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Abstract: Reservoirs in Taiwan often provide hydroelectric power, irrigation water, municipal water,
and flood control for the whole year. Taiwan has the climatic characteristics of concentrated rainy
seasons, instantaneous heavy rains due to typhoons and rainy seasons. In addition, steep rivers
in mountainous areas flow fast and furiously. Under such circumstances, reservoirs have to face
sudden heavy rainfall and surges in water levels within a short period of time, which often causes
the water level to continue to rise to the full level even though hydroelectric units are operating at
full capacity, and as reservoirs can only drain the flood water, this results in the waste of hydropower
resources. In recent years, the impact of climate change has caused extreme weather events to occur
more frequently, increasing the need for flood control, and the reservoir operation has faced severe
challenges in order to fulfil its multipurpose requirements. Therefore, in order to avoid the waste of
hydropower resources and improve the effectiveness of the reservoir operation, this paper proposes a
real-time 48-h ahead water level forecasting system, based on fuzzy neural networks with multi-stage
architecture. The proposed multi-stage architecture provides reservoir inflow estimation, 48-h ahead
reservoir inflow forecasting, and 48-h ahead water level forecasting. The proposed method has been
implemented at the Techi hydropower plant in Taiwan. Experimental results show that the proposed
method can effectively increase energy efficiency and allow the reservoir water resources to be fully
utilized. In addition, the proposed method can improve the effectiveness of the hydropower plant,
especially when rain is heavy.

Keywords: hydropower; reservoir water level forecasting; multi-stage architecture

1. Introduction

Hydropower is a clean and non-exhaustive energy source, and it is relatively more
stable than other renewable energies, such as solar and wind energy. As the operation of
the hydroelectric units can start and stop instantly, it provides flexibility for operation. It
can adjust the voltage and frequency of a power system with the instantaneous change of
the load and has always played an essential role in ensuring the safety of power supply
and maintaining the quality of power. At present, there are many studies on hydroelectric
power generation and the integration of other renewable energy sources. The authors of [1]
analysed the revenue evaluation of reservoirs in terms of water flow in the surrounding
Amazon basin from an economic perspective, the authors of [2] discussed the benefits
and drawbacks of reservoir-regulated water for livelihood farming from the perspective
of irrigation and flood regulation, the authors of [3] discussed the subsequent impacts
of power industry components and investment costs, and the authors of [4] designed
a simulation system to evaluate the impact of future climate change on power system
operations and regional dependencies, emphasizing the influence of the climate on hy-
dropower. This study in [5] investigated how hydroelectricity under climate change affects
the ability of the grid to integrate high wind and solar capacities, using California as an
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example. The impact of higher capacity green energy installations on the power system
and the importance of increased hydro capacity are emphasized. In [6], the long-term
ensemble rainfall forecast, and the one-week rainfall forecast were considered to assess the
daily inflow forecast for the coming month and to plan the daily discharge to maintain
the downstream livelihood water consumption during drought conditions. In [7], the
physical model of flow prediction with a long prediction interval was proposed, which is
not a suitable choice for Taiwan with its extreme weather with frequent typhoons. In [8], a
decision system was developed to make decisions on the timing of electricity and water
release by considering flow forecasting and energy prices. In [9], a hybrid support vector
machine and an artificial neural networks approach for monthly incoming flow prediction
was proposed. The authors of [10] proposed a model-based approach for assessing the
impact of climate change on hydropower potential in the Nanliujiang River basin of China.
The authors of [11] discussed the optimal scheduling of hydroelectric power generation,
considering the status of renewable energy systems such as solar and wind energy. The
authors of [12] systematically reviewed the drivers, benefits, and governance dynamics of
transboundary dams. With the increasing global climate change, the phenomenon of ex-
treme rainstorms and rapid rainfall in recent years has become more frequent. To efficiently
generate electricity while taking into account flood prevention and water supply tasks at
the same time is a significant challenge. Traditionally, the operators of hydroelectric power
plants refer to their experience on the reservoir’s water level to decide the power generation
operation. Considering the water demand of multiple goals and multiple conditions, if the
reservoir water level forecast information for the next few coming days can be provided, it
will significantly help the operators to manage the reservoir.

If the trend of reservoir inflow changes can be known in advance, it will greatly
improve the optimization of power dispatch and reduce reservoir flood discharge. In
general, there are two types of forecasting models for reservoir inflow: statistical mod-
els and mathematical models. Mathematical models require huge calculation costs and
physical parameter data. The runoff model [13,14] needs to consider many parameters,
such as evapotranspiration, infiltration, and soil storage, which has a good impact on the
results. However, it is not easy to obtain this information for reservoirs that contain many
watersheds upstream. On the other hand, the statistical approach is to find the correla-
tion between a large amount of data and the output result, and it uses various statistical
methods to find the best forecast result. For the statistical model’s training process, the
calculation cost is relatively high. However, the actual operation does not require too
much computation.

In recent years, the neural network of the statistical models has played an important
role in system identification, mainly due to the progress in neural network development,
which enables it to learn the relationship between data input and output without involving
mathematical conversion functions to complete complex nonlinear mapping, association,
data classification, knowledge processing. The study in [15] designed a method of adaptive
fuzzy class neural controllers for nonlinear dynamical systems and demonstrated the
usability of the method through simulation results. The study in [16] applied a fuzzy
neural network to short-term rainfall prediction in Zhejiang, China, and showed that
the fuzzy neural network can have good results in rainfall prediction. The study in [17]
discussed the effect of training methods on hydropower prediction using neural networks
and proposed many optimization suggestions in the overall training process of neural
networks. The study in [18] proposed an adaptive fuzzy neural network system for weekly
and monthly inflow prediction of the Guardialfiera dam in Italy. The study in [19] used a
neural network for future inflow prediction, which illustrated the effectiveness of inflow
prediction without the use of meteorological data. In [20,21], an artificial neural network
model considering the historical time was applied to water level prediction and acceptable
results were achieved. The study in [22] investigated which neural network architectures
could be used to achieve better hydropower prediction. The study in [23] used artificial
neural networks and multiple regression to predict rainfall in a watershed, the study in [24]
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used rainfall forecasting to forecast the cross-river inflow, and the authors of [25] used
observations, weather forecasts and climate indices in stream flow forecasting. These
methods have good results for inflow and rainfall forecasting, but they do not consider the
actual power generation situation and the trend of hourly changes in the daily operation of
the hydropower.

In rainfall forecasting, the addition of numerical meteorological forecasts has a signifi-
cant benefit on the forecast’s accuracy. Regarding the numerical meteorological forecasts,
grid-based ensemble forecasts are usually applied. There are so many applications and
improvements for ensemble forecasts [26–33]. The study in [26] used the Fifth-Generation
Penn State/NCAR Mesoscale Model (MM5) to simulate typhoon tracks. The study in [27]
proposed the Weather Research and Forecasting (WRF) model to have a good grasp of
the weather system in Taiwan, and analysed 20 years of historical data to compare the
effectiveness of the WRF and MM5 models and to calibrate the forecasting model. The
study in [28] proposed a quantitative precipitation forecasting technique to be applied
to the rainfall forecasting system. In [29,30], a numerical dynamical model was applied
to analyse the climate of Taiwan by considering the geomorphological and hydrological
characteristics of the Techi Reservoir catchment area, and the spatial statistical theory of the
kriging method [31,32] was used to downscale the numerical dynamical model grid rainfall
forecast data to a specific area. A typhoon quantitative precipitation forecasting model was
proposed in [33], and the average water withdrawal was defined based on the typhoon
trajectory of the ensemble forecasting system to produce a quantitative rainfall forecast
for the whole of Taiwan. In recent years, the development of the numerical dynamics
model has expedited. The application of the WRF model has accelerated and gradually
replaced the MM5 model [34,35]. Currently, MM5 is only used for numerical simulation
and analysis in some studies. The design concept of the WRF model is to link academic
research results with the need for real-time forecasting of data users. The WRF model
can be used to simulate changes in the ideal atmosphere and the real atmosphere. The
literatures have also pointed out that numerical forecasting is very helpful for rainfall
forecasting [36].

With the improvement of rainfall forecasting accuracy and reliability, the inclusion
of rainfall forecasting values in the inflow forecasting model will be of great help to
forecasting accuracy, especially in Taiwan, where the weather changes dramatically in all
seasons. Due to Taiwan’s island climate, rainfall mainly comes from the topographical rain
in the southwest during the summer monsoon season, the northeast monsoon in winter,
thunderstorms in summer, typhoon rain in summer and autumn, and frontal cyclone rain
in spring and summer. Taiwan’s climate is mostly affected by the rainy season, and the
water level of reservoirs often increases substantially during the rainy season. Because of
the reasons, rainfall forecasts play an important role in the prediction of river flow. The
effect of introducing climatic data on the prediction of river flow has been studied in [37,38].
In [37], Mann-Kendall nonparametric tests for streamflow analysis were used, and the
authors of [38] experimentally demonstrated the feasibility of introducing meteorological
forecasting grid point data for basin water flow prediction.

There are many studies in this area of hydropower forecasting. In [39], a long-term
forecast system for average reservoir inflow with a time scale interval of 10 days was
built, but this forecast interval may not be able to produce real-time forecast results for
seasons with large rainfall variability, which may limit the short-term power dispatch.
In [40], a rainfall runoff model was designed considering soil infiltration, and the results
are suitable for application to the prediction of inflow volume. The study in [41] proposed
a method to predict the downstream reservoir water level in real time using the upstream
reservoir. The study in [42] analysed and compared the neural network for the one-hour
ahead streamflow forecasting for the Lan-Yang river in Taiwan. The study in [43] designed
a power generation prediction system for a small hydropower turbine and selected a
non-gradient descent trade-off algorithm for the neural network training rule. In [44], a
heuristic algorithm was used to train fuzzy neural networks to predict hydroelectricity.
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Currently, these algorithms have good results for rainfall and inflow forecasts. However,
they do not consider the conditions of the local hydroelectric plants. Hydroelectric power
plants are more concerned about future water level changes which are affected by the
generation schedule of the plant, irrigation water, municipal water, flooding, etc. The
development of a reservoir water level forecasting system that takes into account the plant
conditions will help the operators of the plant to dispatch power and may even become the
basis of a plant energy management system.

Techi reservoir in Taiwan provides hydroelectric power, irrigation water, municipal
water, and flood control for the whole year. In recent years, the impact of climate change
has caused flood control in extreme weather events more frequently. During the rainy
season in May and June, or during typhoons from July to September, large amounts of
rainfall can be achieved in a short period of time, and with Taiwan’s steep topography and
fast flowing rivers, rainfall responds to water level quite quickly. If there is no reservoir
water level forecasting system, when the water level starts to rise and the hydroelectric
units are operating at full capacity, it will still not be able to cope with the large inflow,
which can cause losses of several GWh. To cope with the management of reservoirs, this
paper proposes a reservoir water level forecasting system using fuzzy neural networks
for Techi Reservoir in Taiwan. The forecasting system is a 48-h ahead forecast system
that considers the numerical characteristics of meteorological rainfall forecasts, analyses
the correlation and delay between rainfall forecasts and rainfall observations on reservoir
inflow in major upstream river basins, and considers the relationship between real-time
flood discharge and power and water use in the plant area. The fuzzy neural networks
are a three-stage architecture. The first stage generates the reservoir inflow estimation
of Techi Reservoir, and the power to water ratio of the hydroelectric units and the flood
discharge are considered to estimate the immediate inflow to the reservoir. The second
stage predicts the 48-h ahead reservoir inflow, which considers the effect of observed and
numerical predicted rainfall in the upper basin on future inflow and the current inflow
estimation measurements to forecast the 48-h ahead inflow of Techi Reservoir. The third
stage outputs the water level of Techi Reservoir.

The rest of the paper is structured as follows: Section 2 gives the background knowl-
edge of Techi Reservoir in Taiwan. Section 3 describes the design of the reservoir water
level forecasting system. Section 4 describes in detail the data analysis, experimental results,
and discussions. Section 5 draws a final research summary.

2. Techi Reservoir in Taiwan

Techi Reservoir originates in Heping District, Taichung City, Taiwan, and is located
in the uppermost reservoir of the Dajia River. The Dajia River originates from the Central
Mountain Range. It has a total length of 124.2 km from the source to the estuary. It has
abundant rainfall and numerous upstream rivers. The drainage area is 1235.73 square
kilometres. It is currently the river with the most abundant water resources in Taiwan. In
addition, the middle and upper reaches of the riverbed are steep. The distance from below
Techi Reservoir to Shigang is about 70 km, with a height drop of 1000 m above sea level. It is
the river with the most favourable conditions for hydroelectric power generation. Taiwan is
abundant in steep rivers, slopes, and water resources. The technical available hydro-energy
resources of 30 major rivers are 5040 MW, and the electric energy is 20.15 billion kWh [45].
The conventional hydroelectric power plant completed in Taiwan at the end of 2020 has a
total installed capacity of 2093.37MW and an annual power generation of approximately
3.02 billion kWh. The Techi branch of Dajiaxi Power Plant is located underground on
the left bank of Techi Dam. It is 77 m long, 33 m high, and 17.5 m wide. The plant is
equipped with a Francis turbine. There are 3 hydroelectric units with a design head of
143.1 m, a maximum water consumption of 72.5 cubic meters per second (CMS), a single
unit capacity of 78,000 kW, and 3 hydroelectric units totalling 234,000 kW. It is the second
largest hydroelectric power plant in Taiwan, with an average annual power generation
of approximately 360 million kWh. The main structures of Techi Reservoir include dams,
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flooding structures, flood tunnels, waterways, an underground power plant and Zhilexi
diversion tunnel. The dam was built in Techi Gorge, and it is a double curvature thin
arch dam.

The inflow of Techi Reservoir is mainly affected by the rainfall in the upstream waters,
and the location of rainfall observation stations in the relevant upstream watershed is
shown in Figure 1. The rainfall of each upstream river will affect the inflow of Techi
Reservoir by the topography of the upstream river and the distance between the river and
the reservoir. Among them, because of the flow rate of the river, there will be a time delay
for the upstream rainfall to affect the reservoir inflow.
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The inflow of Techi Reservoir is mainly from the Dajiaxi River, considering that the
rainfall in the Dajiaxi drainage basin between April and September accounts for about 80%
of the annual rainfall, and the dry seasons between October and March of the following
year accounts for about 20%. There are seven rainfall observation stations in Techi Reservoir
and its upstream catchment area. The seven rainfall stations are located at Techi Reservoir,
Siyuan, Pingyan, Songmao, Lishan, Songfeng and Hehuan. This paper uses the seven
rainfall stations, their meteorological forecast data, and the water level of Techi Reservoir
to develop the 48-h ahead water level forecast system.

3. The Design of Reservoir Water Level Forecasting System

This section discusses the architecture of fuzzy neural networks and the 48-h ahead
reservoir water level forecasting system.

3.1. The Architecture of Fuzzy Neural Networks

In recent years, artificial neural network (ANN) has been very important in the field
of system identification in intelligent forecast models. Artificial neural networks have
excellent learning ability and it is easy to find the relationship between system input and
output to build a model of the actual system, such as physical dynamic systems, nonlinear
systems, and data-driven systems. ANN also has parallel computing capabilities to provide
fast computing functions, and it is easy to complete multiple model predictions in real time.
ANN is a mathematical model that imitates the structure of the brain neuron. ANN uses a
set of massive data to obtain the relationship between input and output data. In the learning
process, we don’t need to provide the corresponding mathematical functions. This feature
is suitable for application in forecasting systems with variable inputs of different properties.

In scientific research, fuzzy theory provides a logical system to deal with the process
of human logic inference and can be used to design intelligent systems to analyse semantics
or analyse descriptive language. The fuzzy architecture consists of fuzzification, fuzzy logic
rules, inference mechanism, and defuzzification. The applications of fuzzy logic systems
include control systems, graphics recognition, voice recognition, diagnostic programs, time
series forecasting, intelligent robots, decision-making systems, and other fields.
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With the fuzzy neural network architecture [15,46,47], which is a neural network with
fuzzy architecture, it is easy to model the input and output relationship of the real systems
to establish the model characteristics of the actual system, and it also has the characteristics
of easy integration of expert knowledge (fuzzy theory) and increases learning efficiency.
The study in [46] proposed an observer-based direct adaptive fuzzy neural control scheme
for nonlinear systems in the presence of unknown nonlinear structures. In [47], many
architectures and examples of fuzzy neural networks were introduced. The configuration
of fuzzy logic systems is comprised of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy
inference engine, and a defuzzifier [15]. The fuzzifier converts a crisp input to a fuzzy
value, and defuzzification converts a fuzzy set to a crisp value. The fuzzy inference engine
combines the fuzzy IF-THEN rules to make a map from an input linguistic vector to an
output linguistic vector. The ith fuzzy IF-THEN rule can be written as:

R(i): if x1 is Ai
1 and ... and xn is Ai

n , then y1 is Bi
1 and ... and ym is Bi

m (1)

where Ai
1, Ai

2, . . . , Ai
n and Bi

1, Bi
2, . . . , Bi

m are fuzzy sets, xT = [x1x2 · · · xn] ∈ <n is an input
vector, and yT = [y1y2 · · · ym] ∈ <m is an output vector. Let z be the number of the fuzzy
IF-THEN rules. By using product inference, centre-average, and singleton fuzzifier, the kth
output of the fuzzy logic system can be expressed as:

yk(x) =
∑z

i=1 yi
k

(
∏n

j=1 µAi
j

(
xj
))

∑z
i=1

(
∏n

j=1 µAi
j

(
xj
)) (2)

= θT
k ϕ(x) (3)

where µAi
j
(xj) is the membership function value of the fuzzy variable xj, and yi

k is the point

at which µBi

(
yi

k

)
= 1. θT

k =
[
y1

ky2
k · · · y

z
k

]
is a weighting vector, and ϕT =

[
ϕ1 ϕ2 · · · ϕz] is

a fuzzy basis vector, where ϕi is defined as:

ϕi(x) =

(
∏n

j=1 µAi
j

(
xj
))

∑z
i=1

(
∏n

j=1 µAi
j

(
xj
)) (4)

The fuzzy logic system (3) can be implemented using neural network. Figure 2 shows
the configuration of the fuzzy neural network [15], and it has four layers. The nodes of
layer I stand for input vector xT = [x1x2 · · · xn], the nodes of layer II represent the values
of the membership function of total linguistic variables, and the nodes of layer III are
the values of the fuzzy basis vector ϕ. The links between layer III and layer IV are fully
connected by the weighting factors θT

k =
[
y1

ky2
k · · · y

z
k

]
. The nodes of layer IV is the output

vector yT = [y1y2 · · · ym].
Therefore, this paper uses fuzzy neural network architecture to integrate meteo-

rological rainfall data, rainfall observation data, water level and power generation to
forecast reservoir inflow and water level, where the membership functions are selected as
gauss functions.

3.2. The 48-h Ahead Reservoir Water Level Forecasting System

In general, the traditional forecasting mechanism often only uses historical data to
predict the future value. For example, using the historical data of water level, rainfall
observation station, power generation and flood discharge predicts the water level change
of Techi Reservoir in the next 1 to 48 h. However, its prediction accuracy will deteriorate as
the forecast lead time becomes longer. If the meteorological rainfall data can be effectively
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integrated, the accuracy of the long lead time forecast will be improved. Moreover, too
many feature inputs for a neural network increase the model complexity and learning
difficulty. Therefore, this paper proposes a forecasting mechanism with three-stage fuzzy
neural networks, as shown in Figure 3, to predict the water level of the reservoir. The
fuzzy neural networks of the forecasting mechanism are a three-stage architecture. Among
them, the first stage generates the reservoir inflow estimation of the reservoir by using
real-time water level value, power generation of hydroelectric units and reservoir flood
discharge as inputs. The purpose of the first stage is to find out the effect of actual plant
operation on the reservoir inflow, which is important information for the establishment
of the inflow observation and prediction system. The current water level and the power
to water ratio curve can be used to find out the effect of the current power generation on
the inflow rate. The current power generation, water level and flood discharge can derive
the current reservoir inflow. On the basis of the reservoir inflow, observation rainfall data
and meteorological rainfall data, the second stage predicts the 48-h ahead reservoir inflow.
Finally, the third stage uses the total power generation, flood discharge and inflow forecast
value to output the 1 to 48 h forecasting results of the reservoir water level. For Techi
Reservoir, the input of the second stage neural network includes the inflow data of the past
9 h, the observation rainfall data of 7 rainfall observation stations in the past 6 h, and the
meteorological rainfall data of 7 rainfall stations in the next 3 h. These inputs take into
account the delay of rainfall from the Techi watershed to the reservoir.
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4. Analysis, Results and Discussions

In this section, we first discuss the correlation between 7 rainfall observation stations
and the water level of the Techi Reservoir. Secondly, the relationship between water level
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and reservoir inflow will be presented. The correlation between reservoir water level and
meteorological rainfall data from the Taiwan Typhoon and Flood Research Institute (TTFRI)
will also be analysed. Finally, the typhoons between 2013 and 2014 are used as cases to
show the forecast results of the proposed method in this paper.

4.1. The Relationship between Water Level, Inflow and Rainfall of Techi Reservoir

In order to find out the time delay between rainfall observation stations in the catch-
ment area and the water level of Techi Reservoir, Pearson product-moment correlation is
used and shown in (5)–(6).

Sxy =
∑(xi − x)(yi − y)

n− 1
(5)

rxy =
sxy

sxsy
=

∑(xi − x)(yi − y)√
∑(xi − x)2

√
∑(yi − y)2

(6)

where Sxy is the covariance of the two inputs, rxy is the correlation coefficient of the two
inputs. From April to September in 2013, the total of 7 rainfall observation stations and the
water level observation of Techi Reservoir are shown in Figure 4. According to Pearson
product–moment correlation, the correlation between the water level and the total of
7 rainfall observation stations at different delay times can be obtained as shown in Figure 5.
In Figure 5, it is shown that the time delay with the highest correlation is 6 h. In other
words, when rainfall occurs, it takes about six hours for the total of the rainfall observation
stations to affect the inflow of Techi Reservoir.
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4.2. Design of Neural Network of Water Level and Reservoir Inflow

The influencing factors of water level changes have been introduced in the previous
section. Among them, the curves of water level volume and power to water ratio can be
trained through neural networks, and the approximation results are shown in Figure 6.
Power generation and flood discharge are pre-arranged, and the schedule for the next
two days can be known in advance. After knowing the relationship between reservoir
inflow and water level volume and the power to water ratio curves, the relationship among
reservoir inflow, power and water level can be obtained.
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4.3. Correlation Analysis of Reservoir Water Level and Meteorological Rainfall Data from TTFRI
in Catchment Area

Many studies have pointed out that renewable energy forecasts are more severely
affected by weather [6,48,49]. The study in [48] introduced the current situation in the
WRF mode of rainfall forecasting mainly used in Taiwan. The model in [49] integrated a
variety of meteorological data and responded well to instantaneous inflows, reflecting the
importance of rainfall forecasts for flow prediction. The reservoir inflow is affected by the
rainfall. It is currently known that the rainfall data of the upstream rainfall observation
stations is closely related to the reservoir inflow. If the meteorological rainfall data are
included in the forecasting system, the forecasting accuracy will increase. In order to obtain
the meteorological rainfall data in the Techi Reservoir catchment area, this paper cooperated
with TTFRI. Since 2010, the TTFRI centre has developed and implemented the experience
of Taiwan Cooperative Precipitation Ensemble Forecast Experiment (TAPEX). In addition,
in order to consider the geological and hydrological characteristics of the Techi Reservoir
catchment area, the TTFRI centre uses the Kriging method [34,35] in spatial statistical theory
to convert the gridded rainfall data of the numerical model to the Dajiaxi meteorological
rainfall data of seven rainfall observation stations. The seven meteorological rainfall
stations include Techi Reservoir, Songmao, Siyuan, Lishan, Songfeng, Hehuan Mountain,
and Pingyan Mountain. The meteorological rainfall data from TTFRI are provided every
6 h, and it provides hourly cumulative rainfall forecast data from 1 to 78 h for each
rainfall station.

In order to confirm the accuracy of meteorological rainfall data, this paper analyses
the periods of abundant rainfall from April to September 2013 in Taiwan. First, we analyse
the delay correlation among the water level, Techi rainfall observation station and the
meteorological rainfall data of Techi, and the results are shown in Figure 7. From Figure 7,
it can be seen that the water level is delayed. Moreover, the correlation coefficient between
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TAPEX forecast data and reservoir water level is worse than that of rainfall observation
data, but there are similar rainfall trends.
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Then, according to the meteorological rainfall data and the actual value of the reservoir
catchment area, error analysis is carried out using Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) as in (7) and (8), respectively. The MAE, RMSE and Mean
Square Error (MSE), as in (9), are commonly used to assess the accuracy of prediction.

MAE =
1
n

n

∑
i=1
| fi − yi| (7)

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (8)

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (9)

The error analysis of meteorological rainfall data and Techi rainfall observation station
is shown in Figure 8, and the errors are also within a certain degree of acceptable range.
This meteorological rainfall data should be able to provide an important reference basis for
the long-term lead water level forecasting.

4.4. Experimental Results

It is assumed that only the historical water level change of Techi Reservoir is consid-
ered, and the neural network is used to predict the 6-h lead water level change of Techi
Reservoir. The neural network is trained by using the water level measurement data from
1 January 2012 to 30 June 2013 of the Techi Reservoir, and the water level measurement
data from 1 October 2013 to 30 December 2013 of the Techi Reservoir are used as the testing
data after the learning of the neural network. The neural network consists of 5 input layer
neurons, 7 hidden layer neurons, 1 output layer neuron, 5 inputs (4 historical water level
data and 1 water level difference data) and 1 output (predicted water level value for the
next 1 hour). The training method uses a gradient descent algorithm. The learning result
of training data and the forecasting result of testing data are shown in Figure 9. The MSE
of the training results is 0.0324. The MSE of the testing results is shown in Table 1.
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Table 1. The MSE of the testing results.

Lead-Time (Hour) t + 1 t + 2 t + 3 t + 4 t + 5 t + 6

MSE 0.0437 0.0558 0.0825 0.1229 0.1724 0.2078

This paper uses MATLAB as the development platform to develop a 48-h ahead
reservoir water level forecasting system using fuzzy neural networks. The purpose of
this system is to predict the trend of water level changes 48 h ahead, and update the
forecasting results every hour. This system automatically retrieves power generation of
hydroelectric units, water level of Techi Reservoir, seven rainfall observation stations and
TAPEX meteorological data every hour for water level forecasting. To illustrate the validity
of the prediction results, typhoons in Taiwan from 2013 to 2014 are used as the experimental
data in this paper. The typhoon data are derived from the typhoon database of the Central
Weather Bureau (CWB) in Taiwan [50], as shown in Table 2, to obtain the past typhoon
landing time and related information.

For Typhoons Tammei, Kongrey, Usagi and Matmo in Table 2, the water level and
inflow forecasting results of Techi Reservoir are shown in Figures 10–17, respectively. In
Figures 10–17, the blue lines with square symbol represent the observed values and the red
lines with plus symbol represent the forecasting values. It can be seen from Figures 10–17
that the forecasting values have a similar trend to the actual future values.
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Table 2. From 2013 to 2014, typhoons landing in Taiwan.

Typhoon Name During Typhoon Landing Typhoon Intensity Maximum Wind Speed of Central Pressure (m/s)

Matmo 21 July–23 July 2014 middle typhoon 38
Hagibis 14 June–15 June 2014 light typhoon 20
Fitow 4 October–7 October 2013 middle typhoon 38
Usagi 19 September–22 September 2013 strong typhoon 55

Kongrey 27 August–27 August 2013 light typhoon 25
Trami 20 August–22 August 2013 light typhoon 30

Cimaron 17 July–18 July 2013 light typhoon 18
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The MAE of the 48-h ahead reservoir inflow forecasting in 2012 and 2013 can be
obtained, and the results are shown in Figures 18 and 19. It can be seen from Figures 18
and 19 that the forecasting accuracy will gradually decrease as the lead time increases, and
there will be a relatively large error in the sudden change of rainfall. This is partly due to
the influence of the accuracy of the meteorological rainfall data, and the other part is that
the training data with sudden rainfall changes account for a relatively small proportion of
the training data. This will affect the forecasting accuracy during the typhoon landing.

As the water level changes significantly in the rainy season, this paper evaluates
the accuracy of the forecasting performance by observing events with reservoir inflow
greater than 100 CMS. The results of the RMSE and MAE in 2012 and 2013 are shown
in Figures 20 and 21, respectively. Figure 20 shows that the RMSE value for the first 24 h
in 2012 is about 160 CMS, and Figure 21 shows that the RMSE value for the first 24 h in
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2013 is about 120 CMS. In general, the designed fuzzy neural network model can obtain
good water level forecasting results. However, the reservoir inflow during a typhoon or
heavy rain may be hundreds of times different from the reservoir inflow during a normal
period, and the water level of the reservoir may change by tens of meters. In addition,
when the water level is predicted, the predicted reservoir inflow error value will continue
to accumulate from 1 to 48-h, and the predicted water level will have a large error 48-h in
the future.
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In order to illustrate the relationship between reservoir level forecasting and hydro-
electric power generation, this paper assumes the starting water level of 1400 m at the time
of typhoon Matmo and conducts a simulation analysis. The impact on hydroelectricity
generation is illustrated for the scenarios with and without the reservoir level forecasting
system. It is assumed that without the forecast system, the dispatcher would normally start
to operate the hydroelectric plant at full capacity when there is a large change in water level
at 00:00 in the morning on 23 July 2014. Assuming that the forecast system is available,
the dispatcher observes the predicted water level trend a day before and starts to operate
the hydroelectric plant at full capacity immediately, based on the forecast system results.
The results are shown as Figures 22 and 23, and it can be seen that if the dispatcher starts
to operate the hydroelectric plant at full capacity without the reservoir level forecasting
system when the typhoon hits, the water level will be raised to the full level and it is
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necessary to discharge the flood, which is a loss of energy. From Figures 22 and 23, if the
operation of the hydroelectric plant at full capacity can be started 24 h before, the reservoir
can avoid the flood discharge.
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Next, we analyse in detail the loss of generation caused by the dispatcher’s hydro-
electric operation at different times. When the predicted result was generated on 22 July,
it showed that the reservoir would reach full level in 33 h. In this case, when the water
level is full, there is no way to stop the water level from rising even if the hydroelectric
plant is operating at full capacity. In case of high initial reservoir level and sudden heavy
rain, the dispatcher starts to operate the hydroelectric plant at full capacity after different
time points and analyses the water level change. During the process, the amount of flood
discharge when the water level reaches the highest point of 1408 m is recorded, and the
accumulated power generation loss of the hydroelectric units is evaluated according to
the power to water ratio value. The results are shown in Figure 24, and it is clear that the
dispatcher must start to operate the hydroelectric plant at full capacity 24 h prior, otherwise
it will cause power generation loss due to flood discharge. From Figure 24, the loss in
power generation is very impressive, which also shows the importance of water level
forecasting for the dispatcher to operate the hydroelectric units.
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4.5. Discussions

The effect of rainfall on the basin inflow can be seen from both the physical runoff
model of [13,14,40] and the statistical model of [16,24,44]. The fact that rain in the upstream
catchment increases the water level of the Techi Reservoir is well established. In order
to understand the delay time of the river confluence at Techi Reservoir, the correlation
between the rainfall station and reservoir water level was analysed. In Figure 7, it can be
seen that the maximum correlation of the observed data on the reservoir inflow is at 4 h,
while the predicted data have a more significant effect at about 6 h. Figure 4 also reflects
the influence of the rainfall stations on the trend of water level variation. It can then be
seen from Figure 6 that the power–water ratio curve learned by neural networks is similar
to the actual curve, and the water level volume curve also has a good learning result.

Based on [16,17,19,24,25], they demonstrated the importance of rainfall forecasting
for reservoir water level and inflow. For this purpose, we further analysed the correlation
between the predicted rainfall data and the actual water level changes. From Figure 7a,
it can be seen that the correlation between the rainfall forecasting and reservoir water
level change is relatively low, compared to the observed rainfall values, and from Figure 8,
the accuracy of the rainfall forecasting is acceptable but can be further optimized. When
analysing the forecast data, it is found that sometimes the forecast data do not reflect the
actual rainfall trend.

Next, we conducted a typhoon case study. The dispatcher usually relies on experience
in scheduling hydroelectric units for hydroelectric power generation. In order to present
the effectiveness of the proposed method, we simulated the inflow of typhoon Maghreb
and added the water consumption of the hydroelectric power generation into the reservoir
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using the power–water ratio curve. In addition, in order to highlight the huge loss of
power generation due to flood discharge, we assumed that the initial water level before
the typhoon arrives is 1400 m and simulated that if the dispatcher can start to operate
the hydroelectric plant at full capacity earlier, the loss of power generation due to flood
discharge can be greatly reduced, which may reach 7GWh loss in a single typhoon, which
is a very large energy loss.

Finally, because of the characteristics of Taiwan’s island climate, the rainy season
in Taiwan is concentrated between May and September, and there are often very drastic
changes in reservoir inflow during this period. Based on [1,2,4], the impact of extreme
rainfall on water resources can be understood. Obviously, it is not very objective to use
RMSE and MAE directly to evaluate the annual reservoir inflow and water level. Therefore,
this paper selected representative typhoons from 2013 to 2014 as experimental data, aiming
to investigate whether the water level forecasting system can reflect the future water level
trend in real time when heavy rainfall occurs. From Figures 10–17, it can be seen that the
forecasting system has a good ability to follow the water level in case of extreme rainfall.
In addition, the accuracy of the inflow prediction was analysed for the case of reservoir
inflow exceeding 100 CMS, i.e., a certain level of rainfall occurred. As can be seen in
Figures 10 and 21, the forecasting system is able to provide good forecasting results for
both special cases and rainfall events.

5. Conclusions

Taiwan is blessed with abundant water resources. Among them, Techi Reservoir is
the uppermost reservoir in the Dajiaxi Basin. The operation of the Techi branch of Dajiaxi
Power Plant is critical to the power generation, and downstream water supply of power
plants in the entire Dajiaxi River Basin, and its importance is beyond words. Therefore, for
Techi Reservoir, based on the meteorological rainfall information and the rainfall stations
in the catchment area, reservoir level, flood discharge, and power generation, this paper
has developed a fuzzy neural network 48-h ahead reservoir water level forecasting system
that is capable of predicting the hourly water level 1 h to 48 h ahead.

The main objective of this paper is to enable the power plant operator to efficiently
dispatch the hydroelectric units with the dynamic information of future water level in the
reservoir in order to increase the power generation. If the proposed water level forecasting
system can be integrated into the energy management system of hydroelectric power
plant, the hydroelectric power, irrigation water, municipal water, and flood control can be
managed more effectively to achieve the optimal use of energy. During the prior typhoon
period, the actual reservoir inflow analysis also proved that the proposed forecasting
system has a certain leading predictive ability and the ability to predict the changes in the
reservoir’s inflow and water level when the offshore typhoon warning is issued. Therefore,
the operators can refer to the real-time information on the dynamic changes of the reservoir
water level to manage the water level. Besides retaining storage capacity for storing
floods, reducing peaks, and stably supplying water for various downstream targets, the
reservoir operator can also adjust the reservoir’s water level to increase the amount of
power generated and increase power generation revenue.

The most important part of the model training is that the training data should cover
a complete range of local climatic characteristics, especially in the area of heavy rainfall,
which is very important for a successful water level forecast system to be able to respond
rapidly to drastic water level changes. In order to enhance the effectiveness of the water
level forecast system, the accuracy of the meteorological data is also very important, in ad-
dition to the coverage of upstream rainfall observation stations. Since most meteorological
data use tuned observations from nearby urban areas, this sometimes makes it impossible
for them to reflect accurate rainfall values in mountainous areas due to many factors, such
as topography and climate. In this case, if the rainfall observation stations in the upper
watershed can be used to calibrate the meteorological data, the accuracy of water level
prediction will be improved.
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