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Abstract: Occupant behavior can significantly influence the operation and performance of buildings.
Many occupant-centric key performance indicators (KPIs) rely on having accurate counts of the
number of occupants in a building, which is very different to how occupancy information is currently
collected in the majority of buildings today. To address this gap, the authors develop a standardized
methodology for the calculation of percent space utilization for buildings, which is formulated
with respect to two prevalent operational data schemas: the Brick Schema and Project Haystack.
The methodology is scalable across different levels of spatial granularity and irrespective of sensor
placement. Moreover, the methods are intended to make use of typical occupancy sensors that capture
presence level occupancy and not counts of people. Since occupant-hours is a preferable metric to use
in KPI calculations, a method to convert between percent space utilization and occupant-hours using
the design occupancy for a space is also developed. The methodology is demonstrated on a small
commercial office space in Boulder, Colorado using data collected between June 2018 and February
2019. A multiple linear regression is performed that shows strong evidence for a relationship between
building energy consumption and percent space utilization.

Keywords: occupant-centric; occupancy detection; key performance indicators; space utilization;
project haystack; brick schema

1. Introduction

Climate change mitigation efforts require increasing the share of renewable energy
sources, while simultaneously decreasing total energy use across all sectors. One of these
sectors is the buildings sector, which consumes roughly one third of primary energy glob-
ally [1]. Buildings underpin many aspects of society by providing shelter and security,
places for people to travel from and to, places to work, and places that we call home.
They have always been designed and developed to support some aspect of our lives,
yet formal analysis of how people use and interact with buildings has been lacking. In an
effort to understand the driving forces behind energy consumption in buildings, the In-
ternational Energy Agency (IEA) Energy in Buildings and Communities (EBC) program
commissioned Annex 53 (2008-2013), which determined occupant behavior to be one of the
key influencing factors on building energy consumption [2]. Recent research on UK build-
ings has also found that occupancy behavior can account for 10-80% of the discrepancies
between designed and operational energy performance in buildings [3].

Two additional research programs have since been commissioned, Annex 66 (2013-2018)
and Annex 79 (2018-2023), both of which have focused on understanding, simulating, and
characterizing occupant behavior and its effects on building operation and overall building
performance. They have developed metrics and key performance indicators (KPIs) to
quantify these effects and demonstrated them using case studies. The case studies utilize
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multiple methods for determining how occupants use the building, such as occupancy
surveys [4], human administered occupancy counting [5], cameras [6], movement detection
and tracking devices [7], radio-frequency identification (RFID) devices and WiFi [8]. Using
some of these different methods for measuring occupancy, case study 29 [8] summarizes and
compares the annual energy consumption of buildings considering the designed occupant
density and measured occupancy counts. The majority of the research regarding occupant-
centric metrics and KPIs was recently summarized in [9]. An important observation is that
many of these KPIs rely on obtaining an accurate count of people in a building.

Occupant-centric KPIs that relate building energy consumption to occupancy data
have been demonstrated before, such as the energy per occupant-hour [9]. Most of these
metrics have been annualized metrics and haven’t considered granular occupancy data
or energy data, which is now significantly more relevant. Measurement and verification
2.0 (MV 2.0) is used to refer to a set of methods for estimating temporally granular energy
consumption data for buildings [10]. The time-of-week temperature (TOWT) model,
consists of a “time-of-week indicator variable and a piecewise linear and continuous
outdoor air temperature dependence” [11]. It has been demonstrated to perform well on
the efficiency valuation organization (EVO) portal and has also been adopted as part of
the CalTRACK hourly methods [12]. The ASHRAE Guideline 14 three parameter heating,
three parameter cooling, and four parameter method [13] additionally all perform well on
the EVO portal, even though they don’t take any temporal indicator variables into account.
ENERGY STAR for offices, although not temporally granular, uses weekly operating
hours, number of workers, an adjustment for heating degree days, and other explanatory
variables to model annual energy use intensity (EUI) for office buildings [14]. The success
of these previous results demonstrate the importance of using outdoor air temperature as
an explanatory variable in estimating building energy consumption. Moreover, the time
of week indicator variable used in the TOWT model is really just a proxy variable for
what is actually desired, which is the occupancy state of the building. The same can
be said for the weekly operating hours and number of workers used as explanatory
variables in the ENERGY STAR method. Both models account for occupancy patterns in
some way, although they are not based on true measured occupancy data, wherein lies
another opportunity.

Accompanying the need to better understand how occupants use buildings are the
advances in sensor technology development, specifically with regards to occupancy detec-
tion. Occupancy detection technologies are typically characterized by the granularity of
occupancy they can detect, namely: presence occupancy detection (at least one person is
present), occupancy counting (the exact number of people present), identity detection (who
the people are), and activity detection (what the people are doing) [15]. The case studies
mentioned previously describe some of these new technologies in greater detail and we
refer the reader to recent reviews for comprehensive characterizations [16-18]. Moreover,
the Advanced Research Project Agency-Energy (ARPA-E) put out a call to advance the state
of occupancy detection technologies in buildings. One of the main pillars for achieving
this is by advancing the state of occupancy counting technologies [19]. Along with the IEA
EBC push, this has created a significant research agenda towards more accurately and cost
effectively quantifying the number of people in buildings [16-18].

The thrust to advance the state of the art in terms of occupancy counting technologies
will take time to make an impact on the existing building market. Even then, the politics
of data privacy in buildings has not been well established and presents some risk [20,21],
although the opportunity to use occupancy data for space utilization and optimization of
facility usage is promising [22] and commercially available services already exist in this
area [23-25]. However, it is our opinion that space utilization applications and occupancy
counting systems will primarily be implemented in Class A commercial office spaces (Class
A commercial real estate consists of the highest-quality and sought after buildings amongst
“high-profile, white-collar companies”, typically characterized by “top-of-the-line fixtures,
amenities, and HVAC and technological systems” [26]) for the next decade or so. On the
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other hand, the precedent set by buildings codes mandates simple occupancy detection
systems, such as passive infrared (PIR), sonar, and dual-tech sensors, which only capture
presence level occupancy.

1.1. Developments in Data Schemas for Buildings

In addition to development in occupant-centric metrics and occupancy sensing tech-
nologies, there has been significant advancement in the standardized representation of
operational building data [27-29]. Many different forms of digital information are produced
over the lifespan of a building, capturing design, construction, commissioning, operations
and controls, maintenance, and audit information. Standardized representations of this
digital data (data schemas) are designed to improve interoperability between different
applications at different points of digital handoff, with the ultimate goals of streamlining
workflows and reducing duplication of work. Examples of data schemes include the
Industry Foundation Classes (IFC), used to standardize building information model (BIM)
data [30], green building XML (gbXML), used to standardize data exchange for BIM to
building energy modeling (BEM) applications [31], and BuildingSync, used to standardize
data captured by an energy audit [32]. While many of the occupant-centric KPIs were
demonstrated using simulated buildings (BEMs) [9,33], it is our opinion that evaluating
these KPIs during the operational phase of the building is more valuable. Therefore, we will
focus on operations specific building data schemas and only provide a brief introduction to
the two of interest. For a more comprehensive review of the data schema landscape across
all aspects of the building lifecycle, we refer the reader to [27].

Two prominent operations-oriented data schemas are Project Haystack (Haystack) [34]
and the Brick Schema (Brick) [35]. Both of them were originally designed as an abstraction
layer for data typically collected in building management systems (BMS), lighting control
systems, and other operational control systems [34,35]. Typical types of entities one would
find described by Haystack or Brick include control and sensing points, air and hydronic
equipment, spatial information, energy producing or consuming equipment, and the
relationships between these entities. While the domains of interest for Brick and Haystack
overlap significantly, the design and implementation methodology is different.

Project Haystack 3 provides a standardized dictionary of terms (referred to as tags),
which are used to annotate building data. Sets of tags (tagsets) are used to convey the
full meaning of what an entity represents as well as its relationships to other entities.
Until recently, neither the schema nor accompanying documentation were provided in
a machine readable format. The newest version, Haystack 4 (currently in prerelease),
has addressed this while also defining concepts in a taxonomic structure to address some
previous critiques [28]. The Brick Schema was developed to provide a more formalized
class hierarchy than Haystack 3 originally implemented. It is defined using open source
semantic web standards, including the resource description framework (RDF) and web
ontology language (OWL) [35]. For more detailed information on the usage of Brick and
Haystack, we refer the reader to the websites for both projects [34,36].

1.2. Point of Departure

While it is well known that Haystack and Brick are used by energy management
information systems (EMIS) to support energy analysis and fault detection and diagnostics
applications (FDD) [28,37], documentation for the implementation of algorithms using
standardized concepts defined by either schema has not been demonstrated. Although
detailed descriptions of control and FDD algorithms are provided in many previous
publications [38-42], they merely include point name descriptions and don’t reference
any data schema objects, which we believe is a serious opportunity missed and a novelty
of the research performed by our study. Furthermore, relying on occupancy counts for
occupant-centric KPI calculations can substantially limit the number of buildings for which
the KPIs can be calculated, since most buildings today can’t capture this information. A key
contribution of this study is to enable buildings with code prescribed occupancy detection



Energies 2021, 14, 3513

40f16

systems to calculate occupant-centric KPIs. These opportunities in the current state of
practice inspired the work for this article, the goals of which are to:

*  Focus on the existing state of practice for occupancy detection systems in commercial
buildings, namely, that of presence level occupancy detection.

e Develop a consistent methodology for calculating the percent space utilization of a
building at different spatial granularities and with different sensor configurations.

¢  Formalize the percent space utilization calculation using both Project Haystack and
Brick Schema. An abstraction of an applicable point is introduced to decouple the
algorithm development from the data modeling implementation to accommodate
differences in data modeling implementations.

*  Define a methodology to convert between percent space utilization and occupant-
hours using the design occupancy so as to better bridge the gap between ideally
observable metrics (occupant-hours) and the state of practice observable metrics
(percent space utilization).

e  Demonstrate the use of temporally granular space utilization as a regression variable
in predicting energy consumption.

2. Definition of Space Utilization and Occupancy Concepts

The concept of occupant-hour is commonly used in [9] as part of a KPI calculation.
Although this is an ideal metric to use in occupant-centric KPIs, it is impractical in the
majority of buildings since occupancy counting is still an emerging technology. Passive
infrared (PIR) or ultrasonic occupancy sensors that determine presence are more common,
but no standard methodology exists to utilize data from these sensors in occupant-centric
metric calculations.

In this section, we define methods to calculate the space utilization for both container
and contained spaces. A contained space is characterized as a space physically contained by
another space, whereas a container space is characterized by a space physically containing
other spaces. Also note that spaces can be both contained and container spaces depending
on one’s vantage point.

The term applicable point is used throughout this section to identify a point that conveys
information about an entity of interest. We allow an occupancy point to be applicable for a
particular space in two ways: (1) an occupancy point is directly associated to the space of
interest, or (2) an occupancy point is associated with a physical sensor or equipment that is
associated to the space of interest. A visual representation of these two configurations is
presented in Figure 1.

brick:hasLocation brick:isPointOf brick:isPointOf
Fm—————— m——————— T
v i v i v I
Space-1 |— Sensor-1 ‘7 Occ-Pt-1 Space-2 F' Occ-Pt-2
phloT:spaceRef phloT:equipRef phloT:spaceRef
Key
Brick Haystack
Space Equipment Point <« —— Relationship <— Relationship
Type Type

Figure 1. Multiple ways that occupancy points can be applicable to a space using Brick and Haystack
relationship types.

2.1. Sampling Techniques

We begin by defining conventions regarding occupancy sampling techniques as they
are relevant to the calculation of the percent occupied time. Two prominent sampling
methods are fixed interval sampling and change of value (COV) sampling. Simply put,
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fixed interval sampling consists of data being logged at a specified time interval (At;),
whereas COV sampling only logs data when a sensor value has changed outside of a
specified value. With occupancy sensors, COV sampling practically means that a value will
be logged every time the space goes from unoccupied to occupied (This can be represented
many ways, such as 0 or 1, “on/off”, “occupied /unoccupied”, etc.). This is important for
the following reasons:

®  Occupancy sensors set to record data at fixed intervals are backward-looking, meaning
that the value recorded at time t actually represents data for the interval (f — At;, t]
where At; is a fixed interval.

®  Occupancy sensors set to record data in a COV manner are forward-looking, meaning
that the value recorded at time t represents data for the interval [t, t + At,) where At
is a variable length time interval and is only realized once the next COV occurs.

2.2. Occupied Time
The percent (or ratio) of occupied time for occupancy point i is defined as the percent

of time between two time points (t1, t,) that the point registers occupied, presented by
Equation (1):

ty

y, Occrdt

ti—t
where Occ; represents the recorded occupancy value at time t. We use TO; to represent
both the ratio and percent occupied time. Although the functional notation does not change
depending on the sampling methodology, the implementation of the calculation does need
to account for the backward- or forward-looking convention, as demonstrated in Figure 2.

TOl-(tl, tz) = % 100 (1)

t 1} t t

Figure 2. Calculation for percent occupied time of an occupancy point using COV or interval sampling.

2.3. Space Utilization

After the occupied time for an individual sensor is determined, space utilization can
be calculated. The only requirement for this methodology is that all spaces have a property
conveying their area. Using Brick, this is accomplished with a brick:hasArea object
property (see [43] for specifics), while Haystack uses a phIoT:area datatype property.

2.3.1. Contained Spaces

The percent space utilization for a contained space, «, is defined as an average of
the percent occupied time for the set of occupancy points applicable to «, presented by
Equation (2):

1

Suzx(tlrt2) = |I|

Y TO;(t1,t2) 2)
i€l

where I represents the set of occupancy points applicable to the space «, |I| represents
the total number of occupancy points in the set I, and SU,(t1, ;) represents the space

utilization of space a evaluated from time #; to t;.

2.3.2. Container Spaces

Container spaces build upon the previous methods for calculating space utilization,
however, an area weighted approach is utilized. There are multiple scenarios to account
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for with container spaces, their contained spaces, and their relationship to occupancy
points, demonstrated by the example floor plan in Figure 3. In addition to contained
spaces with one applicable occupancy point (Sp1-2) or multiple applicable occupancy
points (Sp1-1), we note the following additional scenarios: (a) an occupancy point that is
applicable to a container space (PointC in Sp1) instead of one of its contained spaces, or (b)
a container space containing a space that does not have any applicable occupancy points
(Sp1-3 within Sp1).

Space IsIn Area Appl. Point

. . . Spl - 400 C

Spl-1  Spl 150 A B

Spl-2  Spl 100 D

Figure 3. Illustration of contained and container spaces with different applicable occupancy

Spl-3  Spl 100 -

point configurations.

With these considerations, we define the following conventions: A; represents the set
of spaces contained within space j that have at least one applicable occupancy point and
NA; represents the set of spaces contained within space j that have no applicable occupancy
points. For example, in Figure 3, with j = Sp1, A; = {Sp1-1,Sp1-2} and NA; = {Sp1-3}.

The total area for the set of spaces, A;, contained within space j is noted as area A; and
presented by Equation (3). Similarly, the total area for the set of spaces, NA;, contained
within space j is noted as areana; and presented by Equation (4).

areap; = Z area, 3)
0C€A]'
areana; = ) area, 4)
IXENA]'

We define the area weighted space utilization for the set of spaces, A;, contained by
j as AWSUp, presented by Equation (5). This metric multiplies the area of each space in
A by its corresponding space utilization over a given time interval, sums them, and then
normalizes by area . It specifically does not include the space utilization for the occupancy
points directly applicable to space j.

AWSU,, = p— Y area, xSU, (5)

) IXEA/'

The space utilization captured by the sensors directly applicable to j is noted as SU;
and uses the same method of calculation as defined in Equation (2), that is, it only considers
the occupancy sensors directly applicable to it. To holistically consider space utilization
for a container space, both the occupancy sensors directly applicable to that space and
the space utilization of the spaces contained by that space must be considered. We use
AWSU; presented by Equation (6) to capture the area weighted space utilization for a
container space:

1

AWSU; = W[AWSUAj x arean; + SUj x (area; — arean; — areaNA].)] (6)

Note that the area used for normalization in Equation (6) excludes areay A Similarly,
the weighted term multiplied by SU; excludes the area areana,;. We specifically exclude
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these since no information is known, and adding any default assumptions would only
impose bias.

2.3.3. Example

Using the topology provided by Figure 3, we create example data using a fixed interval
and binary occupancy data in Table 1, which also includes the occupied time, TO;, for each
of the occupancy sensors. Moreover, values for calculations of the methods previously
defined by Equations (2)—(6) are presented in Table 2 for reference.

Table 1. Time series data and percent occupied time calculation for the four occupancy points defined
in Figure 3.

Point to t1 tr t3 [ 71 ts te ty tg t9 t10 TO; ( to, t10 )

A 0 1 1 1 1 1 1 1 0 0 0 0.64
B 1 0 0 0 1 1 0 0 1 1 0 0.45
C 0 0 1 1 1 0 0 0 0 0 0 0.27
D 1 1 1 1 1 1 1 1 1 1 1 1.00

Table 2. Example values for calculating the space utilization for Sp1.

S U5p1_1 S uSpl-Z S USP1'3 areaAspl areaNAspl AWS UASP1 S uSpl AWS USpl
0.55 1.00 NA 250 100 0.73 0.27 0.65

2.4. Relationship between Space Utilization and Occupant Hours

Our methodology for converting between occupant-hours and space utilization is
fully dependent on the designed (maximum) occupancy level of a space. The designed
occupancy level is determined on a room by room basis during building design in order
to satisfy ventilation requirements as prescribed by ASHRAE 62.1 [44]. The limitation in
this methodology is important to understand because the determination of occupant-hours
is not based on true counts of occupants observed, but rather on assumed occupancy
counts based on design information and observed presence level sensor data. This can both
overestimate and underestimate occupant-hours depending on the situation. For example,
a space designed for 15 people, where only one occupant is present for a one hour period,
the conversion would calculate 15 occupant-hours, while the true value would only be
1 occupant-hours. This is one of the main reasons why occupancy counting technologies
are so desirable, as they make no assumptions about how many people were designed to
be in a space and report the actual measured value. Nevertheless, the conversion may still
be useful, as it provides a mechanism to use data more commonly available. Converting
between occupant-hours and space utilization can be done using Equation (7):

OH; (tl , tz)
AWSU;(t, 1)) = —— "2 7
SU]( 1, 2) DO]X(tZ_tl) ( )
where OH;(t, ;) represents the occupant-hours for the set of spaces in j, DO; repre-
sents the designed occupancy level (with units of people) for the corresponding set of
spaces, and AWSU,(t, t2) represents the area weighted space utilization for j as defined in
Equation (6).

3. Description of Experimental Setup

To evaluate different occupant-centric technologies, the office of a consulting engi-
neering firm is used as a living laboratory. The office is located in Boulder, Colorado
and has been outfitted with different systems for sensing occupancy, monitoring power
consumption, and monitoring indoor environmental conditions. Some of the systems were
installed in the office as part of the tenant fit-out in the fall of 2016, while others were
installed for testing purposes. The office space exists on the third story of a three story
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building, with a floor area of approximately 595 m? (6400 ft?). It was designed with an
occupant density of about 14 m? (150 f+?)/person, giving a design occupancy of 42 people.
Data used in the analysis presented was recorded between June 2018 and January 2019.
We describe the office space and sensing technologies using two relevant metadata
schemas: the Brick Schema (version 1.2) and Haystack (version 3.9.9). The relevant concepts
from each of the schemas are outlined in Table 3. Unless indicated otherwise, all Brick terms
use the typical Brick namespace (https://brickschema.org/schema/Brick#, mainly seen in
Turtle documents with the brick namespace prefix), while all Haystack terms come from
one of the four standardized library modules defined by the Haystack 4 prerelease [45].
The building data schema space can be difficult to understand, specifically for practitioners
with limited data modeling background. One of the goals of summarizing the relevant
concepts used by this building from Haystack and Brick into Table 3 is to demonstrate that
the two technologies can achieve very similar outcomes, they are just achieved in slightly
different ways. Secondly, it demonstrates that reporting data regarding a specific study can
be much more easily understood and replicated when standardized data schemas are used.

Table 3. Alignment of Brick and Haystack concepts used in the experiment.

Project Haystack Brick Schema System Usage

{site} Building Represents the office building as a whole.

{floor, space} Floor Represents a floor in the building

{room, space} Room Represents the named rooms

{elec, meter, equip} Electrical_Meter D Represent the power monitors

{device} Access_Reader B Represents the Bluetooth door reader

{multiSensor, equip} Multi_Sensor AE I;Si};rtef;}r)ll ;he physical sensor that senses multiple
fequip} Equipment C ;{sgffsgzs a physical sensor measuring only a single
{elec, circuit, equip} Circuit D Electrical circuits associated with the power monitors
{air, humidity, sensor, point} Air_Humidity_Sensor E Point for humidity

{air, temp, sensor, point} Air_Temperature_Sensor A E Point for air temperature

{air, co2, sensor, point} CO,_Level_Sensor E Point for CO,

{air, tvoc, sensor, point} TVOC_Level_Sensor E Point for TVOC

{air, pm10, sensor, point} PM10_Sensor E Point for PM10

{air, pm25, sensor, point} PM2.5_Sensor E Point for PM2.5

{occupied, sensor, point} Occupancy_Sensor AC Point for occupancy

{elec, energy, sensor, point} Energy_Sensor D Point for electrical energy measured

{light, level, sensor, point} Illuminance_Sensor A Point for illuminance

Italicized terms are custom or extension terms and do not exist currently in the schema of interest. Curly braces are used to capture the set
of Haystack tags necessary to convey the Haystack entity type.

Figure 4a provides a layout of the office and the locations of different sensors used for
the experiment. The office space is served by a shared air handling unit (AHU) located on
the roof of the building, which is a single stage direct expansion unit with a natural gas
furnace. Unfortunately, no metering infrastructure was installed into the AHU since it is
part of the base building systems and was not upgraded during the tenant fit-out process.
Therefore, all energy consumption information analyzed throughout this paper consists of
electrical energy, namely, lighting, plug loads, and a single computer room air conditioner
unit installed in the server room.

Table 4 describes the different systems and sensing technologies used and also char-
acterizes them according to relevant occupant-centric factors as outlined in [9]. System
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server326
77 st

privateOffice327
141 sf

privateOffice325 §
142 sf

privateOffice322
142 sf

sanitasConf318
142 sf

openOffice316
853 sf

longsConf328
353 sf

C demonstrates the installation density of occupancy sensors that is typical for office
buildings designed in accordance with the IECC 2015 code cycle. This system design is
especially important as it represents what will be installed in the majority of buildings (code
minimum design). System A demonstrates the density of occupancy sensors achieved
when installed integral with lighting fixtures. It provides more spatial granularity espe-
cially in larger rooms (open office spaces, kitchen) compared to smaller rooms (private
offices), but is a higher-end product and we believe less likely to be installed. System
B is an even higher end product and would take some custom development to actually
maintain occupancy counts for the floor, which we expect is inaccessible for the majority of
buildings. Characterizing these technologies in accordance with [9] helps us identify which
occupant-centric metrics can be calculated using the data available. While the goal of this
article is only to provide a simple demonstration case, an implementation on a real building
could use this characterization to downselect all applicable metrics for their building.

Figure 4b demonstrates the modeling of the primary spatial elements (building, floor,
and room) using both the Brick and Haystack schemas. For simplicity, the Brick repre-
sentation does not include inferred metadata (Inference demonstrations can be found [46]
with details described in [28]). Per the Haystack RDF export specification [47], all tags are
exported as objects of the ph:hasTag predicate. Notice that the only metadata required
to be added to the Brick and Haystack entities, besides specifically declaring their type,
is the metadata used to convey their floor area, which is already reported when submitting
ventilation requirements on mechanical drawings and therefore should be easily accessible
from design documents. An example of adding area properties for Brick and Haystack
spatial entities is shown in Figure 4b.

1 # Brick RDF Representation
exb:site-1 rdf:type brick:Building .

reception301 ‘

maroonBellsConf302 |

plotter303
83 sf

exb:floor-3 rdf:type brick:Floor ;
brick:hasLocation exb:site-1 .

2
3
4
5
privateOffice304 6
146 sf :
7 exb:room-304 rdf:type brick:Room ;
8
9

brick:hasArea [

privateOffice307 brick:value 146 ;
143 sf 10 brick:hasUnit unit:FT2 ;

11 1

PE—— 12 rdfs:label "Private Office 304" ;
13 brick:hasLocation exb:floor-3 .
14
15 # Haystack RDF Representation
- 16 exph:site-1 rdf:type phIoT:site ;
17 ph:hasTag phIoT:site .
18
19 exph:floor-3 rdf:type phIloT:floor ;

20 phIoT:siteRef exph:site-1 ;
21 ph:hasTag phIoT:floor,
22 phIoT:space .

24 exph:room-304 rdf:type phIoT:room ;

25 phIoT:area 146 ;
26 rdfs:label "Private Office 304" ;
27 phIoT:spaceRef exph:floor-3 ;
System A System B System C System D System E 28 ph:hasTag phIoT:room,
Mul Door Readh Occ St Branch RESET IA
@ Multisensor [l Door Reader ) Oce Sensor .C‘r'acr:j(‘:( .sensm Q 29 phIoT:space .
Meter
(a) Floor plan illustrating spaces and sensors (b) Brick and Haystack representation

of the main spatial elements

Figure 4. Experimental setup of the commercial office space used in the experiment
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Table 4. Summary of systems installed and characterization of occupant-centric factors per [9].

System  Factors Description
Occupancy Resolution: Presence This sensor measures occupancy, temperature, and ambient light levels.
Occupancy Object: Occupant Group 48 total sensors were installed, with each sensor measuring occupancy via an
A Spatial Resolution: Room (sub-room) omnidirectional PIR sensor. The sensor is typically deployed as part of a
Temporal Resolution: Sub-hourly lighting controls solution and is mounted into the fixture. The standard design
‘ is to deploy the sensors on a 10 ft x 10 ft grid (3 m x 3 m), providing
occupancy detection at approximately 100 f#2 (9.3 m?) intervals.
Occupancy Resolution: Count This system is installed as part of an access controls solution. It uses Bluetooth
Occupancy Object: Individual Person technology to communicate with users” phones and unlocks doors accordingly.
B Spatial Resolution: Floor It was installed at one of the entrances. However, since it was not installed in
. the rear stairwell nor in the elevator, reliable counts of users in the office could
Temporal Resolution: Sub-hourly not be kept.
Occupancy Resolution: Presence This sensor exists as part of the original lighting control system and is an
Occupancy Object: Occupant Group occupancy sensor. There are actually two types of sensors used. All occupancy
C Spatial Resolution: Room sensors installed in the center of a space are omnidirectional PIR sensors and
Temporal Resolu tién' Sub-hourly have a typical coverage of about 1000 f> (93 m?). All sensors mounted in
' corners of rooms are directional dual-tech (PIR and sonar) occupancy sensors.
- This system is an integrated electrical panel and branch circuit monitoring
SEEZZ erzlg SZS}Z??Z&”A' NA system. Two electrical panels and branch circuit monitoring devices collect
D Spatial Resolu tion.' NA power consumption at 1 min intervals for each of the measured circuits. It is
T 1 Resol t" - Sub-hourl important to note that these panels do not provide power to the base building
emporal Resolution: Sub-hourly mechanical system.
gzgzzgzg gz;zgﬁlig& NA This system consists of four RESET certified IAQ monitors. Per RESET
E ’ standards, these sensors monitor CO,, TVOC, PM10, PM2.5, temperature,

Spatial Resolution: NA
Temporal Resolution: Sub-hourly

and relative humidity.

4. Results
4.1. Space Utilization

The space utilization for System A and System C are calculated using the methodology
described in Section 2.3, where the space utilization is specifically determined on an hourly
basis. A two-week snapshot for System A is presented in Figure 5, and an average hourly
space utilization for each system is presented in Figure 6. For context, it is also compared
with the hourly occupancy profile used by the Department of Energy (DOE) Medium Office
Prototype building [48]. The purpose of these two graphs is to demonstrate what space
utilization data looks like in a transient manner (Figure 5) as well as on average over a
long time period (Figure 6). As stated in Section 2.4, the methodology does not accurately
capture the true occupancy state of the building and spaces, since an occupancy count
cannot be determined using the data captured by Systems A and C. Many studies relying on
occupancy counts will implement an additional sensing system or have people monitoring
the building in order to capture the ground truth occupancy state of the building. Our study
did not capture ground truth occupancy and therefore we don’t declare an accuracy metric
for the space utilization calculations. This methodology is designed to be used on real
world, minimally code designed buildings, which are not going to incur additional costs
simply to capture ground truth occupancy.

4.2. Energy Consumption

Our analysis uses the availability of granular spatial and temporal data for occupancy,
temperature, and energy to create a multiple linear regression (MLR) analysis. Space
utilization and outdoor air temperature are used as the explanatory variables with energy
consumption as the response variable. Separate MLR models are created for the weekend
and weekday, although we suspect these to not diverge substantially as space utilization
should capture differences in weekday vs. weekend patterns. We do not utilize a time of
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week indicator variable as the intention is to understand whether space utilization is a
valuable explanatory variable.

80%

ST Y A

Mon 18th Tue 19th Wed 20th Thu 25;( Fri 22nd Sat 23rd Sun 24th Mon 25th Tue 26th Wed 27th Thu 28th Fri 29th Sat 30th Sun 1st

Cleaning Crew

Figure 5. Two week snapshot of the AWSU for System A. The space utilization captures stochasticity in building usage,
such as when cleaning crews were present and weekend usage.
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Figure 6. Average daily profiles of the AWSU for System A and System C. The DOE Medium Office Prototype building
schedule is overlaid for context.

A few power outages and server reboots caused some measurements to be corrupted
during a week in September and another week in October. Therefore, before the MLR was
performed, outliers were removed if they were outside 150% of the interquartile range
(IQR). The results are presented in Table 5 and Figure 7. The top portion of Figure 7 displays
the relationship between the energy consumption and the percent space utilization, while
the bottom portion displays the relationship between the energy consumption and outdoor
air temperature. Each point represents a one hour time interval. Table 5 captures the
estimates for each of the MLR parameters, as well as the standard error, -value, and the
p-value.

Table 5. Weekday (left) and weekend (right) multiple linear regression model results.

Weekday Model Weekend Model
Estimate Std. Error  t-Value Pr (>1) Estimate Std. Error  t-Value Pr (>1)
Intercept 5.3170659  0.0161741 328.74 <2 x 10716 5.3202890 0.0247532  214.934 <2 x 10716
Temperature  0.0145508  0.0009233 15.76 <2x 10716 00117888  0.0014194 8305 229 x 10716
% Sp. Util. 0.0395608  0.0003469 114.05 <2 x 1071 0.0376243 0.0006552 57.42 <2 x 10716
Adj. R-Squared 0.809 0.724

F-Statistic 7334 1872
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Figure 7. MLR of floor energy consumption compared with space utilization (top) and outdoor temperature (bottom).

5. Discussion
5.1. Discussion of Results

The information displayed in Figure 5 demonstrates that the space utilization cal-
culation can capture fluctuations in occupancy patterns, a known limitation in existing
occupancy modeling for buildings [49]. Besides being used as part of KPI calculations,
space utilization could also be used by BEM professionals to assist in energy model cali-
bration. Specifically, the fluctuations in occupancy throughout the course of a day can be
seen. While ground truth measurements are not available, some simple heuristics about the
occupancy patterns of the occupants are known. The schedule for the majority of workers
in the office space was known to be 8 a.m.-5 p.m., with some workers starting slightly
earlier and others staying later. It was typical for people to eat lunch in the office, so the
noticeable lack of lunch time dip in occupancy status also aligns with expectations. It
was rare for people to come into the office on the weekends (captured), and a cleaning
crew came every weeknight after hours (also captured). Therefore, the shape of the space
utilization calculation aligns with expectations.

Figure 6 visually demonstrates the average space utilization captured by System A
and System C. The calculations for both of the systems were performed using the space
utilization algorithm defined in Section 2.3. It is immediately apparent that the occupancy
data captured by System C is incorrect. A consistent bias of about 30% is present in the
data. Upon further investigation, it was discovered that three of the occupancy sensors for
System C, representing about 30% of the floor area, were always returning an occupied
signal. Accounting for an approximate 30% bias in the data, the shape and magnitude of the
data for System C closely mirrors that of System A. Although System A does not represent
ground truth, this is a useful result to observe and means that, on average, space utilization
calculations for this experimental setup are consistent when using underlying data captured
from presence level occupancy sensors installed at higher or lower spatial granularities.
In essence, occupancy sensors implemented to code minimum (System C) on average
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capture similar information as higher end occupancy detection systems (System A). The
bias in the results from System C, however, does demonstrate the importance of ongoing
commissioning for occupancy sensors.

The results of the MLR model are promising. The distribution of the data around the
space utilization line is tighter than that around the temperature line for both the weekend
and weekday models, which is numerically confirmed by the larger t-value for the space
utilization parameter in Table 5. Heteroscedastic behavior of the weekend model at low
space utilization appears to be present. The extremely small p-values for all parameters
indicates it is very likely that these parameter estimates are useful in explaining the variance
in the energy consumption, and the adjusted R-Squared value reveals that much of the
variance in the energy consumption is explained by the models. The parameter estimates
for the weekday vs. weekend models are very similar for the intercept (5.31 vs. 5.32,
0.2% difference), temperature (0.015 vs. 0.012, 20% difference) and space utilization (0.040
vs. 0.038, 5% difference), meaning that a singular model built from all data (weekend and
weekday) may not differ significantly from the two separate models. The purpose of this
study is not to perform a holistic analysis, merely to investigate whether space utilization
as a data point could be useful in predicting energy consumption, which the results of the
MLR confirm.

5.2. Challenges and Considerations for Adoption

The majority of the KPIs defined in [9] are formulated with respect to occupant-hour
and rely on normalizing some value or metric by occupancy (i.e., energy per occupant-
hour, lighting energy per occupant-hour, etc.). While this formulation can be useful,
it suffers from the fact that the denominator can be zero, which is the case when either
occupant-hour or space utilization are used as the normalizing factor. While it is unlikely
this would occur when calculating these metrics over longer time horizons (monthly,
annually), it does occur when they are calculated over short time horizons and should be
considered by other practitioners. The simplest workaround for the normalization by zero
issue is to formulate the problem differently, namely, to use occupant-hours or percent
space utilization as explanatory variables in a regression formulation of the problem as
demonstrated in Section 4.2. Although this gets us away from simple KPI definitions, it is
consistent with the majority of work currently going on in the MV 2.0 space [11,50]. Instead
of proxying occupied or unoccupied states with time of week [11], both occupant-hour
and space utilization provide numerical measurements for occupancy. Moreover, either
of these two values could be built into the regression formulation of a new or existing
metric such as the ENERGY STAR score, which becomes highly useful for peer comparison
of buildings.

Additionally, multiple KPIs defined in [9] are significantly difficult to quantify via
measurements (i.e., degree-hour criterion) since they require atypical sensors (mean radiant
temperature, air velocity sensors, etc.). Similar to what was presented by our analysis,
proposed metrics should seek to define optimal sensing technologies to use (occupancy
counters), but provide an alternate method that is designed to work with the existing state
of practice precedented by code standards (presence level occupancy sensors). In this way;,
KPI definitions can be practically implemented in existing buildings while also preparing
for future availability of sensor technology to be mainstreamed.

Finally, it is always important to consider the interpretability of a metric when present-
ing information to others, specifically when the metrics are intended for quick cognitive
digestion. Miles per gallon or energy use intensity are examples of good KPIs because they
can be understood with limited explanation even by people who know little about cars
or buildings. Occupant-hours, similar to kilowatt-hours, is a difficult metric to interpret.
The timespan over which the measurement is performed must be considered and many
people will often normalize it by some familiar feeling timespan (day, hour) to have a
better feel for what it means. Reporting of occupant-hours may be a better metric for
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more advanced users, but it is our opinion that space utilization is a more interpretable
standalone metric as the value will generally remain bounded between 0-100%.

6. Conclusions and Future Work
6.1. Conclusions

This paper defines and implements a consistent methodology for calculating per-
cent space utilization in buildings. The methodology is scalable across different levels
of spatial granularity (building, floor, space) and irrespective of sensor configuration
(zero or more sensors in each space analyzed). The methodology is demonstrated us-
ing two prevalent operations-oriented data schemas, Haystack and Brick. Moreover, the
concept of an applicable point is introduced to overcome differences in data modeling imple-
mentations, which provides a useful abstraction when implementing the space utilization
algorithm. The methodology is intended to make use of typical occupancy sensors that
capture presence level occupancy and not counts of people. Since occupant-hours is a
preferable metric to use in KPI calculations, a method to convert between percent space
utilization and occupant-hours using the design occupancy for a space is also developed
and demonstrated.

The methodology is demonstrated on a 595 m? office building in Boulder, Colorado
that is outfitted with different occupancy and energy sensing systems. The percent space
utilization calculated at the floor level shows trends consistent with how the building
is known to be used by the engineering consulting firm, which are typical 8 a.m.-5 p.m.
working hours with certain employees coming in early and others staying slightly later.
A multiple linear regression is performed using energy as the dependent variable and
space utilization and outdoor air temperature as the independent variables. There is strong
evidence to support that a relationship exists between percent space utilization and energy
consumption. This result indicates that even though the true state of occupancy is not
known (i.e., exactly how many people are in the space), the methodology for determining
percent space utilization is still useful in practice when used as an explanatory variable in
a regression formulation for predicting energy consumption.

6.2. Future Work

Many additional occupant-centric metrics could be adapted from previous literature
and oriented in a manner consistent with the standardized data schema efforts. Moreover,
it would be useful to develop an open source library of occupant-centric metrics, each of
which defines the applicable points (in either Brick or Haystack terms) necessary to calculate
the metric. This would be useful not only for occupant-centric KPIs, but also for generic
building performance metrics. Additionally, it is the hope of the authors that a longitudinal
study will be undertaken to understand the applicability and usefulness of the percent space
utilization methodology across a variety of building vintages and typologies, specifically
considering how space utilization used in regression formulations for predicting energy
consumption performs against other state of the art algorithms.
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