
these data broadly accessible will support a more comprehensive research and planning
process wherein insights about geospatial variation in wind energy potential are considered
in future technology development and deployment scenarios.

6.1. Applications

Our approach to model geospatial variation in capacity density across broad geo-
graphic areas can improve how studies of technical potential inform local, regional, and
national opportunities for future wind energy deployment. Advancing a geographically
based understanding of differences in capacity density that shape technical potential is
critically needed to improve the research and planning community’s understanding of
where, how much, and under what conditions wind energy might be deployed in the
future. Characterization of spatial aspects of potential future wind plants is also critical
for informing technology development that could mitigate social and ecological impacts
from wind energy as it becomes integrated into the energy system of the future. Such
knowledge is increasingly being used to guide long-term energy planning including for de-
carbonization scenarios and informs local, state, and federal policymakers as they consider
legislation around clean energy adoption. To this end, technical potential is a principal
input for the Integrated Planning Model (U.S. Environmental Protection Agency), the
National Energy Modeling System (U.S. Energy Information Administration), and the
Regional Energy Deployment System (used by the U.S. Department of Energy). These
models provide enhanced insights when they directly reflect regional changes in available
wind generation as a function of capacity density.

6.2. Conclusions

In conclusion, by demonstrating the potential variability of wind power capacity
density across broad geographic extents, our spatially-explicit representation of capacity
density better illuminates the potential land use implications of an expanding renewable
energy portfolio [85,86]. Moreover, by using empirical data to predict potential character-
istics of future deployments, the work informs the ways in which growing energy needs
may be met [87] by wind deployment in diverse settings [45]. We contend that capturing
this geographic context is essential to informed decision-making and long-term energy
planning, especially as society grapples with a possible energy transition in the context
of deep decarbonization objectives. In addition, by more precisely characterizing how
wind energy might be deployed in regions with little prior development, the work can
help inform potential new research and technology innovation needs including those that
are specifically applicable to the types and sizes of wind power plants that are necessary
to achieve further capacity additions across the conterminous United States. Notably, the
regional differences in predicted capacity densities between the interior of the country and
the Northeast suggest that innovations that are applicable to closely clustered turbines
but more distributed plants will be more impactful in regions such as the Northeast while
innovations focused on large plants with extended spacing between individual turbines
will have greater impact in the interior.
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New outcomes from our work also include an established methodology that provides
a platform for continued advancement in geographic characterization of wind power tech-
nical potential. Additionally, our modeling has uncovered that factors beyond traditional
wind energy considerations (e.g., wind technology and wind resource) including social
characteristics of the landscape play a measurable role in affecting wind energy capacity
density across space. Specific priorities for future research include increasing levels of
resolution across national and continental scales, enriched characterization of social and
ecological variables, and consideration of how cumulative effects of wind deployment
might ultimately shape and influence wind energy technical potential. Fundamentally,
we hope that our data-driven approach to characterizing spatial aspects of wind power
systems will promote deeper investigations of wind technical potential that are grounded
in geography and reflect the factors that explain geographic variation among operational
wind farms.
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DOE  United States Department of Energy

EERE Office of Energy Efficiency and Renewable Energy
RPS Renewable Portfolio Standards

R&D  Research and Development

D Rotor Diameter
MW  Megawatt

W Watt

KM Kilometer

M Meter

U.S. United States
MSE  Mean Squared Error
TFBT  TensorFlow Boosted Trees
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MAE Mean Absolute Error

RMSE Root Mean Squared Error

R? r-squared

DEC Directional Feature Contribution

CONUS Conterminous United States
USWTDB U.S. Wind Turbine Database

GAP Gap Analysis Project
ACC Urban accessibility measured through travel time to nearest urban center (minutes)
BUI Built-up intensity of residential and commercial buildings (m?)
CLF Fractional areal extent of cliff landform (unitless)
Landscape metric describing contagion (i.e., the spatial “clumpiness” of unsuitable
CON . .
lands; wind exclusions)
CRG Fraction of pixel containing ridge landform (unitless)
DIV Fractional areal extent of divide landform (unitless)
GAP GAP 1&2 status protected lands (%)
HUD Housing unit density (units/km?)
LBL Wind regions defined by Lawrence Berkeley National Laboratory
LC1 Fractional areal extent of water land cover class (unitless)
LC2 Fractional areal extent of developed land cover class (unitless)
LC3 Fractional areal extent of barren land cover class (unitless)
LC4 Fractional areal extent of forest land cover class (unitless)
LC5 Fractional areal extent of shrubland cover class (unitless)
LC7 Fractional areal extent of herbaceous land cover class (unitless)
LC8 Fractional areal extent of planted/cultivated land cover class (unitless)
LC9 Fractional areal extent of wetlands land cover class (unitless)
LFR Landform regions
LSP Fractional areal extent of lower slope landform (unitless)
LU1 Land use class (level I)
MWS Mean long-term wind speed at 80 m hub height (m/s)
POP Population density (persons/km?)
RDG Fractional areal extent of ridge landform (unitless)
RIX Fractional areal extent exceeding critical slope threshold (unitless)
SLF Fractional areal extent of suitable landforms (i.e., not cliff or valley; unitless)
TRC Fractional areal extent of tree cover
USP Fractional areal extent of upper slope landform (unitless)
VLY Fractional areal extent of valley landform (unitless)
Power equitability metric describing the evenness of wind energy contributions at
WEQ . D
100 m hub height across compass directions
WEX Fractional areal extent of wind exclusions
WND Dimensionless wind energy at 100-m hub height (unitless)
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