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Abstract: The variability in generation introduced in the electrical system by an increasing share
of renewable technologies must be addressed by balancing mechanisms, demand response being
a prominent one. In parallel, the massive introduction of smart meters allows for the use of high
frequency energy use time series data to segment electricity customers according to their demand
response potential. This paper proposes a smart meter time series clustering methodology based on
a two-stage k-medoids clustering of normalized load-shape time series organized around the day
divided into 48 time points. Time complexity is drastically reduced by first applying the k-medoids
on each customer separately, and second on the total set of customer representatives. Further time
complexity reduction is achieved using time series representation with low computational needs.
Customer segmentation is undertaken with only four easy-to-interpret features: average energy use,
energy–temperature correlation, entropy of the load-shape representative vector, and distance to
wind generation patterns. This last feature is computed using the dynamic time warping distance
between load and expected wind generation shape representative medoids. The two-stage clustering
proves to be computationally effective, scalable and performant according to both internal validity
metrics, based on average silhouette, and external validation, based on the ground truth embedded
in customer surveys.

Keywords: time series clustering; time series representation; electrical smart meters; demand
response; renewable energy; clustering validation

1. Introduction

Demand response (DR), or the capability of electrical loads to adapt their shape at
specific points in time given the right incentives, is receiving increasing attention from
policy makers and energy system designers [1]. The key trends driving the development of
the energy system, decarbonization, electrification and digitalization converge towards an
increasing need for demand flexibility enhanced by digital technologies [2]. Notwithstand-
ing the large uncertainties introduced by the COVID-19 pandemic in the energy system [3],
a sustainable economic recovery is set to be based on channeling new investments in clean
energy and further digitalization [4], which would further promote the automation of
demand response programs [5], in particular for residential customers [6] in the context of
higher penetration of renewable resources.

The global deployment of smart meters has also resulted in a dramatic increase in Ar-
tificial Intelligence (AI) and Machine Learning (ML) applications to improve the planning
and operation of the power system under the big data paradigm [7–9], as customer segmen-
tation for DR applications is one the most common applications [10]. Time series clustering
approaches have been largely applied to smart meters load profiles datasets [11–13]. The
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challenges associated with time series clustering are well recognized, and they include
high dimensionality and the definition of similarity taking the time dimension into account,
from which three key research areas are derived: dimensionality reduction; clustering
approach, which includes the choice of distance measurement, clustering prototypes and
clustering algorithm; and clustering performance evaluation [14,15].

The most common approach for dimensionality reduction is to transform the smart
meters times series data into a set of customer features that capture, according to a heuristic
and expert-based criteria, the structure of the customer’s load shape. These features may
be related to DR flexibility metrics, such as entropy analysis and thermal profiling [16],
an average energy aggregation over certain periods of time [17], a combination of mean
load level at chosen time intervals and outdoor temperature ranges [18,19], daily energy,
minimum and maximum active powers [20], or peak characterization (e.g., peak time,
duration and intensity) [21]. Other approaches for dimensionality reduction include princi-
pal component analysis (PCA) [17,22], statistical parameters of the energy use probability
distributions such as skewness and kurtosis [23], time series analysis such as autocor-
relation [24], or deep-learning-based convolutional autoencoder (CAE) to reduce to a
representative vector in the encoded space [25]. In [26], the authors undertake a systematic
comparison between different dimensionality reduction techniques such as features-based
(seasonal averages and maximums, seasonal median, maximum and median variation),
non-data adaptive (piecewise aggregate approximation, discrete wavelet transform), data
adaptive (piecewise linear approximation (PLA)), and model based (multiple linear re-
gression, robust linear regression, generalized additive model, Holt–Winters exponential
smoothing), finding that best results were achieved by model-based representations and
the adaptive method PLA. K-centered clustering algorithms are the most popular, with
k-means the most common prototype [12,13]. Hierarchical clustering (HC) is also fairly
used, but normally applied to smaller datasets, and self-organized maps (SOM) is com-
monly used for its strong visualization features. Recent trends aim at using alternative
clustering techniques such as density-based methods [27,28] and modeling the embedded
uncertainty and indetermination of energy use data [29,30]. Multi-stage clustering has
been used to increase performance by dealing in turn with absolute load and normalized
load shape [31], and to deal with dimensionality by first computing local representatives at
the customer level and then global representatives at the global level using a load shape
dictionary (LSD) approach [32]. The dictionary approach, combined with an adaptive
k-means clustering algorithm, has also been proven to be effective and scalable to large
datasets [21,33]. Euclidean distance is the most used dissimilarity measure, while fast
algorithms for dynamic time warping (DTW) distance are recommended when comparing
raw smart meters time series data [13,32]. For clustering performance evaluation average
silhouette and the Dunn index are commonly used as internal clustering validation metrics,
and external validation is rarely used [12].

The goals of this research are two-fold. The first research objective is to develop a
time series clustering methodology that takes explicitly into account renewable energy
generation patterns. Although previous literature often describes the high impact of a high
penetration of renewables in the development of DR mechanisms, this is the first time that
this impact is quantitively embedded in the clustering methodology, to the knowledge
of the authors. The second objective is to design a time series clustering strategy that is
scalable and computationally efficient using a combination of techniques, such as multi-step
clustering and dimensionality reduction.

The rest of the paper is structured as follows. Section 2 describes the methodology.
Section 3 applies the methodology using the well-known public dataset from Irish CER
smart meter trial. Section 4 discusses the results on the light of previous research. Section 5
summarizes the conclusions and points to further research.
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2. Methodology

Figure 1 illustrates the methodology. The 5 steps in the top of the figure can be grouped
into four blocks: data analysis, 2-step clustering, distance to wind and DR applications.
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Figure 1. Smart meters time series clustering for DR applications methodology.

2.1. Block 1: Data Analysis

Raw data are composed of three different but interconnected datasets: smart meters
time series data (with hourly or half-hourly frequency) for each customer, a customer
ground-truth set containing customer features related to customer profile, premises type
and available equipment, and a weather information time series dataset (with hourly
frequency) from the weather stations closest to each customer. The dataset is filtered to
retain customers with a full year’s worth of hourly smart meter data and a good level
of quality (i.e., low number of missing values or clear outliers) and missing data are
interpolated using standard techniques.

There are two key transformations of the data in this methodology: the breakdown
of the smart meter dataset in daily energy use (in kWh/day) and normalized load shape
(ratio of hourly energy and daily mean hourly energy) and the organization of the data
for each customer around days. Hence, each customer is characterized by one vector of
daily mean energy use of size equal to the number of days with data and a matrix of
normalized load shape days, with as many rows as days and as many columns as number
of daily data points (normally 24 or 48). Weather data time series are treated in a similar
way, filtering the hourly time series data for wind speed and temperature for the selected
one-year period, and then extracting two vectors of size equal to the number of days in the
year, one of mean daily temperature and other the normalized wind speed, defined as the
ratio of hourly wind speed and the daily average wind speed.
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2.2. Block 2: Two-Step Clustering

An effective times series clustering for large datasets heavily depends on the applica-
tion of successful reduction techniques and classification processes aiming at a reduction in
high data dimensionality. Once data quality is ensured as output of block 1, the goal of block
2 is to drastically reduce the computational complexity of the problem. In this paper a very
large dataset (e.g., for 5000 customers and one year worth of half-hourly smart meter data,
the size of the distance matrix would be of 5000 customers × 365 days = ~1.8 million rows
and 48 columns) is transformed to a lower dimensionality by first applying three different
time series representation techniques, and second by using a two-step clustering procedure.

Three time series representation techniques have been chosen because of their rela-
tively low computation complexity covering three different categories: piecewise aggregate
approximation (PAA) (non-data adaptive category) [34], symbolic aggregate approxima-
tion (SAX) (data adaptive) [35] and features based on clipping (data dictated) [36]. TSrep
package in language R [37] has been used to implement these techniques. To compute the
dissimilarity matrix, Euclidean distance is used on normalized values for PAA and clipping
and Gower’s distance for the non-numeric symbolic approach SAX [38]. Second, a two-step
k-medoid partitioning clustering approach is applied to the transformed dataset. K-medoid
partitioning clustering has been widely used with success for smart meter datasets, and
the use of medoids as protypes provides more robust results in terms of noise and outliers
than average- or median-based prototypes, guarantees convergence, and allows for the
use of different distance functions other than Euclidean [13]. The first step k-medoids
clustering algorithm with automatic stop criteria is applied to the customer-day elements
of each customer (365 elements for one year worth of data). The stop criterion is based
on the computation of the average silhouette for each iteration of increasing number of
clusters: the algorithm stops when the average silhouette decreases with the number of
clusters. The medoids of each customer-day clustering are the representative of each one
of the customers. The second k-medoids algorithm is applied to the set of population
representatives medoids, resulting in the final selection of a few medoids to represent the
whole population. Figure 2 summarizes the process of the data transformation and the
multi-step clustering in flow-chart format. A mathematical notation of this process is also
provided in Appendix A.
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The different dimensionality reduction techniques are compared according to four
metrics: computation time (for distance matrix and clustering), number of clusters gen-
erated by the automatic stop criterion algorithm, average silhouette, and percentage of
negative silhouette values. Computation time provides a measure of the efficiency of the
technique, the number of clusters is a measure of the capability of each technique to find
subtle patterns in the shape of the data and the silhouette metrics (average and number of
negative silhouette elements) provide a robust internal validation of the separation and
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compactness of the clustering results. Additionally, an external validation metric is also
computed for the three methods based on the relevance of regression logistic coefficients
predicting the probability of the existence of a given electrical equipment using the relative
frequency of the second phase of clustering as predictors.

Time complexity of k-medoids algorithm is high compared to k-means since it has
a quadratic dependence to the number of elements to cluster, or O(n(n-k)2), where n is
the number of elements and k the number of clusters [39]. The methodology proposed

radically reduces the time complexity first via dimensionality reduction by a factor of
(

h
f

)2
,

where h is the number of periods per day (typically 24 or 48) and f is the number of features
retained after application of time series representation techniques and then by a factor of
n2, where n is the number of customers via application of the k-medoids clustering, with
automatic criterion to each customer separately.

2.3. Block 3: Distance to Wind

Since the purpose of DR in the context of high renewables penetration is to have the
load following renewable generation patterns as much as possible, for a given customer,
the closest his or her load shape is to the wind generation shape, the more valuable would
be any DR measure applied in this customer. This concept has been applied in this paper
by computing the dynamic time warping (DTW) distance between the load shape of each
customer and the wind speed load shape [40]. Two considerations are important to be
mentioned in this regard. First, wind speed at a representative point has been used as a
proxy of wind generation potential. It is well known that the relationship between wind
speed and wind generation is not linear, but it follows the so-called power curve model [41].
In this model, a wind turbine would only start generating after a certain threshold of wind
speed has been reached (cut-in speed, typically around ~3 m/s), then turbine output
increases roughly linearly with wind speed until the rating of the turbine is reached (rated
speed, at around ~15 m/s) and further increases in speed do not increase power generation.
Finally, the turbine stops generation when a certain limit of maximum speed is reached
(cut-out speed, typically around ~25 m/s). However, computing the total power output
for a large set of turbines is a cumbersome exercise. On one hand, each turbine model
would have a different power curve and, on the other hand, a turbine power model should
have as an input the wind speed at the precise coordinates and height of each turbine
to be accurate. Hence, a simplified approximation is used in this paper where the wind
speed shape for a representative location is used as a proxy for wind generation pattern.
Secondly, the computation of DTW in time series is an optimization problem that needs
large computational resources and time to be executed. A simplified approach is proposed
where only the distance between load shape medoids of each customer and the wind speed
shape medoids is computed. Therefore, the total distance between a customer load shape
and the wind speed shape would be a linear function of the distance between load shape
and wind speed shape medoids, computed using the same 2-step k-medoids partitioning
approach described above, and applied to the normalized load shape of each customer.

2.4. Block 4: Customer Features and DR Applications

Each customer is finally represented by a set of four easy-to-interpret features, two
of them based on the vector of energy use (i.e., daily mean of hourly energy use and
energy-temperature correlation) and two based on the normalized load shape (i.e., load
shape entropy and distance to wind). These features are formally defined as follows:

• Daily mean of hourly energy use (in kWh): a large hourly energy use may be inter-
preted as larger potential impact in DR applications:

l
i
=

∑di
j=1 l

i
j

di
(1)
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where, l
i

is the daily mean average for customer i, l
i
j is the average hourly energy for

customer i and day j, and di is the number of days available in the time series for
customer i, typically 365.

• Energy–temperature correlation (Pearson correlation factor between daily mean en-
ergy and mean temperature): a strong negative correlation may indicate a larger
capability to control temperature-sensitive equipment and therefore have short-term
impact on DR applications:

ρ
Ei ,Ti=

cov(Ei ,Ti)
σEi

σTi

(2)

where Ei is the vector of average daily energy and Ti the vector of average daily
temperature applicable to customer i.

• Load shape entropy: larger entropy means more variability, positive for DR potential.

Entropyi = −
mT

∑
j=1

f i
j × log2 f i

j (3)

where f i
j is the relative frequency of each representative k-medoid for customer i and

medoid j and mT the total number of medoids representatives resulting from the
2-step clustering.

• Distance to wind: being closer to wind generation patterns means easier impact in
accommodating load shape to renewable energy source (RES) generation.

Dwindi =
∑di

j=1 DTW
(
mj, wj

)
di

(4)

where DTW
(
mj, wj

)
is the dynamic time warping distance between the representative

load medoid corresponding to day j and customer i and the corresponding wind
speed medoid for day j.

3. Results

The widely used Irish CER dataset has been chosen to illustrate the application of
the proposed methodology [42]. This dataset has three main advantages: (1) it is publicly
available and therefore results can be replicated; (2) the data are of high quality and
significant size; and (3) it contains a detailed customer survey that can be used as ground
truth. Furthermore, weather data can be easily obtained from the Irish Meteorological
Service historical data service [43]. This section is organized according to the methodology
described in the previous section, addressing each of the blocks in turn.

3.1. Block 1: Data Analysis

The Irish CER smart meter trial contains three different tables: the half-hourly con-
sumption data per customer for residential, SME and other customers, the allocation file,
containing customer metadata (i.e., type of customer, tariff, trial group codes) and a pre-
trial survey where each customer provides answers to questions related to socioeconomic
profile, premises type, equipment, and attitude towards energy use. After data extraction
and preprocessing, the half-hourly consumption file was filtered to retain 4224 customers
containing records for the year 2010. Next, the filtered dataset was treated for missing val-
ues. The data quality is very high: ~86% of the customers has a complete 2010 half-hourly
time series energy use measurement, ~13% miss only one day worth of data, and ~1% are
missing two or three days. The time series of the ~14% of customers with three or less
days missing has been completed using Seasonally Splitted Missing Value Imputation [44].
Then, as described in the methodology section, the energy consumption dataset has been
split between amount of energy used, measured by daily half-hourly average usage and
energy use shape, and is represented by the half-hourly times series normalized by the
daily energy mean.
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Figure 3 shows the histogram of the half-hourly daily mean average values and their
range by quarter and day of the week. The histogram of half-hourly daily mean averages
shows a clear unimodal distribution with no signs of differentiated segments of customers.
The visual analysis of the range per day of week and quarter indicates that there is no
significant difference in total energy use between days of the week and that there is clear
difference between the fall/winter period (quarters 1 and 4) and the spring/summer period
(quarters 2 and 3).
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Figure 4 shows average values for the whole dataset of daily-normalized energy
use shape by both day of the week and quarter of the year. Two clusters or typical days
shape emerge from each of the figures, differentiated by the hour and intensity of the
morning, afternoon and evening peaks, and driven by changing customer habits during
weekend/weekdays and summer/winter months. Weekends show a clear different pattern
than weekdays, with a later and larger morning peak and a relatively lower evening peak,
which starts changing trend by Friday. Fall/winter months show a later and slightly shorter
morning peak and a much larger and earlier evening peak.
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Irish CER smart meters trial conducted surveys before and after the deployment of the
meters to characterize the customer base of the trial and assess its impact on attitudes to-
wards different energy efficiency and conservation initiatives. The pretrial survey contains
a total of 143 questions covering aspects such as dwelling features, electrical equipment
for heating and cooking, number of electrical and entertainment appliances and attitudes
towards energy use. Our research focuses on the impact of electrical equipment in energy
use and shape patterns. The existence of specific equipment is particularly important in
assessing the potential to participate in DR programs by a given customer. Therefore,
the answers to five questions have been extracted and combined with energy use data,
covering different types of equipment: electrical central heating, plug-in heaters, heat water
immersion, heat water instantaneous heaters and cookers (for all answers, “1” means that
the customers have the electrical equipment and “0” that they do not have it or is a different
energy source). The combined dataset of half-hourly energy use and electrical equipment
existence from survey has a total of 3487 customers with the following percentages of
customers having a specific electrical equipment according to the survey results: electrical
central heating: 4.2%; plug-in heaters: 3.5%; heat water immersion: 55.9%, heat water
instantaneous heater: 1.5% and electrical cooker: 69.7%. Therefore, most of the customers
use another type of energy source for heating but, on the other hand, many customers use
electricity for cooking and water heating of the immersion type. Figure 5 illustrates the
impact of electrical equipment ownership on both daily energy use and demand shape
pattern for the most present appliances: water heating immersion and electrical cookers.
The impact on both energy metrics is distinct but not drastic. Ownership of electrical
appliances for water heating and cooking increases the total energy consumed on average,
but the large overlapping in energy density curves implies that energy use cannot by
itself segment the customer according to their electrical equipment ownership. A similar
conclusion can be drawn by analyzing the impact of electrical equipment ownership on
demand shape patterns: although the electrical equipment, the cooker in particular, do
have a distinct impact on the intensity and the time of morning, afternoon and evening
peaks, the magnitude of this impact is relatively mild.
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To account for the impact of weather conditions on energy demand, historical data
of hourly temperature and wind speed has been extracted from the Irish Meteorological
Service historical data service [43]. Since the customer metadata of the Irish CER smart
meter dataset does not contain the geolocation of customers under trial, the Dublin airport
weather station has been chosen as the reference for weather conditions for all customers in
the dataset. Figure 6 illustrates the effect of temperature in mean daily energy use and com-
pares the shape pattern of hourly energy demand and wind speed. Figure 6a plots the mean
hourly demand per day against mean daily temperature and fits a LOESS model curve to
the data, showing a typical winter-side U curve with increasing impact of the temperature
starting at ~15 ◦C and no summer effect. The observation of Figures 4 and 5 seems to
indicate that the salient differences in load shape between winter/fall and summer/spring
seasons may have more to do with customer habits than the impact of electrical equipment.
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Figure 6. Weather conditions in relation to energy demand and shape patterns. (a) Mean hourly daily demand for all
customers in kWh versus mean daily temperature. (b) Daily mean normalized hourly values of hourly energy demand and
hourly wind speed for each hour of the day.

Figure 5b illustrates a paradigmatic difference in the variability between load shape
and wind speed shape: whereas average wind speed varies within a closer range than
mean load shape, total variability for each hour is much larger in wind speed than load,
the former oscillating between 0 and ~3 units of normalized hourly values. Furthermore,
it is relevant to note that, on average, wind generation would be close to demand in
the morning and afternoon hours but lower in the evening hours and larger in the early
morning. These average trends illustrate well the issue of residual demand variability (i.e.,
demand net of renewable generation), and, hence, the higher value of DR in the context of
high penetration of wind resources.

3.2. Block 2: Two-Stage Clustering

In the first clustering step, each customer time series is broken down in daily time
series and the dimensionality of each day is reduced by applying and comparing three
times series representation techniques: PAA, SAX and clipping. To illustrate the application
of the methodology, Figures 7 and 8 show the application of these techniques to the load
curve of one customer of the dataset, ID 1260, for 1 January 2010.
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Figure 8. Application of PAA and SAX time series representation to the scaled mean daily normalized
half-hourly demand for customer ID 1260 for 1 January 2010.

Given that the average mean daily normalized consumption over one day is equal
to 1, the application of the clipping technique is straightforward: normalized half-hourly
consumption over 1 receives a 1 mark and those below 1 receive a 0 mark. This customer
day is then represented by eight features built from the clipping series: max. from run
lengths of ones (7 in this case), sum of run lengths of ones (18 in this case), max. from
run lengths of zeros (17 in this case), crossings (or length of run length encoding (RLE)
encoding minus one, 10 in this case), number of first zeros (17 in this case), number of last
zeros (5 in this case), number of first ones (0 in this case) and number of last ones (0 in this
case). These easy-to-interpret features are then used to cluster customer-days according
to similarity. The PAA and SAX representations need the definition of two parameters:
the number of subdivisions for the day and the number of levels of representation of the
demand. In our case, each day is divided into six periods (4 h each) and five levels of
representation (letters “a” to “e”). After scaling the data to a standard normal distribution,
the customer-day time series is represented by the average for each period in the PAA
representation and by the corresponding letter in SAX.
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Comparison of results of the first clustering phase with automatic stop criterion for
the whole dataset of 4224 customer, and the three time series representation techniques
is summarized in Table 1. Features on clipping-based reduction produces considerably
better results than PAA and SAX both in terms of average silhouette values, percentage of
negative silhouette and computation time. Computation time for the clipping technique
is roughly half of the time for PAA and SAX. It is interesting to note the efficiency of the
methodology in terms of computation time: the clipping technique produces reasonably
internal clustering validity metrics with an average computation time of ~0.05 s per cus-
tomer (i.e., 240 s for 4224 customers). In terms of average number of clusters, clipping has
slighter lower mean and standard deviation than PAA and SAX, but in the same order of
magnitude of mean ~ 2.5 clusters per customer, and a standard deviation of ~1. SAX offers
the best representativity in terms of number of clusters, but with a significantly lower mean
average silhouette and higher percentage of negative silhouette values.

Table 1. Comparative results of first clustering for three dimensionality reduction techniques.

Technique Time to Reduce
and Cluster (s)

Mean of Average
Silhouette

Mean of % of
Negative Silhouette

Mean of Number
of Clusters

Standard Dev.
Number of

Clusters

PAA 536 0.29 5.91 2.49 0.98
SAX 629 0.18 9.98 2.63 1.08

Clipping 240 0.35 3.42 2.46 0.76

In the second clustering phase, the medoids of each customer are extracted and a
new k-medoids clustering is undertaken in the population of 10,560 customer medoids,
after the representative time series medoids have been reduced using the same techniques
as in phase one of clustering. Figure 9 compares the average silhouette values for each
dimensionality reduction technique and different number of clusters. Again, clipping
shows a clearly better clustering performance than the PAA and SAX alternatives. Average
silhouette reaches a plateau of ~0.4 for 3–4 clusters for clipping reduced representative
medoids to drop and stabilize at around ~0.3 for five clusters and above. Both PAA and
SAX stabilize at an average silhouette of ~0.2 for number of clusters of four and beyond,
with a peak at ~0.3, and only two clusters in the case of PAA. In summary, clipping provides
acceptable clustering results for both phases in terms of internal validation metrics and a
better alternative than PAA and SAX as a dimensionality reduction technique.
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In addition to the comparison between time series representation techniques in terms
of internal validation metrics, an external validation comparison has been undertaken
using survey data as a ground truth. Each customer is represented by the relative frequency
of each cluster and this feature is used to build univariate logistic regression models to
predict the probability of existence of a given piece of equipment in each customer. In
mathematical notation, logit(p) = log p

1−p = β0 + βi × fi, where p is the probability of a
given customer to have the equipment, fi the relative frequency of cluster i, and βi the cor-
responding logistic regression coefficient. Table 2 shows the positive regression coefficients
for each paired equipment–technique model, which are statistically representative with a
p-value < 0.005. For all techniques, the number of clusters has been set to four in order to
make the regression coefficients comparable between techniques. The interpretation of the
positive logistic regression coefficients with p-value below 0.05 is that a higher proportion
of cluster i in a given customer means a higher probability of the customer having this
piece of equipment.

Table 2. Comparative results for equipment detection using logistic regression coefficients.

Equipment PAA SAX Clipping

HeatingE_central - - -
HeatingE_plugin β2 = 0.88 β1 = 1.05 β3 = 1.95

Water_HeatingE_inmersion - β3 = 0.31 -
Water_HeatingE_instant - - -

Cooker_type β4 = 0.92 β3 = 0.93 β2 = 0.75

Three main insights can be drawn from Table 2. Firstly, the clustering methodology
is effective in detecting the presence of certain equipment in the final clients, as positive
regression coefficients with high statistical representativity are found for the three rep-
resentation techniques. Secondly, only the equipment that has a distinctive impact on
normalized load shapes can be captured by the regression model. In this case, only the
plug-in electrical heating and the electrical cooker seem to have a relatively sufficient
impact on load curves to be detected. Thirdly, the results among the three techniques are
quite similar and consistent, detecting the same pieces of equipment (with the exemption of
SAX being the only one to detect the water heating immersion, albeit with a small value of
regression coefficient) and with absolute values of regression coefficient of a similar order of
magnitude. Again, the clipping technique is faring well in the comparison, detecting both
the electrical heating and the electrical cooker, the first one with a regression coefficient
value that is double of the SAX and PAA ones.

3.3. Block 3: Computation of Distance to Wind

The next step of the methodology, the computation of the distance between load
medoids representatives and wind speed medoids representatives, is undertaken using the
features clipping methodology for dimensionality reduction for both the load and wind
speed shape. Figure 10a shows the four medoids that represent the full customer-day
population resulting from the k-medoids clustering to the set of customer representatives.
As expected, each cluster represents customer-days that have energy use peaks at different
times of the day and with different intensity. Cluster 1, with ~19% of the customer repre-
sentatives, shows a moderate peak in the early morning and a large peak in the evening.
Cluster 2, with ~55% of representatives, is marked by a relative higher peak in the early
afternoon. Cluster 3, with ~6% of representatives, has the flattest load shape profile, with a
relative higher peak in the early morning. Finally, cluster 4, with ~20% of representatives,
shows three distinctive peaks of a similar order of magnitude in the early morning, late
morning and late afternoon. Similarly, Figure 10b shows the profile of the wind speed time
series representatives k-medoids clustering results. The k-medoids clustering of the daily
normalized wind speed time series generates three clusters with an average silhouette of
0.26% and 5.5% of negative silhouette values. Each cluster represents a wind speed daily
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pattern. Cluster 1, representing ~40% of the days, has the relative peak early afternoon.
Cluster 2, representing ~52% of the days, has a similar peak early afternoon, but higher
speeds during night hours. Finally, cluster 3, with 8% of representation, shows the relative
peak in the early morning and decreases until the later hours of the night.
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Figure 10. Extraction of load shape and wind medoids representatives. (a) Four medoid representatives for load shape.
(b) Three medoid representatives for wind speed shape.

The distance DTW distance algorithm, which computes the distance between two time
series by stretching/compressing them locally to make them as similar as possible, has
been used to compute the similarity matrix between the set of load shape and wind speed
medoids representatives. Figure 11a shows as an example of the alignment between the
medoid representing load shape cluster 1 (query or test) and the medoid representing wind
speed cluster 1 (reference). The distance between the two time series is equal to the sum of
the (unnormalized) Euclidean distance between the aligned points of each time series.
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The distance between load and wind speed shape patterns is a per unit metric, as
both load and wind shape are per unit, daily-mean normalized values, which by definition
fulfill the following condition:

24

∑
h=1

li,h =
24

∑
h=1

wj,h = 24 (5)

where li is the i-th load medoid vector, and wj is the j-th wind speed medoid vector, both
in a 24-h format. Figure 10b shows the DTW distance between each of the load shape
and wind speed medoids in the form of a heatmap. This type of representation allows
to graphically assess the relative distance of the different load patterns as defined by
the k-medoid clustering algorithm and the wind speed patterns. For instance, it can be
noted that load shape cluster 2, the more representative of the population with ~55%,
is the cluster with a larger distance to the three wind speed k-medoid representatives,
whereas load shape cluster 3, representative of ~6% of customer-days, is the closest to wind
speed patterns. The heatmap representation allows also for a relative distance graphical
assessment among the wind speed and load shape medoids, as illustrated by the row
and column dendrograms. Load shape cluster 3 and wind speed cluster 3 are the most
distinctive representatives when compared to the other clusters of their same group.

3.4. Block 4: Customer Features and DR Applications

Each customer is then represented by four features, two derived from the energy
consumed (daily average of hourly energy use and daily correlation with temperature) and
two derived from the shape of this consumption (entropy of medoids representatives and
distance to wind). Additionally, the load shape of each customer may also be represented
by the relative frequency of each of the k-medoid representatives of the second phase of
clustering. This feature’s representation can then be used for different applications related
to the selection of customers for DR programs by utilities. In this section, three applications
are illustrated: visual representation of DR potential per customer, clustering of customers
according to DR potential and detection of electrical equipment.

Figure 12 shows the first application; the visual representation of the DR potential
in one single graph using the four features. This visual representation is inspired by [33],
where DR potential is visualized in a 2-D representation with a measure of flexibility
(entropy of cluster vector) in the x-axis, and energy use in the y-axis, both variables in
percentiles. Customers with higher potential would be in the upper-right quadrant of the
figure. Similarly, a 2-D representation is used in our case where customers with higher DR
potential are in the upper-right quadrant and energy use is also represented in the y-axis.
However, our representation uses an inverse scale of the distance to wind in the x-axis,
meaning that customers with higher total consumption and closest to wind patterns in
shape would have greater DR potential. The graphic representation is further enriched by
showcasing both the correlation to temperature with color and entropy with size for each
customer, in such a way that customer prioritization can be further undertaken for a given
energy vs. distance-to-wind quadrant. Furthermore, both absolute values and percentiles
are represented to facilitate the assessment of DR potential for each customer.

The second application, customer segmentation according to DR potential, is under-
taken using a simple but effective k-means clustering algorithm. After min-max normal-
ization of the four features, the number of clusters is determined using both the elbow
and gaps-stats methods, resulting on an optimal number of five clusters. The ratio of
between-clusters sum-of-squares and total sum-of-squares is 65%, suggesting an acceptable
clustering quality. From the visual representation of the density function for each feature
and cluster shown in Figure 13, a characterization of the five clusters according to DR
potential can be attempted. The selection of segments for DR programs would depend
on the specific feature to be prioritized. If distance to wind is to be emphasized, cluster 5
(173 customers, ~4% of population) is the only segment differentiating with a significant
lower distance to wind. However, it shows the lowest hourly energy use and average
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values for entropy and temperature correlation. If flexibility (measured as higher entropy)
is to be highlighted, cluster 2 (584 customers, ~14% of population) offers a clear differentia-
tion, together with relative larger energy use and average temperature correlation. Cluster
4 (1253 customers, ~30% of population) offers the largest potential in the combination of
energy use and correlation to temperature together with average flexibility. Clusters 1
(1047 customers, ~25% of population) and 3 (1167 customers, ~28% of population) are the
ones that are less interesting for DR applications, having average energy use values while
showing very low flexibility in the case of cluster 3, and low correlation with temperature
in the case of cluster 1.
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The third application is the detection of electrical equipment using the relative fre-
quency of each load-shape cluster. A similar approach to that followed in the external
validation of the second phase of load shape clustering, summarized in Table 2, is carried
out. Table 3 completes the analysis for the two most significant pieces of equipment,
plug-in electrical heating and cooker type, adding mean hourly energy and correlation
to temperature as explicative variables. Both positive and negative beta coefficients are
shown, but only when they are statistically significant (i.e., corresponding p-values below
0.005). The probability of a customer having a plug-in electrical heater is larger when the
correlation to decreasing temperatures is higher and when the proportion of cluster 3 is
higher. Similarly, the probability of having an electrical cooker is higher when the energy
use and the proportion of cluster 2 are larger.

Table 3. β logistic regression coefficients for univariate models and p-value < 0.005.

Equipment Hourly_Energy_Mean Temp_Cor Cluster_Pro1 Cluster_Pro2 Cluster_Pro3 Cluster_Pro4

HeatingE_plugin - −3.06 - - 1.95 -
Cooker_type 1.28 - −1.48 0.75 - −0.42

To assess the prediction power of the generalized linear model, a generalized linear
model is defined by combining the effect of the two statistically relevant explanatory
variables on the probability for a given customer to have the electrical equipment target:

log
pplug−in

1− pplug−in
= β0 + β1 × temp_cor + β2 × cluster_pro3 (6)

The results of the two-variable generalized linear model show that both explana-
tory variables are statistically relevant (p-values well below 0.001) with β1 = −3.26 and
β2 = 2.74. However, the total explanatory power of the model is weak. Residual deviance
is ~94% of total deviance, meaning that only ~6% of the variance of the target variable can
be explained by the two explanatory variables. Therefore, it can be concluded that, for
this specific dataset, customers with a higher negative correlation with temperature and a
higher proportion of customer-day k-medoid number 3 are more likely to have electrical
heating plug-in equipment, but the explanatory power of these two variables is not good
enough to build a reliable prediction model. This result can be explained by the relatively
weak impact of electrical equipment in normalized load patterns, as illustrated in Figure 5.

4. Discussion

The proposed methodology and its application on the Irish smart meters trial dataset
contribute to new knowledge along three main axes: the effectiveness of the times series
clustering approach, the definition of customer features representation adapted to DR in
the context of high penetration of renewable energy, and the design of DR applications for
customer selection.

Time complexity reduction has been achieved by a combination of two techniques:
dimensionality reduction and a two-stage clustering approach. The use of the least compu-
tational demanding dimensionality reduction techniques, such as PAA, SAX and features-
based clipping, allow for an effective application of the methodology in a relatively large
dataset using a laptop. Specifically, clipping produces better internal validity clustering
scores, while taking half the time of the rest of the techniques. Hence, feature-based clip-
ping has been used, for the first time, to the knowledge of the authors, end-to-end to cluster
the normalized smart meters time series. Similarly, the first of the two-stage k-medoids
clustering approach, i.e., the application of the PAM algorithm to the reduced time series
of each customer separately, allows for a drastic reduction in the time complexity by a
factor proportional to the square of the number of customers. This combined approach
reduces the 48 time-dimensions of each customer-day to eight features, hence a reduction
factor of six, and undertakes the first phase clustering of the full dataset in only ~0.05 s per
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customer. The effectiveness in managing time complexity does not preclude a performant
clustering result as measured by the internal validity metric of average silhouette and the
external validation metric using the ground truth contained in surveys. The features-based
clipping approach achieved an average silhouette of ~0.4 in the second clustering phase,
with less than 1% of negative silhouette values and proving to be effective in detecting
electrical equipment from survey replies using a logistic regression approach. The two-
stage clustering on a customer-days matrix is similar to the adaptive k-means implemented
in [21] and the LSD approach in [32]. Yet, it is also different on several accounts: by using
an automatic stop criterion to determine the number of clusters for each customer without
the definition of a threshold, and by using medoids as centroids instead of k-means, as in
previous work [32,33].

The set of customer features defined, two relating to absolute energy use and two
relating to load-shape patterns, provides an innovative framework for assessing cus-
tomer’s DR potential. Daily energy use, or similar metrics accounting for the abso-
lute value of energy use regardless of time-shape patterns, has been widely used as a
representative customer feature, often broken down in typical periods of the day (i.e.,
night/morning/afternoon/evening) [20,21,45,46]. The correlation between energy use
and temperature has also been extensively used in the literature [18,19,21]. Entropy as a
measure of variability has also been previously used [16,27,30]. In [33], the segmentation
of customers regarding potential for DR is carried out in terms of quantity—total daily
energy—and variability, measured as entropy of the number of encoded load shapes per
customer. The key contribution of the methodology is taking explicitly into account the
impact of renewable energy generation patterns. DR potential has often been measured
in terms of contribution to the system peak for specific customers [47,48]. Instead, our
proposal is to use a metric better adapted to the needs of systems with high penetration of
renewables, distance to wind, measuring the similarity between the customer load pattern
and wind speed, a proxy for wind generation patterns. The approach has been proven to
be successful using the DTW distance, overcoming the large computing demands of DTW
distance by applying the raw data of only the medoids of both customer-day load profiles
and wind speed daily curves.

These four customer features, derived both from the amount of energy used and
its load-shape pattern, are the base for designing different applications related to DR
program implementation in the context of a high penetration of renewable resources. In
this paper we have illustrated three of them: the visualization of the customers in 2-D space
to select candidates for DR programs (inspired by [33] but adding new variables and visual
features), the clustering of customers according to their potential for DR applications using
k-means and, for the first time, to the knowledge of the authors, the use of frequency of
representatives as a predictor of energy equipment using logistic regression.

5. Conclusions

This paper has successfully addressed the two-fold research goal of designing and
implementing a computationally efficient smart meters time series clustering methodology
that takes explicitly into account renewable energy generation patterns. The two-stage
clustering approach is also scalable to larger datasets. Transforming the whole dataset of
customer-days into a linear combination of each customer’s dataset makes the first stage of
clustering scalable to much larger datasets than a few thousand customers. Additionally,
several additional techniques could be used to make the second clustering phase scal-
able, such as the application fast k-medoids algorithms CLARA or CLARANS for large
datasets [49], or the use of distributed computing techniques [50]. Further research could
test the scalability of the methodology in datasets one order of magnitude larger than the
one used in this paper (+100,000 customers with at least one year’s worth of hourly smart
meters data).
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A novelty of this paper that could also be further developed in future research is
the use of time series clustering features as predictors of ground truth embedded in
customer surveys. Whereas the combination of weather data with energy use profiles is
relatively common in the literature, the simultaneous use of smart meters time series data,
locational weather and customer surveys is not. The use of logistic regression to determine
the likelihood of the existence of electrical equipment using time series representative’s
frequency as predictors could be extended to other customer features such as socioeconomic
status, type of premises or attitude towards energy conservation. Furthermore, it would be
insightful to apply this methodology to other smart meters datasets containing customers
with a more sophisticated use of equipment such as electrical vehicles, storage, heat pumps
or distributed solar [16].

An additional line of further research would be the adaptation of the methodology
to the actual structure of demand flexibility services as they are being defined and imple-
mented in advanced electricity markets [51]. Standard dimensionality reduction techniques
such as clipping, SAX or PAA could be compared with the definition of expert-based mea-
sures using developing flexibility metrics such as equivalent ramping capability (ERC) or
ramping availability rate (RAR). A far-fetching research approach would be to address the
short-term nature of ramp or energy flexibility products. Whereas the current approach of
considering a one-year long time series dataset may be well suited for structural, long-term
flexibility products such as capacity markets, a data streaming approach would be neces-
sary to ascertain the DR potential and value in real time markets (e.g., 5 min frequency),
intra-day (e.g., 1 h frequency) or daily (e.g., 24 h ahead) flexibility markets.
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Nomenclature

AI Artificial Intelligence
AMI Advanced Metering Infrastructure
DMS Demand Side Management
DR Demand Response
DTW Dynamic Time Warping
HC Hierarchical Clustering
LSD Load Shape Dictionary
ML Machine Learning
PAA Piecewise Aggregate Approximation
PAM Partition Around Medoids
PCA Principal Component Analysis
SAX Symbolic Aggregate Approximation
SOM Self-Organized Maps
TOU Time Of Use

Appendix A

Mathematical Notation for the Two-Step k-Medoids Clustering Approach

The original energy use dataset is organized in a matrix format where, for each
customer, each row represents a day and each column a daily time division of the day:

yi
j =

{
li
j,1, . . . , li

j,h

}
, i ∈ N{1, . . . , n}, j ∈ N{1, . . . , di}

where n ∈ N is the number of customers in the dataset, di ∈ N is the number of days
with smart meter data for customer i (typically 365, one whole year), and h ∈ N is the
number of time periods per day (i.e., 24 for hourly data, 48 for half-hourly and 96 for 15′

frequency data).
As a second step, each load-shape for customer i and day j is normalized by dividing

each unit of energy use by the average of the day:

yi
j = {

li
j,1

l
i
j

, . . . ,
li
j,h

l
i
j

}

where l
i
j =

∑h
p=1 li

j,p
h , is the mean daily energy for customer i and day j.

Algorithm A1 is applied to each customer normalized load shape to obtain a trans-
formed dataset and to compute the distance matrix between the customer-days elements.

Algorithm A1 Time Series Transformation and Distance Matrix Computation

Require: Normalized load-shape time series for customer s, ys =
{

ys
1, . . . , ys

ds

}T
∈ Nds×h

Set clock
Perform time series representation transformation

f(ys)→ ts
=
{

ts
1, . . . , ts

ds

}T
∈ Nds× f , f < h

Min-max normalize of time series representation features
Compute distance matrix for ds customer-days normalized representation
Stop clock
Compute time_to_distance
Return time_to_distance, distance_matrix

Algorithm A2, a k-medoids clustering with automatic stop criteria, is applied to the
customer-day elements of each customer in the dataset. The stop criterion is based on the
computation of the average silhouette for each iteration of increasing number of clusters:
the algorithm stops when the average silhouette decreases with the number of clusters.
The medoids of each customer-day clustering are the representatives of each one of the
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customers. The sample size is radically reduced from ∑n
i=1 di to ∑n

i=1 mi, where mi is the
number of medoids for customer i and mi � di.

Algorithm A2 k-Medoid Clustering with Automatic Stop Criterion for Single Customer

Require: Distance matrix for ds customer-day items for customer s, Max number of clusters
(max.k)
Set clock
Compute k-medoids clustering with 1 cluster
Set average.silhouette[1 cluster] equal to 0
For k in 2 to max.k do
Compute k-medoids clustering with k clusters
If average.silhouette[k clusters] < average.silhouette[k − 1 clusters] then stop
Stop clock
Compute time_to_cluster
If k = k.max then number_of_clusters C = k else number_of_clusters C = k − 1
Return time_to_cluster, number_of_clusters, average_silhouette[C clusters],
percentage_negative_silhouette[C clusters], medoids_index[C clusters], cluster_vector[C clusters]

Finally, the same k-medoids algorithm is used with the set of population representa-

tives medoids
{

r1
1, . . . , rn

mn

}T
∈ N(∑n

i=1 mi)× f . As a result of this second clustering step, a

reduced set of mT medoids {r1, . . . , rmT}
T ∈ NmT× f representatives for the whole popula-

tion is obtained, where mT � ∑n
i=1 mi.
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