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Abstract: A cost-effective and efficient wind energy production trend leads to larger wind turbine
generators and drive for more advanced forecast models to increase their accuracy. This paper
proposes a combined forecasting model that consists of empirical mode decomposition, fuzzy group
method of data handling neural network, and grey wolf optimization algorithm. A combined K-
means and identifying density-based local outliers is applied to detect and clean the outliers of the
raw supervisory control and data acquisition data in the proposed forecasting model. Moreover,
the empirical mode decomposition is employed to decompose signals and pre-processing data. The
fuzzy GMDH neural network is a forecaster engine to estimate the future amount of wind turbines
energy production, where the grey wolf optimization is used to optimize the fuzzy GMDH neural
network parameters in order to achieve a lower forecasting error. Moreover, the model has been
applied using actual data from a pilot onshore wind farm in Sweden. The obtained results indicate
that the proposed model has a higher accuracy than others in the literature and provides single and
combined forecasting models in different time-steps ahead and seasons.

Keywords: power system; wind power production; SCADA data; fuzzy GMDH neural network;
grey wolf optimization

1. Introduction

Wind power industries have been tremendously expanded and are expected to
progress at a compound annual growth rate (CAGR) of 5.2% between 2020 and 2027.
This extension resulted in the produced power cost of wind energy as one of the most sig-
nificant renewable and low-carbon energy resources. Wind power generation is currently
one of the principal renewable energy power generations [1–4]. Wind energy is stochastic,
uncertain, and discontinuous, antagonistically influencing the power grid’s protected and
stable activity and the nature of the power supply [5]. The stochasticity and discontinuity
of wind power could diminish the reliability prediction system and wind power quality [6].

A potential answer to these issues is to improve the forecast accuracy of wind gener-
ation. Several studies [7–12] are proposed to portray the distribution of the wind power
prediction, and diverse scientific methodologies are connected to improve its accuracy.
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Other studies proposed complex models such as the Laplace distribution [9], the Beta
distribution [10], the hyperbolic distribution [11], the Levy α-stable distribution [12], and
the flexible likelihood distribution [13], which have been proposed to improve the fitting
precision of the wind power prediction. In the previous decade, many studies to assess
and predict the various aspects of energy management and power systems have been
presented. For example, wind and solar power generation forecasting [14–16], condition
monitoring of wind turbines [17], electricity market [18], and load forecasting [19,20] are
proposed. Amjady et al. (2011) provided the short-term wind power prediction dependent
on the ridgelet neural network (RNN) with a high capacity estimate ability. They sug-
gested a differential evolution algorithm with a new selection mechanism and crossover
to train the network [21]. Han et al. (2017) proposed combined models based on autore-
gressive integrated moving average (ARMA) and non-parametric model for wind speed
forecasting [22].

The results demonstrated that non-parametric based combined models usually have
a better performance than other models. Jonas C. Pelajo et al. (2019) developed a model
to predict wind speed and energy price to determine the optimal maintenance planning
of a real wind farm in the Brazilian Northeast [23]. Osório et al. (2014) proposed a
combined forecasting model based on mutual information, wavelet transform, particle
swarm optimization, and adaptive neuro-fuzzy inference system framework to predict
the short-term wind power and electricity market prices [24]. Gallego-Castillo et al. (2016)
provided a quantile relapse model dependent on the recreating piece Hilbert space (RKHS)
system to predict the wind power probabilistic. Furthermore, they implemented two types
of models (online and offline) for a real wind farm [25]. Xiao et al. (2017) employed an
electrical power system prediction model using a wavelet neural network (WNN) model
and an improved cuckoo search algorithm. The results showed that the proposed model
essentially diminished the expectation error with respect to other relative models [26].

Kunpeng Shi et al. (2018) provided a combined model based on two-stage feature
selection and improved random forest models to short term wind power forecasting [27].
Van Quang Doan et al. (2019) have presented a mesoscale ensemble model to predict wind
speed ramps. The proposed model applied at real wind farms in Japan [28]. Duan et al.
(2021) developed a combined intelligent model based on the improved variational mode
decomposition and Correntropy long short-term memory neural network to predict wind
power. The model was evaluated using two wind farms in China at different sampling
intervals [29]. Yildiz et al. (2021) presented a two-step new deep learning approach based
on the variational mode decomposition (VMD) method and modified the residual-based
deep convolutional neural network for wind power forecasting [30]. Jafarzadeh et al. (2021)
provided a modified fuzzy wavelet neural network for short-term wind power forecasting
considering weather and power plant parameters. In order to evaluate the model, the Mnjil
wind power plant in Iran has been used [31].

In addition, GIS-based models play an important role in renewable energy poten-
tial assessment and prediction [32,33]. Furthermore, the behavior and performance of
renewable energy systems can be estimated using GIS models [34,35].

Generally, in order to model the wind turbine power production analysis, a combined
intelligent solution is required. It means that the data should first be modelled by a
combined data pre-processing model then a combined intelligent strategy should analyze
the processed data. This type of strategy plays an essential role in managing the energy
production of wind farms.

In this research, we propose an integrated strategy that couples an empirical mode
decomposition, fuzzy GMDH (group method of data handling) neural network, and grey
wolf optimization algorithm (GWO) to forecast the produced power of wind turbines.
Furthermore, to detect and clean outliers, a combined K-means and density-based local
outliers (LOF) are applied.

The main contributions and novelty of this paper are illustrated as follows:
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(a) K-means is one of the most well-known clustering methods, a fast and efficient tech-
nique in unsupervised learning methods. However, it suffers from some deficiencies
such as (i) predefining the number of clusters and centers in advance, (ii) not being
able to handle noisy data and outliers properly, and finally, k-means is not proper
to classify clusters with non-convex shapes. In order to deal with these listed issues,
we proposed a combination of identifying density-based local outliers (LOF) and
k-means for cleaning the raw supervisory control and data acquisition (SCADA) data
as the initial section of the pre-processing.

(b) As wind speed and power forecasting involve the non-linear power curve, stochas-
tic and noisy behavior of the recorded wind data, the empirical mode decomposi-
tion (EMD) method is proposed to deal with these uncertainties and increase the
modelling accuracy.

(c) Fuzzy-GMDH neural networks are considered as one of the most effective methods to
model the time-series data with high-level noise and short input sampling. However,
initializing the hyper-parameters of fuzzy-GMDH is challenging and time-consuming.
With regards to adjusting the hyper-parameters, we apply a robust and fast search
method called the grey wolf optimization (GWO) algorithm. Applying the GWO as a
hyper-parameter tuner improved the proposed model’s accuracy and reliability to
forecast wind power.

(d) The proposed combined forecasting model has successfully verified on two actual
wind turbines SCADA datasets. In addition, the proposed forecasting model is
compared with the other valid combined forecasting models.

2. Materials and Methods

After a brief description of the SCADA system and data gathering, this section illus-
trates the artificial intelligence methods proposed in this paper.

2.1. SCADA System

The SCADA system, known as remote supervision and control of wind turbines in
wind farms, plays a significant role in the wind power forecasting models. This paper’s
collected and applied SCADA data is related to a large wind farm (located in Sweden). The
input data includes the power output of wind turbines and wind speed (short-term with
the interval of 10 min) for a year from Jan to Dec 2015. Furthermore, in order to evaluate
and compare the performance of the proposed hybrid model, we applied the SCADA data
for two wind turbines (wind turbine 1 (WT1) and wind turbine 2 (WT2)).

2.2. Proposed Wind Power Forecasting Strategy

In this study, a multi-step hybrid intelligent model has been proposed as a means to
predict wind power production (see Figure 1).
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Due to the wide range of intelligent methods such as neural networks and metaheuris-
tic optimization algorithms, in this paper, we presented a hybrid forecasting model based



Energies 2021, 14, 3459 4 of 13

on FGMDH and GWO for wind power production forecasting. The GWO optimization
algorithm can perform the neural network (FGMDH) training step well and optimize
the value of network parameters. Therefore, this algorithm (GWO) is constructive to the
performance of the proposed model for predicting wind power production.

Since the structure of the input matrix plays a significant role in determining the
output and accuracy of the model, in the first place, the various input signals (wind power
and wind speed) are decomposed through the EMD method to different high and low
frequencies (see Figure 2).
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Figure 2. The EMD output, i.e., decomposition signals of wind power and wind speed of turbine 1 (WT1).

Five types of decomposed frequencies (IMF1, IMF2, IMF3, IMF4, residual) are selected
and applied by delaying a unit of time (t-1) as inputs of the model subsequently (see
Figure 3—inputs and output data structure). In addition, the lagged values (1 to 5) for
the original wind power signal and actual wind speed signal are considered as input
parameters (Figure 3—inputs and output data structure). In the next step, the FGMDH
method has been employed to predict the wind turbine power.

The FGMDH model structure includes different neurons. The parameters grouped
in the form of Gaussian variables and the weight of the fuzzy rule in each neuron are
unknown. In this paper, the GWO algorithm is applied with the purpose of optimizing the
FGMDH model variables (the group-unknown variables in neurons).

In this study, in order to evaluate the performance and reliability of forecasting models,
the wind turbine power production is predicted for different seasons at two times (10-min
and 1-h). The framework of the proposed model is represented in Figure 3.
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Figure 3. The framework of the proposed model.

2.3. Data Cleaning

The raw SCADA datasets usually include different forms of noise that directly nega-
tively affect the accuracy of the forecasting process. One of the most notable outliers can be
the negative wind turbine power outputs observed when the wind speed is shallow or dur-
ing a failure situation. For evaluating the distribution of the raw SCADA dataset, Figure 1
is plotted, and also an abnormal distribution of wind power can be seen in Figure 4.
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Figure 4. The distribution of the raw SCADA data WT1 (wind speed and power).

In the pre-processing section, it is recommended that [36] these negative powers
should be set as zero. In addition, to remove the impact of the data scale, a Min-Max
normalization is implemented for the feature scaling. Meanwhile, as each wind turbine
has a unique power curve that presents the average efficiency of the applied wind turbine,
without declaring the particular mechanical components, Figure 5 is plotted for showing
this characteristic of the first wind turbine in this research. The scatter data point indicates
the outliers.
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Figure 5. The power curve model of the WT1.

The proposed cleaning data method is a combined K-means clustering and the identi-
fying density-based local outliers (LOF) method [37]. In the first step, a k-means clustering
method is employed to classify the SCADA data into various clusters. Then, in each cluster,
the local density-based method is adopted to eliminate the potential noises. The clean data
after using K-means clustering and the LOF method can be illustrated in Figure 6.
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2.4. Empirical Mode Decomposition

The EMD is a method of signal decomposition that can analyse the non-linear and
non-stationary time series. Moreover, using this method is more accessible and more
understandable compared to wavelet decomposition [38,39]. In addition, EMD does not
stand in the need of deciding a mother function in advance (beforehand of time) by no
means such as wavelet decomposition. The most important characteristic of the EMD
is a fully data-driven decomposing means by which signals break down into various
independent components within the interval of local specifications of a signal.

Decomposing initial signals as intrinsic mode functions (IMFs) and residual into a
finite amount of oscillatory functions is the concept of EMD. These IMFs must be met by
the following conditions: (1) The number of extreme must be equal to the number of zero
crossings or their maximum difference is equal to one; (2) the mean value of the envelopes
characterized by local maxima and local minima must be zero at all components.

The EMD is a sifting method using a real signal to extract the IMFs and residual. The
calculation of the EMD can be given as the following steps [38,39]:

Stage 1: Recognize all local maxima and local minima in time series S(t).
Stage 2: Connect all local maxima and minima to produce the upper U(t) and lower

L(t) envelopes using a cubic spline line.
Stage 3: Calculate the point-by-point mean envelope from the upper and lower

envelopes and create the mean envelopes m(t) later as:

m(t) =
[U(t) + L(t)]

2
(1)

Stage 4: Compute the distinction between the mean envelopes and the actual signal:

h(t) = S(t)−m(t) (2)

Stage 5: Check whether h(t) is an intrinsic mode function (IMF). Provided that this is
true, it is treated as the ith IMF and afterwards the actual time series is supplanted by the
residuals h(t) = S(t)−m(t). If not, is supplanted by h(t).

Stage 6: Repeat Steps 1–5 until the standard deviation magnitude of the two consecu-
tive sifting results (IMFS and Residual) is lower than the predefined stopping criterion.

Using the above-mentioned sifting process, many IMFs can be obtained from high
frequency to low frequency, thereby disintegrating into several IMFs and a residual as:

rn(t) = S(t)−∑n
i=1 Ci(t) (3)
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where rn(t) and n are the last residuals and the number of IMFs, respectively.
Ci(t) (i = 1, 2, . . . , n) indicates different IMFs.

2.5. Fuzzy-GMDH Model

The FGMDH is a machine learning strategy in the hierarchical structure [40]. In this
model, every neuron has two inputs and an output. The general structure of the FGMDH
system was shown in Figure 3 (the FGMDH forecasting model). In this figure, the output of
each neuron in each layer is considered as the input in the following layer. The last output
is determined to utilize the mean of the last layer output.

The FGMDH structure part in Figure 6 demonstrates that the inputs from the mth
model and pth layer are the outputs of the (m − 1)th and mth model in the (p − 1)th layer.
The numerical function for computing the ypm (the output variable of the mth model in the
pth layer) is as follows:

ypm = f
(

yp−1,m−1, yp−1,m
)
= ∑K

k=1 µ
pm
k · w

pm
k (4)

µ
pm
k = exp

−
(

yp−1,m−1 − apm
k,1

)2

bpm
k,1

−

(
yp−1,m − apm

k,2

)2

bpm
k,2

 (5)

where wpm
k and µ

pm
k are its corresponding weight parameter and the kth Gaussian function,

respectively. Moreover, apm
k and bpm

k are the Gaussian parameters [41]. Furthermore, the
last output is calculated by the following equation:

y =
1
M ∑M

m=1 ypm (6)

The learning procedure of feed forward FGMDH is known to solve the composite
problems as an iterative technique.

A simplified fuzzy logic rule has been provided by [40] to improve the GMDH
neural network:

If x1 = Fk1 and x2 = Fk2, then output y = wk

2.6. Gray Wolf Optimization

The GWO algorithm, which is a new meta-heuristic algorithm based on swarm
intelligence evolutionary, is proposed by Mirjalili et al. [42].

The GWO is inspired by grey wolves. The four types of grey wolves are hired as alpha,
beta, delta, and omega to replicate the hierarchy of management. On the other side, the
notable steps of grey wolves (encircling prey, hunting, attacking prey, and searching for
prey) are performed during the operation [43].

Encircling prey: The encircling behaviour of each agent of the group is computed by
the following mathematical formula:

→
d =

∣∣∣∣c.
→
x

t
p −

→
x

t
∣∣∣∣ (7)

→
x

t+1
=
→
x

t
p −

→
a .
→
d (8)

The vectors
→
a and

→
c are computed as the following formula:{ →

a = 2l.r1
→
c = 2.r2

(9)
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Hunting: For a mathematical simulation of the hunting behaviour of grey wolves, it is
assumed that α, β, and δ have better information about the possible location of the prey.

dα =
∣∣∣→c 1.

→
x α −

→
x
∣∣∣

dβ =
∣∣∣→c 2.

→
x β −

→
x
∣∣∣

dδ =
∣∣∣→c 3.

→
x δ −

→
x
∣∣∣

,


→
x 1 =

→
x α −

→
a 1.(

→
dα)

→
x 2 =

→
x β −

→
a 2.(

→
dβ)

→
x 3 =

→
x δ −

→
a 3.(

→
dδ)

(10)

→
x (t+1) =

→
x 1 +

→
x 2 +

→
x 3

3
(11)

Attacking the prey and searching for the prey: The
→
a is a random value in the interval

[−2a, 2a]. When the random value is less than 1, the grey wolves are enforced to attack the
prey and if the random value is greater than 1, the grey wolves are forced to diverge from
the prey.

2.7. Error Indicators

In order to assess the accuracy and reliability of the proposed forecasting model,
different error indicators have been used in this paper: The mean absolute percentage error
(MAPE), the sum squared error (SSE), the root mean squared error (RMSE), and the mean
absolute error (MAE). All error indicators are based on error percentage (unitless).

MAPE =
100
m ∑m

i=1

∣∣∣∣ xreali − x f ori

xreali

∣∣∣∣ (12)

SSE = ∑m
i=1

(
xreali − x f ori

)2
(13)

RMSE =

√
1
m ∑m

i=1

(
xreali − x f ori

)2
(14)

MAE =
1
m ∑m

i=1

∣∣∣xreali − x f ori

∣∣∣ (15)

where xreali and x f ori are the actual value and predicted value, respectively. m is the number
of data.

3. Results and Discussion

As discussed in the previous sections, in order to evaluate the performance and
efficiency of the proposed method, the real on-shore SCADA dataset for two wind tur-
bines (WT1 and WT2) has been exploited in this paper. Regarding the framework of
the proposed model (Figure 3), several frequencies of wind speed (IMF1Speed, IMF2Speed,
IMF3Speed, IMF4Speed, ResSpeed) and wind turbine power (IMF1Power, IMF2Power, IMF3Power,
and IMF4Power, and ResPower) are considered as input parameters of the model:

Original and decomposition signals


WP(t−1), WP(t−2), WP(t−3), WP(t−4), WP(t−5)

WS(t−1), WS(t−2), WS(t−3), WS(t−4), WS(t−5)

IMF1Power
(t−1), IMF2Power

(t−1), IMF3Power
(t−1), IMF4Power

(t−1), ResPower
(t−1),

IMF1Speed
(t−1), IMF2Speed

(t−1), IMF3Speed
(t−1), IMF4Speed

(t−1), ResSpeed
(t−1)

In addition, several combined forecasting models such as MI-CNN [44], MRMR-
HNES [45], MI-CNEA [46], GRNN, and FGMDH have been applied to measure the perfor-
mance of the proposed model. First, the 1-year-dataset is selected as the prediction model
data and the predicted results are calculated with the error indicators presented in the
previous section. The results are shown in Table 1.
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Table 1. Comparison of the wind turbine power forecasting errors of the models for two wind turbines (WT1 and WT2).

Forecasting Models Time Step

Error Criteria

RMSE SSE MAE MAPE

WT1 WT2 WT1 WT2 WT1 WT2 WT1 WT2

GRNN
10-min 0.315 0.29 125.011 102.29 0.299 0.265 18.516 20.818

1-h 0.381 0.387 133.366 124.971 0.312 0.365 21.815 22.716

FGMDH
10-min 0.236 0.241 18.533 19.084 0.217 0.228 9.232 11.883

1-h 0.288 0.272 64.265 54.079 0.276 0.231 10.237 12.11

MI-CNN [44]
10-min 0.056 0.072 13.35 12.816 0.045 0.033 4.262 3.981

1-h 0.094 0.085 40.58 41.732 0.068 0.038 4.837 5.002

MRMR-HNES [45]
10-min 0.149 0.184 11.922 9.818 0.143 0.166 4.523 5.105

1-h 0.167 0.202 44.514 51.165 0.149 0.171 5.592 5.235

MI-CNEA [46]
10-min 0.225 0.219 14.368 13.127 0.215 0.187 6.815 5.754

1-h 0.253 0.226 53.122 56.464 0.224 0.203 6.94 7.402

Proposed Model 10-min 0.013 0.013 10.706 8.069 0.012 0.01 2.856 3.012

1-h 0.026 0.024 36.594 34.079 0.032 0.012 3.208 3.516

In Table 1, the prediction results are calculated for two wind turbines in two different
time steps (10-min and 1-h). The wind turbine power production is highly dependent on
the wind speed. On the other hand, the wind speeds vary greatly on different days thus,
the forecasting time intervals for power production have been chosen amongst the days of
the four following months: February, May, August, and November which have the highest
fluctuation values for power production.

According to the results in Table 1, the performance of the proposed model is better
than the other provided models in different time steps and wind turbines. In addition,
the results indicate that the performance of the forecasting models in the 10-min time step
is better than the 1-h time step. Table 2 and Figure 7 indicate the results of the proposed
forecasting model and other models for wind turbine power production forecasting (WT1).

Table 2. Comparison of the wind turbine power forecasting errors of the models for the different seasons of a year.

Different
Seasons

Error
Criteria

GRNN FGMDH MI CNN [44] MRMR HNES [45] MI CNEA [46] Proposed Model

1-h 10-min 1-h 10-min 1-h 10-min 1-h 10-min 1-h 10-min 1-h 10-min

Winter

RMSE 0.482 0.414 0.326 0.318 0.122 0.083 0.173 0.153 0.262 0.226 0.015 0.013

SSE 171.315 46.555 37.336 16.265 19.820 9.352 28.819 11.474 22.872 13.077 17.634 6.317

MAE 0.445 0.396 0.306 0.277 0.079 0.049 0.147 0.144 0.229 0.224 0.013 0.012

MAPE 22.458 23.572 12.536 9.844 5.315 4.747 6.939 4.478 10.392 6.748 3.937 2.504

Spring

RMSE 0.383 0.401 0.309 0.298 0.110 0.086 0.163 0.147 0.244 0.232 0.014 0.012

SSE 131.719 51.513 40.546 15.327 19.608 7.342 33.549 11.493 28.090 14.120 11.519 5.306

MAE 0.363 0.359 0.284 0.275 0.074 0.054 0.147 0.138 0.222 0.208 0.019 0.012

MAPE 20.445 19.819 15.049 11.818 5.369 4.953 7.258 4.746 10.849 7.153 4.125 2.263

Summer

RMSE 0.341 0.313 0.302 0.291 0.081 0.064 0.169 0.143 0.253 0.246 0.014 0.012

SSE 121.481 37.914 41.151 13.011 12.780 5.311 13.907 7.453 28.994 12.030 11.134 3.006

MAE 0.313 0.264 0.274 0.288 0.055 0.040 0.148 0.143 0.223 0.216 0.017 0.012

MAPE 21.516 16.607 15.479 13.454 6.349 4.348 8.583 4.944 9.810 7.450 4.019 3.917

Fall

RMSE 0.372 0.328 0.285 0.268 0.118 0.074 0.163 0.162 0.247 0.244 0.018 0.014

SSE 91.819 34.725 53.183 26.130 22.378 9.427 24.238 10.587 37.390 18.337 13.238 6.263

MAE 0.415 0.307 0.239 0.234 0.080 0.040 0.161 0.137 0.243 0.207 0.015 0.014

MAPE 24.160 18.504 18.710 11.366 7.419 3.498 8.141 4.119 10.487 6.214 3.015 2.903
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Figure 7. The wind turbine power forecasting results of the comparative models for WT1.

According to the results of Table 2 and Figure 7, the performance of the forecasting
models has been evaluated in different time steps (10-min and 1-h) and seasons (winter,
spring, summer, and fall). Based on these results, the proposed model can predict the wind
turbine power more reliably and highly accurately multiple times ahead compared to the
other valid forecasting models (GRNN, FGMDH, MI-CNN, MRMR-HNES, and MI-CNEA).

4. Conclusions

Considering the highly volatile and nonlinear process of wind turbines power pro-
duction, a hybrid intelligent system to improve the accuracy and efficiency of wind turbine
power prediction has been proposed. For the initial step, the hybrid K-means-LOF and
EMD methods have been applied as a pre-processing step for removing the outliers and
decomposition of the SCADA data, respectively. Then, the processed data was given to the
forecasting model (FGMDH) and the future power of the wind turbine has been calculated.
Furthermore, in order to complete the proposed model as a parallel calculation, the GWO
algorithm has been used as an optimization method to optimize the FGMDH parameters.
In this study, the SCADA data for two wind turbines in the real wind farm located in
Sweden has been used to measure the performance and reliability of the proposed model.

The new forecasting model has been applied to predict the power of wind turbines for
two time-intervals ahead (10-min and 1-h) in 1 year and different seasons. The obtained
results pinpointed that the performance of the proposed method (EMD-FGMDH-GWO)
at different time intervals has a high accuracy and reliability than many other available
methods such as GRNN, FGMDH, MI-CNN, MRMR-HNES, and MI-CNEA. The MAPE
error indicator obtained for GRNN, FGMDH, MI-CNN, MRMR-HNES, MI-CNEA and the
proposed model is equal to 20.818, 11.883, 3.981, 5.105, 5.754, and 3.012, respectively. In
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addition, the proposed forecasting model can be extended and applied for different energy
sources to maximize the use of renewable energy sources and better manage their use. In
future studies, the proposed model will be extended to analyze different energy sources in
one area simultaneously.
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