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Abstract: Proper selection and application of interfacial friction factor correlations has a significant
impact on prediction of key flow characteristics in gas–liquid two-phase flows. In this study, exper-
imental investigation of gas–liquid flow in a vertical pipeline with internal diameter of 0.060 m is
presented. Air and oil (with viscosities ranging from 100–200 mPa s) were used as gas and liquid
phases, respectively. Superficial velocities of air ranging from 22.37 to 59.06 m/s and oil ranging
from 0.05 to 0.16 m/s were used as a test matrix during the experimental campaign. The influence
of estimates obtained from nine interfacial friction factor models on the accuracy of predicting
pressure gradient, film thickness and gas void fraction was investigated by utilising a two-fluid
model. Results obtained indicate that at liquid viscosity of 100 mPa s, the interfacial friction factor
correlation proposed by Belt et al. (2009) performed best for pressure gradient prediction while the
Moeck (1970) correlation provided the best prediction of pressure gradient at the liquid viscosity of
200 mPa s. In general, these results indicate that the two-fluid model can accurately predict the flow
characteristics for liquid viscosities used in this study when appropriate interfacial friction factor
correlations are implemented.

Keywords: two-phase flow; interfacial friction factor; vertical pipes; higher viscosity; pressure drop

1. Introduction

Two-phase gas–liquid upward annular flow plays a key role in numerous industrial
applications. Flow of refrigerants in cooling systems, transportation of petroleum products
in pipelines, steam for power generation and water for purposes of cooling in nuclear
reactors constitute a few examples which illustrate such applications. Among the most
prominent two-phase flow regimes in many of these applications is annular flow [1].

Annular flow in pipes is generally characterized by a thin liquid film flowing along the
pipe periphery with gas flow in the core region. Its practical importance to industry coupled
with the comparative ease with which it lends itself to analytical deductions has made this
flow regime the focus of extensive investigations both experimentally and analytically [2].
Liquid holdup and pressure gradient are two important flow parameters also used to
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characterize multiphase flow systems, including annular flow, in pipes [3]. Variation of
flow conditions such as liquid viscosity significantly impact these flow characteristics [4].
Hence, gaining more insight into the impact of operating factors on flow characteristics in
flow patterns such as annular flow constitutes a major thrust for multiphase flow research.

The one-dimensional two-fluid model has often been employed by authors for such
investigations. For turbulent two-phase flows, the one- dimensional modeling of annular
flow is recognized as a practical tool for the analysis of essential flow characteristics
including liquid holdup and pressure drop (pressure gradient) [5]. However, the various
treatments available in the open literature are limited to air–water flows, or with liquids
of near-water viscosities while many industrial applications such as production of food,
cosmetics as well as oil and gas in firms where heavy oil processing occurs, viscous slurry
production and transport is becoming more prevalent [6]. Ultimately, the assessment will
present an indication of the reliability of the 1D two-fluid in predicting key flow parameters.

1.1. Previous Works

Previous research has utilized the two-fluid model in attempts to predict some flow
characteristics [2,7–11]. Bendiksen et al. [11] presented a dynamic two-fluid model (OLGA).
Predictions of steady state pressure drop, liquid holdup, and flow-regime transitions are
compared with data from the SINTEF Two-Phase Flow Laboratory and from the liter-
ature. Based on the Harwell databank, Oliemans et al. [8] developed correlations for
interfacial friction factor and liquid entrainment fraction. These correlations were further
employed in a two-fluid model for prediction of pressure loss, liquid film thickness and
liquid entrainment in annular dispersed flow. Reported results indicated good agreement
with the experimental data. Alves et al. [7] employed the two-fluid model to predict
the aforementioned flow characteristics. The model was found to accurately predict the
experimental data and outperformed existing models including the correlation presented
by Aziz et al. [12] and others [13–17]. Zhang et al. [10] employed a two-fluid approach to
develop a unified mechanistic model capable of predicting flow pattern Submission of
manuscript for publication pipe flow all angles of inclination. Using oils of viscosity 10 and
12 mPa s respectively as the liquid phase and air as the gas phase, Alamu [2] compared
his annular flow data with predictions of Alves et al. [7] using the two-fluid model. Good
agreement was found between the measured parameters and prediction of the model. As
part of their experimental study, Vieira et al. [9] utilized the two-fluid mechanistic model of
Shoham to examine void fraction data (obtained using liquid viscosities of 1, 10 and 40 mPa
s respectively, pipe diameter of 0.076 m). Although the authors observed that predictions of
the model capture the trend, they reported that the model overpredicted the gas void frac-
tion experimental data. Recently, Fontalvo et al. [18] employed different closure relations
in the one-dimensional two-fluid model in order to investigate the effect on the numerical
simulation of vertical annular flows, including the formation and propagation of waves at
the gas–liquid interface. Predictions for pressure gradient and mean liquid holdup with
the best set of closures presented an average error of 9% and 22%. Sanderse et al. [19]
have proposed a new pressure-free two-fluid model for the simulation of one-dimensional
incompressible multiphase flow in pipelines and channels.

From the discussion of previous studies, it has been demonstrated that majority
of reported studies, which have employed the two-fluid model, have been carried out
using liquids of low viscosities. There is enough evidence to indicate that variations in
liquid viscosity influence flow characteristics [4,20–22]. Insights into the behaviour of
high-viscosity liquids is critical for both research and equipment design [9,23].

In this study, the reliability of the two-fluid approach is investigated with respect
to liquid film thickness, gas void fraction, and pressure gradient using higher viscosity
liquids and a 60 mm ID pipe for the annular flow regime in vertical pipes. The solution of
the hydrodynamic model considers the momentum of the gas and liquid phases to present
a complete solution for the interface configuration and associated flow characteristics for a
variety of experimental conditions. Also, in this study, the validity of the model and its
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practical significance for analyzing the annular flow configuration and the related pressure
drop on a gas–liquid system is investigated.

While the two-fluid model is mechanistic, the required closure relationships such as
the interfacial friction factors are often empirical in nature. The limitations of the empirical
correlations can significantly impact the accuracy of predictions of liquid holdup and
pressure gradient [5]. The interfacial friction factor plays a key role in the characterization
of annular flow and governs the transport phenomena between the fluid phases. Directly
related to superficial velocities and the liquid film thickness among others, this relationship
is critical in modelling the flow. Common correlations for estimation of interfacial friction
factor (fi) were mostly developed with low viscosity liquids [4]. In the absence of corre-
lations developed using highly viscous liquids those available will remain important for
prediction of critical flow parameters in highly viscous flows. It is necessary, therefore, to
assess the performance of the common interfacial friction factor correlations with a view to
identifying those with best performances and related gaps for further studies.

1.2. The Two-Fluid Model

Figure 1 illustrates the annular flow regime in a vertical pipe. It also highlights the
control volume used for the momentum balance derived for this study.
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Figure 1. An illustration of the control volume for the momentum balance in Equation (14). (Adapted
from Wongwises and Kongkiatwanitch, [24]; and Aliyu et al., [25]).

The momentum (force) balances for the liquid film and core are given by Equations (1) and (2)
respectively as follows:

− τwL
SL
AF

+ τi
SI
AF

−
(

dp
dL

)
F
− ρl g sin θ = 0 (1)

τi
SI
AC

−
(

dp
dL

)
C
− ρCg sin θ = 0 (2)

For fully developed flow at steady state, the pressure gradients in the film and core
are deemed equal. Therefore, Equations (1) and (2) can be combined by eliminating the
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pressure gradients. This results in the combined momentum equation for annular flow,
which can be expressed by:

− τwL
SL
AF

+ τiSI

(
1

AF
+

1
AC

)
− (ρl − ρC)g sin θ = 0 (3)

For upward annular flows in vertical pipes, the assumption of uniform film thickness
around the pipe is valid. For this study, the pipe is vertically oriented and, hence, sin θ
becomes equal to 1. The geometrical parameters, therefore, can be derived based on a
uniform film thickness, δl as follows:

AC = π(d − 2δl)
2/4 (4)

AF = πδl(d − 2δl) (5)

SI = π(d − 2δl) (6)

SL = πd (7)

vF = vsl
(1 − fE)d2

4δl(d − δl)
(8)

vC =

(
vsg + vsl fE

)
d2

(d − 2δl)
2 (9)

The liquid friction factor fL is calculated using the Blasius equation based on the film
Reynolds number, ReF, which considers the hydraulic diameter as the ratio of four times
the area of the wetted perimeter, given by:

ReF =
ρlvF
µl

4δl(d − δl)

d
(10)

If ReF < 2100, fg = 16 , n = 1

Else fg = 0.046 , n = 0.2

fL = fgReF
−n (11)

ReC =
ρCvC(d − δl)

µg
(12)

Since the main objective of this study is to assess the impact of interfacial friction
factor, fi on the accuracy of predictions of liquid film thickness, gas void fraction and
pressure gradient, selected reported fi correlations are integrated into the solution.

The shear stress occurring between the liquid and the wall is calculated using Equation (13):

τwL = fL
ρl(vF)

2

2
= fL

ρl

(
vsl

(1− fE)d2

4δl(d−δl)

)2

2
(13)

The interfacial shear stress can be determined by utilizing the following expression
Equation (14):

τi = fi
ρC(vC − vF)

2

2
(14)

Substituting Equations (4)–(7) into Equation (3), Equation (15) is obtained as follows:

− τwL
πd

(πδl(d − 2δl) )
+ τi(π(d − 2δl))

 1
(πδl(d − 2δl))

+
1(

π(d − 2δl)
2/4
)
− (ρl − ρC)g sin θ = 0 (15)
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When a solution is attained for Equation (15), the gas void fraction can be determined
using Equation (16) as follows:

αT = αC

(
1 − 2

δl
d

)2
(16)

Subsequently, the liquid (oil) holdup can be estimated as follows:

Hl = 1 − αT (17)

The pressure gradient can then be determined using either Equation (1) or (2).

1.3. Closure Relationships

Selection of closure relationships which couple with the two-fluid model is essential
for accurate predictions of flow characteristics [10]. For upward annular flow, key closure
relationships required for implementing the two-fluid model include correlations for liquid
friction factor, liquid droplet entrainment, and the interfacial friction factor.

In this study, the liquid friction factor fL is calculated using the Blasius equation based
on the film Reynolds number, ReF, which considers the hydraulic diameter as the ratio of
four times the area of the wetted perimeter.

Several liquid entrainment correlations have been proposed by several authors [8,10,26–28].
For this study, however, the Oliemans et al. [8] is utilized. The Oliemans et al. [8] correlation
was developed based on the AERE Harwell databank and is expressed as follows:

FE
1 − FE

= 10β0 ρ
β1
l ρ

β2
g µ

β3
l µ

β4
g σβ5 dβ6 vβ7

sl vβ8
sg gβ9 (18)

Values for the indices β0 to β9, are presented by the authors and Zhang et al. [29].
In all, the influence of 9 interfacial fiction factors (iff) correlations reported by Ambrosini et al. [30],

Akagawa et al. [31], Belt et al. [32], Blasius [25], Fore et al. [33], Holt et al. [34], Moeck [35], Wal-
lis [26], Wongwises and Kongkiatwanitch [24] are examined for this study. Detailed information
of correlations is presented by Aliyu et al. [25].

The interfacial friction factor correlation proposed by Blasius is mainly applicable
to smooth pipes and is a function of the gas Reynolds number [25]. Wallis’s correlation,
one of the most commonly utilized, treats the surface of the liquid film as form of pipe
wall roughness and is a function of non-dimensional liquid film thickness [26]. Authors
including Moeck [35], Fore et al. [33], Wongwises and Kongkiatwanitch [24] and Belt
et al. [32] also presented Wallis-type correlations which introduce new constants, dimen-
sionless numbers (Reynolds, Froude) and viscosity ratios to account for the effect of liquid
viscosity [36]. The fi correlation presented by Wongwises and Kongkiatwanitch [24] utilize
a power law relationship with the gas Reynolds number and the non-dimensional film
thickness (t/D) as correlating parameters. The Ambrosini et al. [30] correlation is the result
of a correlation of interfacial friction factor with Weber number, gas Reynolds number,
phase densities and non-dimensional liquid film thickness. The correlation improved the
Asali et al. [37] correlation. Holt et al. [34] modified the Ambrosini et al. [30] correlation
being a function of only the Weber and gas Reynolds numbers. The correlation presented
by Akagawa et al. [25] is a Wallis-type correlation which is a function of dimensionless
liquid film thickness. The correlation was based mainly on air–water upward annular
disturbance wave flow data [31]. To predict interfacial friction factor, Belt et al. [32] adopted
a physical approach which utilized roughness in single-phase turbulent pipe flows. Good
agreement between data and theory was obtained. The authors also demonstrated the
validity of the assumption that sand-grain roughness of the liquid film is proportional
to wave height. They reported that more accurate results could be obtained using their
finding compared to utilization of the suggestion of Wallis [26] to equate the sand-grain
roughness of the liquid film to four times the mean thickness of the liquid film.
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From the discussion, it can be observed that all the models for predicting interfacial
friction factors were developed using low-viscosity liquids. The need to examine the
influence of interfacial friction factors on the prediction of key flow parameters including
liquid film thickness, gas void fraction, and pressure drop using high-viscosity liquids
is justified.

1.4. Test Rig Description

Figure 2a–c respectively show the pictorial view, schematics and the observation
section of the test facility used in the experimental investigations. The test rig, which is
inclinable from 0− 90◦ is located at the Gas Lift Innovation Centre of the Yangtze University,
China. The test section consists of a 10.6 m long pipe with internal diameter of 0.060 m.
An acrylic tube is used to fabricate the 7 m long, test observation section. The ends of
the section are connected to stainless steel pipes of 1.1 and 2.5 m in length, respectively.
Temperature, pressure, and differential pressure (placed 8 m apart) sensors are installed
on the stainless-steel sections of the observation section. In addition, two quick opening
valves placed 9.5 m apart, and other measurement devices are installed on the stainless-
steel section. Control of different devices installed on the test rig and data acquisition
during experimental runs are undertaken at the facility’s control centre. Details of each
measurement device utilised in this study are presented in Table 1.

Oil is stored in a mixing tank and pressurised with its volume depending on the liquid
superficial velocity and experimental test matrix. After pipe pressure has been stabilized
and measured, compressed gas is mixed with the liquid and introduced into the test section.
The two-phase liquid and gas mixture flows through the test section and is returned into
the mixing tank via a separator. At the separator, gas is separated from the liquid and
released into the atmosphere while the liquid is returned to the mixing tank.
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Figure 2. Experimental setup—(a): experimental rig in vertical position (photo); (b): schematic
representation of rig; (c) dimensions of test section. (Adopted from Ribeiro et al., [4], with permission
from Taylor and Francis).

Table 1. Details of experimental apparatus employed.

Parameter Measured Equipment Measuring Range Accuracy

Gas Flow Rate Endress+Hauser/
65F1H Coriolis flowmeter 160–2000 m3/h ±0.1%

Liquid Flow Rate Endress+Hauser/
80E50 Coriolis flowmeter 2–20 m3/h ±0.3%

Pressure Rosemount 305 1S
Pressure transducers 0–3.5 MPa ±0.1%

Liquid Holdup Limit Switch Box APL-210 N/A

1.5. Fluid Properties for the Experiment

Compressed air was used as the gas phase while white oil with density of 854 kg/m3

at 20 ◦C and surface tension of 0.0287 kN/m was used as the liquid phase. Oil density and
surface tension variations with temperature were negligible within the test matrix used in
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the study. Figure 3 is a chart showing shows liquid viscosity as a function of temperature.
By manipulating the liquid temperature, the desired liquid viscosity was obtained for the
study. Generally, a decrease in temperature yielding a corresponding increase in liquid
viscosity was observed. Properties of fluids used in the study are presented in Table 2.
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Table 2. Properties of the experimental fluids.

Fluid Properties

Density (kg/m3) Viscosity (mPa s) Surface Tension
Gas (Air) 1.205 0.0181 (20 ◦C)

Liquid (Oil) 854 (20 ◦C) 100–300 0.0287 (20 ◦C)

2. Experimental Procedure and Measurements

In this study, a constant liquid superficial velocity derived from the liquid flowrate
was maintained during each test, while the gas superficial velocity derived from the gas
flowrate was varied. At the start of each experiment, the facility was run for up to 15 min
to attain system steadiness before observation and recording of the flow patterns. Flow
parameters such as pressure gradient, pressure, temperature, etc., were logged every 5 s
for 3 min. The average value of each parameter was subsequently determined. Each test
duration lasted for a minimum of 30 min and was determined by the time required to
attain the system’s steady state.

Liquid holdup was obtained by means of two quick closing valves. This was done by
using two limit switch box APL-210 mechanical actuators which are concurrently actuated
with a single switch with response time of 0.3–0.5 s. The actuation resulted in the closing of
the valves and hence trapping of the fluid flowing in the test section. Fluid in the 9.5 m
long test section was emptied into a calibrated cylinder and measured. Subsequently, liquid
holdup was computed as the ratio of the volume of liquid to the volume of the pipe section.

Flow patterns were visualised physically and via recordings obtained using a Canon
Xtra NX4-S1 high-speed camera. The camera’s specification includes a pixel resolution of
1024 × 1024 and frame rate of up to 50,000 frames per second (fps). However, to preserve
resolution quality, 3000 fps was used in the study and this was sufficient when compared to
the flow conditions used in the study. Video recordings and still images of the flow patterns
were obtained and analysed in the study. Table 3 shows the detailed test matrix covered.
Superficial gas velocity range used in the study was selected to obtain a desired annular
flow pattern and hence enable the measurement of flow features such as film thickness
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and interfacial friction factor. These conditions were significantly higher than conditions
available in literature and are applicable to conditions in hydrocarbon fields with high gas
void fraction (GVF).

Table 3. Range of experimental data obtained.

Measured Parameters Range

System Pressure (MPa) (gauge pressure) 0.04–0.14
Temperature (°C) 20.99–47.80

Superficial gas velocity (m/s) 22.37–59.06
Superficial liquid velocity (m/s) 0.05–0.16

Pressure Drop (kPa) 4.62–20.02
Liquid Holdup (-) 0.003–0.269

During experimental tests, the high-speed camera was located at a length to diameter
ratio (L/D) of 133. Experimental investigations by a similar study in literature concluded
that fully developed annular flow pattern in vertical pipes can be visualised at relatively
lower L/D values. Aliyu et al. [32] (L/D = 46), Fore and Dukler [38] (L/D = 69), Zan-
gana [38] and Van der Meulen [39] (L/D = 87) are some such studies. Furthermore, research
conducted by Shearer and Nedderman [40] showed full flow development at L/D = 133.
On this basis, the high-speed camera was placed at L/D of 133 and preliminary observa-
tions and analysis of data before actual experimental campaign indicated that the pipeline
flow was fully developed even before this point. Hence, we conclude that the selected L/D
ratio is sufficient for full flow development length.

3. Results

3.1. Experimental Results and Discussion

3.1.1. Visual Observations and Identification of Flow Regime

Annular flow was observed at all flow conditions and liquid viscosities under con-
sideration (Figure 4a–h). Downward flow of liquid film was not observed at any flow
condition. At all liquid viscosities, the liquid film observed, during experimentation, was
relatively thick at low phase velocities. There appeared to be a reduction in thickness of the
liquid film when velocity of the gas was increased. The phenomenon persisted even when
the velocity of the liquid was increased. The same trend was observed at both viscosities.
The velocity of the liquid contributed to the total phase momentum reducing of the thick-
ness of the liquid film. This finding agrees with reports by Fukano and Furukawa [36]
who concluded that reduction in the thickness of the liquid film can occur without the
influence of liquid viscosity and velocity. Furthermore, it was also observed that, at fixed
phase velocities, there is a corresponding increase in liquid film thickness as liquid viscosity
increases. In this study, it appeared that the liquid films were thinner at 100 mPa s at all
superficial velocities (Figure 4a–d).

In addition, ripples appeared on the liquid film surface at different experimental
conditions (Figure 4a–h). The ripples appeared to decrease in roughness when phase
velocities were increased. At higher gas velocities in particular, a relatively smoother liquid
film surface could be observed. Figure 4 illustrates ripples on the liquid film surface at
varied superficial phase velocities for liquid viscosities of 100 and 200 mPa s respectively.
At a liquid viscosity of 200 mPa s, for instance, it can be observed that at vsl and vsg values
of 0.05 m/s and 34.38 m/s, respectively, the surface of the liquid film is rougher (Figure 4e)
compared to the gentle ripples observed at higher superficial gas and liquid velocity
of 0.07 m/s and 58.93 m/s, respectively (Figure 4h). Fukano and Furukawa [36] also
reported ripples on the surface of the liquid film for the liquid viscosities they employed.
They characterized this phenomenon as ripple flow. Furthermore, the visual observations
showed that the nature of wavy surfaces differed for varied viscosities even under the
same flow conditions. The observed phenomenon agrees with the suggestion by Fukano
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and Furukawa [36] that interfacial friction factor, which has a direct relationship with wave
characteristics, is significantly influenced by liquid viscosity.
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3.1.2. Visual Observations and Flow Regime Identification

To clarify the flow patterns identified during the experiments, the flow pattern data
obtained was superimposed on the flow pattern maps presented by Shell [25,41] and
Taitel et al. [42], respectively (Figure 5).
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Created by the Shell Company [25,41] to facilitate the distribution of petroleum prod-
ucts, the flow pattern map presented by Shell employs the superficial gas (abscissa) and
liquid Froude (ordinate) number, respectively. The densimetric Froude numbers utilized
are defined as follows:

Frg = vsg

(
ρg(

ρl − ρg
)

gD

)0.5

, Frl = vsl

(
ρl(

ρl − ρg
)

gD

)0.5

It was observed that the Shell flow pattern map appeared unable to identify and
classify data points representing transition to annular flow (Figure 5a). It classified the given
data as annular flow. Despite this challenge, the flow pattern map agrees very well with the
experimental data. The closeness of the phase properties (ρl = 860 kg/m3, µg = 0.00016 Pa s,
and σ = 0.03 N/m), utilized for the map development, to the experimental fluid properties
could account for the observation. Furthermore, adoption of a large diameter (500 mm) for
the flow pattern development does not seem to pose any serious limitations.

The flow pattern map developed by Taitel et al. [42] utilizes transition criteria for
different flow patterns obtained by analytically developing relationships to calculate the
force balance existing between the drag forces and gravity. Predictions of the flow regime
map agreed with the experimental data.

3.2. Liquid Holdup

At all liquid viscosities, liquid holdup was observed to decrease as superficial gas
velocity increased (Figure 6a). Sharp reductions in liquid holdup were observed when
superficial gas velocity was low and became asymptotic when superficial gas velocity was
increased above 40 m/s for all liquid viscosities.
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Again, it appeared that liquid holdup decreased as superficial liquid velocity increased.
However, the observed reductions appeared less significant, particularly at higher liquid
viscosities. The observation can be attributed to a lack of impetus of the liquid quantity
and velocity to reverse the effects generated by the high gas velocity.

In addition, the results suggest that increasing liquid viscosity increases liquid holdup
superficial gas velocities being fixed. Increments in liquid viscosity generates a correspond-
ing increase in shear stresses resulting in greater liquid buildup [1]. The phenomenon is
also attributable to decreased liquid entrainment as liquid viscosity increases [1].

3.3. Pressure Drop

Increased pressure drop was observed when superficial gas velocity increased (Figure 6b).
This phenomenon can be due to increased friction occurring at the interface between the
gas and liquid. Liquid at the interface of the liquid and gas generates comparatively higher
interfacial friction than that occurring between the gas and the wall. Higher gas–liquid
interface friction occurs when the liquid surface is wavy. Again, increased pressure drop
could be because of increased density of the gas phase as a result of liquid entrainment in
the gas phase. Finally, when liquid superficial velocity is fixed, an increase in the velocity
of the gas generates a corresponding increase in slip and interfacial shear at the gas–liquid
interface, ultimately translating into a higher total pressure drop [2].

The influence of superficial liquid velocity on pressure drop was not significant
(Figure 6b). This is because, as iterated earlier, it is not possible for the vsl values to cause
any major changes because they are too small. A closer inspection, when fixed superficial
phase velocities are fixed, however, suggests that when the viscosity of the liquid increases
there is a corresponding increase in pressure drop. Increased liquid viscosity increases
frictional pressure drop during the flow and increases liquid holdup which contributes to
increases in the gravitational component of pressure drop. Therefore, total pressure drop
will increase when the liquid viscosity is increased because the frictional and gravitational
components will correspondingly increase.

3.4. Liquid Film Thickness

Figure 6c illustrates disparities in the thickness of the liquid film for liquid viscosities
100 mPa s, 150 mPa s, 200 mPa s, respectively, with superficial gas velocity. Further
investigation reveals that thickness of the liquid film reduces as superficial gas velocity
increases. Again, at all superficial liquid velocities and liquid viscosities, the decrease in
the thickness of the liquid film thickness was asymptotic. A rapid reduction was observed
at low superficial gas velocities.

The thickness of the liquid film was maximum at a viscosity of 200 mPa s and decreased
when the viscosity of liquid was reduced. This can be attributed to the growing resistance to
the flow conditions as liquid viscosities become high (reducing liquid droplet entrainment
and increasing liquid holdup). The observed behaviour of liquid film thickness when
subjected to varied gas velocities agrees with reports by authors who experimented with
air and water [24,25,31]. Also, Fukano and Furukawa [36] and Kaji and Azzopardi [43],
who experimented with liquids with low viscosity, reported similar findings.

3.5. Influence of Various Interfacial Frication Factors on Predictions of Liquid Film Thickness, Gas
Void Fraction and Pressure Gradient

For all flow conditions, the combined momentum equation was solved by integrating
different interfacial friction factor correlations and comparing the predicted values for
liquid film thickness, gas void fraction and pressure gradient predictions for liquid vis-
cosities of 100 and 200 mPa s with experimental data. The effect of combining the popular
liquid friction factor of Blasius with several interfacial friction factors is presented. The
Oliemans et al. [8] correlation for liquid entrainment fraction is used for this study.
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To solve the combined momentum equation, the MATLAB fsolve function was employed.
The function fsolve is a non-linear system solver which resolves problems expressed as:

F(x) = 0 (19)

For x (vector or matrix), where F(x) is a function that returns a vector value. Input
values for superficial liquid and gas velocities, liquid viscosity and an initial guess were sup-
plied to the MATLAB programme. For the solution procedure, the Levenberg–Marquardt
algorithm was activated. The stopping criteria for iteration was set at a termination tol-
erance of 1e-6. A solution was considered achieved when the value of the liquid film
thickness was positive, and the result of F(x) was very close to zero.

3.5.1. Liquid Film Thickness

A comparison of experimental liquid film thickness and predictions of the two-fluid
model using the selected correlations of interfacial friction factor at liquid viscosity of
100 and 200 mPa, respectively, as well as vsl of 0.05 m/s and 0.07 m/s, respectively, is
shown in Figure 7.
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At liquid viscosity of 100 mPa s and vsl values of 0.05 m/s (Figure 7a) and 0.07 m/s
(Figure 7b), predictions of the two-fluid model using all fi correlations exhibit the trend
of the experimental data. At vsl of 0.07 m/s, however, it appears that predictions of
liquid film thickness agree more with the experimental data at low superficial gas ve-
locities. At both vsl and vsg values, the correlations present satisfactory results. The
correlations of Belt et al. [32], Ambrosini et al. [30], Wongwises and Kongkiatwanitch [24]
and Akagawa et al. [25] present the best performances at both vsl values, respectively.

When the liquid viscosity is increased to 200 mPa s (Figure 7c,d), all predictions by
the model underpredict the data at all vsl values. At vsl of 0.05 m/s, the closest predic-
tions are presented (in order of reducing accuracy) by Akagawa et al. [25], Fore et al. [33],
Holt et al. [34], Wongwises and Kongkiatwanitch [24] and Ambrosini et al. [30] (Figure 7c).
When vsl is increased to 0.07 m/s, the closest predictions are presented (in order of re-
ducing accuracy) by Fore et al. [33], Holt et al. [34], Akagawa et al. [25], Wongwises and
Kongkiatwanitch [24] and Ambrosini et al. [30]. It can be concluded that there is better
agreement at liquid viscosity of 100 mPa s than at higher viscosity of 200 mPa s.

3.5.2. Gas Void Fraction

Figure 8a,b show a comparison of the experimental gas void fraction with the pre-
dictions of the two-fluid model at a liquid viscosity of 100 mPa s and vsl values of 0.05
and 0.07 m/s, respectively. At vsl of 0.05 m/s, the predicted gas void fraction values are
comparatively accurate for all fi correlations utilized. At vsl value of 0.07 m/s, predictions
agree better at low values of vsg than at high vsg values. For the case of the liquid viscosity
at 200 mPa s, reasonable over-prediction of gas void fraction (GVF) values is observed at
both vsl values of 0.05 and 0.07 m/s, respectively. Predictions, at both superficial liquid
velocities, improve at higher GVF values.
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Equation (16) explains the observed characteristics of the predictions in Figures 8 and 9.
The equation expresses the mathematical relationship showing that void fraction as a func-
tion of superficial gas and liquid velocities as well as accurate predictions of both liquid
entrainment fraction and liquid film thickness. In this study, accurate predictions of liq-
uid film thickness become paramount because the other variables can be assumed to be
held constant at the specified flow condition. From the equation, it can be inferred that
overprediction of liquid film thickness results in underprediction of values of gas void
fraction and vice versa. Significant overprediction is observed in Figure 9a as a result of
underprediction in liquid film entrainment (Figure 8a).
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3.5.3. Pressure Gradient

Figure 9 shows the efficiency of pressure gradient predictions from the selected corre-
lations for interfacial friction factor for liquid viscosities of 100 and 200 mPa s, respectively.
The statistical tools, absolute average percent error (AAPE) and average percent error (APE)
expressed in Equations (20) and (21) were employed to determine the prediction errors.

AAPE =
1
n ∑n

i=1

∣∣∣∣Ai − Fi
Ai

∣∣∣∣ (20)
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APE =
100%

n ∑n
i=1

Ai − Fi
Ai

(21)

n, Ai and Fi represent the number of times the summation iteration occurs, actual
values and predicted values, respectively.

At a liquid viscosity of 100 mPa s (Figure 9a,b), it can be observed that the fi correlations
of both Blasius and Wallis follow the trend of the experimental data but also overpredict the
experimental data compared to the correlations. At superficial liquid velocities of 0.05 and
0.07 m/s, predictions of the two-fluid model using the other fi correlations are satisfactory.
Over the entire data for liquid viscosity of 100 mPa s, the four best pressure gradient
predictions are achieved using fi correlations of Belt et al. [32] (AAPE = 23.49, APE = −1.55),
Akagawa et al. [25] (AAPE = 28.17, APE = 26.43), Ambrosini et al. [30] (AAPE = 28.02,
APE = 26.52), and, Wongwises and Kongkiatwanitch [24] (AAPE = 31.88, APE = 31.88)
listed in order of decreasing accuracy, offer the best pressure gradient predictions.

When the liquid viscosity is increased two-fold (Figure 9c,d), the pressure gradient
predictions obtained using the selected correlations follow the pattern of the experimental
data. At vsl of 0.05 m/s, the fi correlations of Moeck [35], Wallis [26], Blasius [25] and
Fore et al. [33] are observed to give the most accurate predictions. Although the others
underpredict the experimental data, their predictions are found to be equally satisfactory.
At vsl of 0.07 m/s, the fi correlations of Wallis [26] and Blasius are observed to slightly
overpredict the experimental data. It appears that utilization of the Wongwises and
Kongkiatwanitch [24] correlation enables the two-fluid model to predict the trend of the
data more accurately than the others.

Statistical analyses, using AAPE and APE, indicate that the fi correlations of Moeck [35]
(AAPE = 25.11, APE = 14.61) offer the best predictions over the data obtained with liquid
viscosity of 200 mPa s followed by that of Wallis [26] (AAPE = 28.59, APE = −4.73) and
Belt et al. [32] (AAPE = 30.61, APE = 30.14), respectively.

Accurate prediction of pressure gradient requires accuracy in the prediction of geo-
metrical parameters as well as the respective velocities of the liquid film and gas core, all
of which rely heavily on accurate predictions of the liquid film thickness. As observed
in Figure 7, all the correlations appear to predict the gas void fraction fairly accurately.
Furthermore, if liquid friction factor and liquid entrainment fraction are assumed fixed
for each flow condition, the pressure gradient predictions of the two-fluid model can be
viewed as a direct result of the differences in the approach or theory as well as experimental
conditions used for fi correlation development.

4. Conclusions

An experimental investigation of vertical air and oil (with viscosities ranging between
100 and 200 mPa s) flow in a 0.060 m ID pipe is reported. Superficial air and oil velocity
ranges are from 22.37 to 59.60 m/s and 0.05 to 0.16 m/s, respectively. The annular flow
pattern at the flow conditions was considered.

A two-fluid model was developed for prediction of gas void, liquid holdup, and
pressure gradient. A combined momentum equation for the gas and liquid phases was
developed and solved to generate values of liquid film thickness and, subsequently, predict
the liquid holdup and pressure gradient at given experimental conditions.

The influence of accuracy of estimation of the interfacial friction factor on accurate
determination of the flow characteristics mentioned was investigated by utilizing nine
selected correlations. It was observed that although the correlations were developed with
low viscosity liquids, the correlations generally present satisfactory performances. For
the liquid viscosity of 100 mPa s, the fi correlation of Belt et al. [32] presents the best
performance for the prediction of pressure gradient while the correlation of Moeck [35]
presents the best prediction at the liquid viscosity of 200 mPa s. The performance of the
Belt et al. [32] equation can possibly be attributed to agreement of the flow conditions
with their proposed theory that sand-grain roughness of the liquid film is proportional to
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wave height. The performance of the Moeck [35] correlation could be attributable to the
application of viscosity ratios to accommodate the viscosity differences adequately.

Overall, the results indicate that the two-fluid model is a reliable model capable of
predicting accurately upward annular flow characteristics involving high-viscosity liquids
including liquid film thickness, gas void fraction and pressure gradient in conduits.
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Abbreviations

A area
d, D [m] diameter
Fr [-] Froude number
f [-] friction factor
fE [-] droplet entrainment fraction
g [m/s2] gravitational acceleration
H [-] Holdup
Re [-] Reynolds number
S [m] perimeter
t [m] liquid film thickness
v [m/s] velocity(

dp
dz

)
[Pa/m] pressure gradient

Greek letters

τ [kN/m2] shear stress
δl [m] liquid film thickness
ρ [kg/m3] density
θ [◦] angle of inclination
α [-] gas void fraction
µ [mPa s] viscosity
σ surface tension

Subscripts

C Core
F Film
wL wall-liquid interface
i interfacial
l liquid
sl superficial liquid
sg superficial gas
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