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Abstract: Photogrammetry using unmanned aerial vehicles has become very popular and is already
commonly used. The most frequent photogrammetry products are an orthoimage, digital terrain
model and a 3D object model. When executing measurement flights, it may happen that there are
unsuitable lighting conditions, and the flight itself is fast and not very stable. As a result, noise and
blur appear on the images, and the images themselves can have too low of a resolution to satisfy
the quality requirements for a photogrammetric product. In such cases, the obtained images are
useless or will significantly reduce the quality of the end-product of low-level photogrammetry. A
new polymodal method of improving measurement image quality has been proposed to avoid such
issues. The method discussed in this article removes degrading factors from the images and, as a
consequence, improves the geometric and interpretative quality of a photogrammetric product. The
author analyzed 17 various image degradation cases, developed 34 models based on degraded and
recovered images, and conducted an objective analysis of the quality of the recovered images and
models. As evidenced, the result was a significant improvement in the interpretative quality of the
images themselves and a better geometry model.

Keywords: UAV; neural networks; deblur; denoise; super resolution; neural network

1. Introduction

Photogrammetry using unmanned aerial vehicles, understood to be a tool for taking
measurements, combines the possibility of ground, air and even suborbital photogram-
metric measurements [1], at the same time being a low-cost competition for conventional
aerial photogrammetry or satellite observation. The well-established photogrammetric
techniques and technologies, already used with classic aircraft, were quickly adapted
to low-level solutions with unmanned aerial vehicles (UAVs). Acquiring data from a
low level using unmanned aerial vehicles—although in principle the same as the pro-
cess in the case of classic aerial photogrammetry—due to obvious equipment differences
and flight possibilities, generates new problems, encountered only in the event of UAV
photogrammetry [2].

Commercial UAVs used in photogrammetry have a minor maximum take-off mass
(MTOM) up to 25 kg, although the most commonly used models weigh up to 5 kg. Few
possibilities of transporting additional loads and limitations on UAVs mass enforce the need
to reduce the weight of all components carried by the vehicle. Miniaturization involves,
among others, global navigation satellite system (GNSS) receivers, inertial units (INS), and
optoelectronic devices (visible light, thermal imaging and multispectral cameras), often
making these devices less sophisticated and accurate. Whereas, regarding digital cameras
used on UAVs, they are usually small structures. Commercial UAVs usually use integrated
cameras with a sensor from 1/2.3 ”’ (DJI Mavic Pro) through to 1’ (DJI Mavic Pro 2, DJI
Phantom 4 Pro) to APS-C (DJI Zenmuse X7) (Shenzhen DJI Sciences and Technologies Ltd.,
Shenzhen, China). Such structures do not utilize such image compensation systems used
in air photogrammetry such as time-delayed integration (TDI) [3,4], bright lenses with
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constant internal orientation parameters and low distortion. Such a situation may lead to a
number of errors in the data acquisition process, for example, blur and noise, which affects
the quality of photogrammetric processing.

Nowadays, with the use of UAVs for measurement during various construction
projects and monitoring natural environment phenomena so frequently, data acquisition
can sometimes be forced by the schedule of a given project or the uniqueness of an in-
dividual natural phenomenon. In such cases, there are often no suitable measurement
conditions, there are insufficient lighting conditions, and there is not much time for the
UAV flight itself. Such a forced flight schedule and time can lead to image degradation.
Most frequently, the sensor ISO sensitivity is increased to avoid photo underexposure,
which generates higher noise visible in the images [5]. Limited time forces the operator to
fly at higher speeds, which combined with extended shutter speed generates blur. Such
phenomena are particularly intensified with small CMOS (Complementary Metal-Oxide-
Semiconductor) image sensors, frequently used in commercial UAVs. As a result, the
quality-related requirements of photogrammetric processing might not be satisfied.

The primary determinants of a photogrammetric process are its qualitative require-
ments. They are usually specified by the end user of the product and can take various
forms, e.g., specifications in a given contract, certain minimum official requirements, or
adopted standards. In this context, a photogrammetric process can be defined as a set of
interconnected activities, the execution of which is necessary to obtain a specific result—the
required image quality. The concept of quality has numerous definitions, with one of them
defining quality as a process adaptability to set requirements. Therefore, reaching the
required quality will strictly depend on the main factors of a given process. A factor is
defined as a certain process activity impacting quality. The quality of the photogrammetric
process can be built on three main pillars (Figure 1) [6]:

e  Procedures—every aspect of the image data collection process, which stem from the
execution method and its correctness. In other words, within this group, the following
process elements can be distinguished: applied flight plan (altitude, coverage, selected
flight path, and camera position), GNSS measurement accuracy, selected time of day,
scenery illumination quality, etc.;

e  Technical elements—all technical devices and their quality used to collect data, for
instance, technical capabilities and accuracy of the lenses, cameras, stabilization
systems, satellite navigation system, receivers, etc.;

e  Numerical methods—the capabilities and characteristics of the algorithms and mathe-
matical methods applied for data processing.

Photogrammetric process

Quality
—Requirement Procedural Technical Numerical Fulfi%lment
factors factors factors of requirements

Figure 1. Photogrammetric process quality pillars.

Each of the aforementioned factors significantly impacts image quality, and their skill-
ful balancing and matching to the existing measurement conditions and set requirements
enables reaching an assumed objective. Importantly, there is no single path to achieving
the required quality. For example, a required ground sampling distance (GPD) for a given
image distance can be obtained through changing UAVs’ flight altitude (procedural factor)
or changing a camera (technical factor), alternatively, by applying numerical methods for
increasing image resolution, e.g., super-resolution algorithm [7] (numerical factor).
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Several of the interesting, latest publications can be presented regarding procedural
factors. The authors of [8] discussed a new approach to planning a photogrammetric
mission, especially in terms of complex scenery. Complex sceneries are ones where the
terrain is of variable elevation, and with scattered terrain obstacles and objects. Such a
terrain requires an unconventional approach to flight planning. Traditional flight plans,
well-established and frequently used, are widely discussed by Eisenbeiss et al. in [9]. In
the works of [10,11], the authors discuss flight planning procedures to analyze changes in a
coastal zone. The authors of [12] address the issues associated with beach measurements
and show a highly interesting procedural factor. The recommended time of day for beach
measurements was early morning. Owing to a change in the time of day, the mean error
was reduced twofold. The issue related to the impact of sun position on image quality
has been further studied in [13]. Its authors also show the effect of forward overlap on
the root mean square error (RMSE), while indicating recommended values. The studies
in [14,15] present the impact of ground control point (GCP) arrangement and the number
of image accuracy.

Of course, the photogrammetric processing accuracy depends on the quality of used
equipment. In terms of technical factors, the greatest impact will be that of the quality and
type of UAV navigation, orientation and stability systems, camera type, shutter type and
lens type [16,17]. UAVs equipped with simple RTK (real-time kinematics) receivers are
becoming popular today. Using this navigation sensor significantly improves the accuracy
of direct determination of external orientation elements [18-21]. Some authors even state
that using RTK receivers on UAVs enables to withdraw from GCP development [22].
Vautherin et al. [23] showed how the shutter type affects the image quality. Global shutters
still have the dominance over cheaper rolling shutter solutions. Publications of [24-26]
describe the impact of GCP measurement accuracy and arrangement on image quality.

Numerical methods used in processing digital images significantly affect the quality
of a photogrammetric image [27]. For example, the issue of a nonmetric camera calibra-
tion algorithm and its impact on the geometry of photogrammetric processing [28-30].
The authors are constantly developing new calibration methods, reaching a significant
improvement in the geometry of the end images [31]. The authors of [32] presented a new
numerical way of improving the geometric quality of an image with single-strip blocks
using the Levenberg-Marquardt-Powell method. The article in [33] discusses a method for
eliminating the impact of weather conditions on the quality of photogrammetric images.
Some authors also suggest comprehensive solutions to this issue, noting that certain fac-
tors significantly impact the quality of a photogrammetric process, while designing and
constructing UAVs with their own calibration and processing algorithms [34]. Neural net-
works, especially the ones based on deep models, are widely used also in photogrammetry.
Such cases include, for example, the following methods of improving photogrammetric
processing quality [6,7,35-39].

Due to the data in contemporary photogrammetry having a fully digital form, the
algorithms and numerical methods used to process them will highly affect the end re-
sult [40]. It can be concluded that each numerical method used within the data processing
process, starting from processing single values of digital sensor pixels [41], through writ-
ing them on a memory card or transferring the data to a server, to a full range of digital
software-implemented photogrammetry methods will impact the final result. Therefore,
the technique is to optimally select and choose those that lead to the lowest quality losses.
In practice, software-implemented numerical methods are already properly selected and
the user has no influence on changing them, and only on certain processing parameters
instead. Furthermore, as observed in research [6], through the application of advanced
processing algorithms, modern photogrammetric software is remarkably resistant to image-
degrading factors and is able to generate the model, although the final result usually has
low geometric quality.

In photogrammetric practice, especially in the event of using UAVs in commercial
tasks, there may be a situation when the correct selection of procedural and technical
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factors is insufficient. As a result, achieving the required photogrammetric product quality
can be unfeasible. Consequently, the following approach can be formulated and expressed
as follows. In the event of UAV images containing typical quality-degrading elements, such
as noise, blur, and low resolution, one can apply an additional process to eliminate these
factors, hence improving the final quality of a photogrammetric product. This additional
process interferes only with the image data directly prior to their processing, therefore,
it does not change the elements of the software itself. The modern image restoration
methods were used to confirm this thesis and develop a new method of improving pho-
togrammetric image quality. These methods were also tested in terms of their impact
on image quality, processing, and final photogrammetric models. The outcome of the
conducted research was the development and presentation of new solutions in the field of
low-level photogrammetry:

e the impact of three basic image quality-degrading factors (noise, blur, and low resolu-
tion) on the processing in modern photogrammetry software and on the quality of
models based on such images was assessed,

e apolymodal algorithm for improving measurement image quality based on neural
networks and numerical methods was developed,

e image-degrading factors were eliminated, their quality was objectively assessed,
and basic photogrammetric products were developed. Models developed from the
recovered images, which are images after elimination of degradation factors, were
compared with a reference model.

2. Materials and Methods
2.1. Process Description

Figure 2 shows the applied research and data processing processes. The process
is commenced with a data acquisition block. Image data was collected using a typical
commercial UAV—DJI Mavic Pro. Unmodified images were used as reference data (ground
truth). Further copies of the images were subjected to noise, blur, and low-resolution
simulating degradation. One dataset with added noise, 8 sets with added blur, and 8 sets
with simultaneous blur and reduced resolution were generated. All these images were
used to create photogrammetric models. The next stage involved subjecting the modified
images to the polymodal method for improving image quality and once again used to
develop models. The research process involved comparing the image quality at individual
processing stages and evaluating the quality of models generated based on these images.
The study utilized various software and software environments, which are shown in
Figure 2.

2.2. Image Degradation Model

The objective of image restoration (IR) methods is to recover latent pure image x based
on its degraded form y, which can be expressed by a quotation:

y=D(x)+n (1)

where D is a noise-independent degradation operation, n represents the additive white
Gaussian noise (AWGN) of standard deviation ¢. This paper assumes that noise, blur,
and low resolution would degrade the measurement images and, consequently, lead to
degraded photogrammetric processing. Opposing operations, denoising, deblurring, and
super resolution, respectively, will improve the quality of degraded images and lead to
improved quality of photogrammetric processing. They can be classified as numerical
methods of improving photogrammetric processing quality, described in the Introduction.
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Figure 2. Research process.

For a typical blur, the degradation model can be expressed as follows:
Yo = xxk+n, @)

where x * k is a two-dimensional convolution of a pure image and the blur kernel k. More
information on blur in low-level photogrammetry can be found in [6]. Unlike the study
in [6], the authors of this paper used 8 different blur kernels (Figure 3) that were adopted
as in [42,43]. The proposed blur kernels, in connection with noise and low resolution led
to the development of degraded test data. The blur kernels presented here were chosen
to complement the kernels presented in the study [6], where very intense motion blur

was simulated.
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Figure 3. Blur kernels.

The degradation model for an image with reduced resolution is expressed by the
following equation:

e = (k) Lo ®)
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where | ; means simple image direct downsampling [44] at every s X s pixel, where s
is a downscaling factor, here s = 2. In the case of super-resolution algorithms, such an
image degradation model is deemed most correct [43,45]. More information on how low
resolution impacts a photogrammetric model, and on other models of increasing resolution,
can be found in [7].

Noise can be defined as a certain accidental and unwanted signal. In the context of
captured images, noises are an undesirable byproduct of image capture and recording,
and constitute certain redundant information. The noise source in digital photography is
primarily the image capturing, recording, and transmission channel. Outcomes of noise
include undesirable effects like artifacts, unreal generated individual pixels of random
quality, lines, emphasized object edges, etc. [46]. The authors of this paper adopted the
Gaussian model of additive noise. This noise, also called electronic noise, is generated
primarily as a result of signal amplification in the recording channel and directly in CCD
(Charge Coupled Device) and CMOS sensors, as a result of thermal atomic vibration [46].
It should be stressed that an elevated noise or distortion level in input photogrammetric
images can lead to significant degradation of the stereo-matching process. This applies to
all stereo-vision algorithms, however, to a varying extent [47]. Such a situation can directly
impact the developed model. Assuming that in Equation (1), D(x) will be the identity
function, hence, random variable n in Equation (3) adopts the Gaussian density function
pn(xp), which can be expressed as [47]:

1 (x=m)?

e 2 (4)

X =
pn(xp) S0
where x, means the value of a single image pixel x, y is the mean value 0 adopted herein,
and ¢ is the standard deviation, adopted herein in the range from 0 to 50.

2.3. Restoration

As mentioned in the Introduction, the development of a method for improving image
quality was based on already existing numerical methods, functioning in other fields. The
assumption also was that the method used in the research had to have the plug and play
capability [42,48-59], which means being functional without the need for user interference.
The plug-and-play methods used for image restoration problems can perform generic image
restoration independent of the degradation type. That capability is especially essential in
real applications, due to the fact that during UAV data acquisition, the degradation factors
can be very different and random. Moreover, a common feature of these methods is also
that they are relatively simple to use, which means that they can be easily implemented
within available environments or integrated with existing software, and that they are based
on well-known numerical methods.

To put it simply, all aforementioned methods solve Equation (1) in different ways.
One of the methods is Bayesian inference, therefore, Equation (1) can be solved using the
rule of maximum a posteriori probability (MAP), which can be formally expressed as [60]:

1
% = arg min=— [ly — D) + AR (x) ©)

where the solution minimizes an energy function of a data term 2}7 y— D(x)2 and a prior
term AR (x) with regularization parameter A. As stipulated by the source literature [60-63],
the methods for solving the Solution (5) can be divided into two groups, namely, model-
based methods and learning-based methods. They have their pros and cons. As a rule of
thumb, model-based methods are rather flexible and offer numerous tasks (D), but they
unfortunately need more time for calculation. On the other hand, learning-based methods
can provide results very quickly but require long learning time and are not as flexible.
Learning is limited to a specific task only (D). For photogrammetric purposes, the solution
presented herein was adopted directly after [60], therefore, denoising will be conducted
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using a learning-based model, while deblurring and resolution improvement through
model-based methods. Readers who want to further explore the issues of deblurring and
resolution improvement through learning-based models are welcome to study [6,7], where
learning-based methods were applied for photogrammetric purposes. As presented there,
the methods were very effective and were able to restore even very blurry images, and in
the case of super resolution, generate high-quality high resolution images, nevertheless, the
methods were applied only for one separate degradation problem. Moreover, the approach
presented in these works uses neural networks, that which require a long learning process,
and the large training dataset, that which is generally not problematic for one task only.
The polymodal image restoring method presented here should solve 3 degradation factors
at one time, therefore, what is required is a different methodology.

As already mentioned, denoising was conducted using a DRUNnet neural network [53].
This network is classified as a convolutional neural network (CNN) and is able to remove
noise of various levels, based on a single model. The backbone of DRUNnet is the well-
known U-Net network [64] and consists of four scales, with each of them having an
identity skip connection between 2 x 2 strided convolution (SConv) downscaling and 2 x 2
transposed convolution (TConv) upscaling operations. The number of channels in each
layer, from the first to the fourth is 64, 128, 256, and 512, respectively. The activation function
does not appear before the first and last convolutions, and before the SConv and TConv
layers. Additionally, every residual block has only one ReLU activation function. A neural
training database consists of 8794 images acquired from four following datasets [65-68].

Data term and prior term in Equation (5) can be decoupled using half quadratic
splitting (HQS) algorithm [69] as introduced in [53]. Therefore, the HQS introduces the z
auxiliary variable, resulting in:

N o1
X =arg mxmﬁlly—D(X)sz%R(Z) (6)
which can be solved by minimizing the following problem:
1
Lu(x,2) = 55y = DE) P+ AR () + £z — x| @)

where p is the penalty parameter. This problem can be solved through iterating two
sub-problems for x and z, whereas the other variables are fixed:

Xy = arg mxin”]/ —D)|* + uo? ||x -z
Iz — 2] + R(2) ®)

1
2(v/A7)

Therefore, the z; solution task comes down to finding a proximal point of z;_; and
usually has a closed-form solution dependent on D. For the deblurring task, assuming that
the function sport in Equation (2) is executed based on circular boundary conditions, a fast
solution to xy is:

Zj = arg min
X

:f4<ﬂﬂﬂw—MFW—U> o)

F(k)F (k) + ay
where F(-) and F~!(-) mean the Fast Fourier Transform (FFT) and inverse Fast Fourier
Transform, respectively, and F (-) describes the complex conjugate of F ().

The solution to zj for the super-resolution task, assuming that the function spot in
Equation (3) is executed based on circular boundary conditions, can be taken from [53,70]:

xk:fl(l(d—f(k)ea PR )) (10)
& (FOF®) ¥o+m
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d=F(k)F(yTs)+arF(zc1) (11)
where ® means a distinct block processing operator with element-wise multiplication.
Degraded images were subjected to the presented method. Therefore, the polymodal
method of improving the quality of photogrammetric images involves solving three sub-
problems, namely, denoising, deblurring, and super resolution.

2.4. Reference Data Acquisition

The reference images was acquired using a DJI Mavic Pro (Shenzhen DJI Sciences and
Technologies Ltd., China) UAV. The UAV is a typical representative of commercial aerial vehi-
cles, designed and intended mainly for amateur movie creators. The flexibility and trustwor-
thiness of these platforms were quickly appreciated by the photogrammetric community.

The flight was planned and executed as per a single grid [71] over an urban infras-
tructure fragment. The area of the test space is 0.192 km?, with the flight conducted at an
altitude of 100 m above ground level (AGL), with a longitudinal and transverse coverage of
75%. 129 images were taken and supplemented with metadata and an actual UAV position.
In addition, a photogrammetric network was established that consisted of 16 ground con-
trol points (GCPs), evenly arranged throughout the entire study area. The GCPs’ position
were measured with the GNSS RTK accurate satellite positioning method and determined
relative to the PL-2000 Polish state grid coordinate system and their altitude relative to the
quasigeoid. Commercial Agisoft Metashape ver. 1.6.5 (Agisoft LLC, St. Petersburg, Russia)
software was used to process the data. The results for the reference model, read from a
report generated by the software, are shown in Table 1 and the visualizations are presented
in Figure 4.

-19.9m

(@ (b)

Figure 4. Reference model: (a) Orthophoto map; (b) Digital surface model (DSM).
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Table 1. Accuracy-related data of the created reference model.

Flight Altitude RGroun.d Tie Points Projections Reprojection
esolution Error
105 m 3.05 cm/ pix 134,894 450,874 0.952 pix
Camera locations and error estimates
X error (m) Y error (m) Z error (m) XY error (m) Total error (m)
2.60381 2.36838 449193 3.51981 45.057
GCP locations and error estimates
X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)
8.8375 11.0233 2.59586 14.1285 14.365

2.5. Degraded Models

The aforementioned relationships were used to create research data. Image data
acquired during a reference flight were noised, blurred, and their resolution was reduced.
One dataset with added Gaussian noise of o = 15, 8 sets with added Gaussian noise of
0 = 7.65 and variable blur, and 8 sets with low resolution (s = 2) and variable blur. Blur
was changed for each set, indicating the blur kernel (Figure 3), so that a given kernel is
invariant for all images in the set. This enabled generating a total of 17 complete sets of
degraded images (Table 2).

Table 2. Reported survey data for the degraded dataset.

Flying Ground

Task Noise Blur Down 4 R Tie . Mean KP Reprojection
Name Level (0) Kernel (k)  Sample (s) Altitude Resoluflon Points Key Points Size (pix) Er]ror
(Reported) (m) (cm/pix)
Noise 15 0 0 102 3.06 157,662 167,865 6.2568 0.2629
Blur-1 7.65 1 0 105 3.05 150,367 160,282 5.1729 0.2814
Blur-2 7.65 2 0 105 3.05 146,891 155,971 52177 0.2811
Blur-3 7.65 3 0 105 3.05 143,123 151,473 5.3352 0.2782
Blur-4 7.65 4 0 104 3.05 141,878 149,727 5.5492 0.2726
Blur-5 7.65 5 0 104 3.05 142,278 150,383 5.6549 0.2729
Blur-6 7.65 6 0 104 3.05 142,454 150,469 5.7461 0.2697
Blur-7 7.65 7 0 104 3.05 142,545 150,834 5.6724 0.2710
Blur-8 7.65 8 0 104 3.05 140,163 147,779 5.8739 0.2654
Low-1 0 1 2 83.6 6.08 59,159 63,549 6.7321 0.1681
Low-2 0 2 2 97.4 6.07 120,169 126,437 2.8486 0.2284
Low-3 0 3 2 97.9 6.07 117,191 122,997 2.7376 0.2356
Low-4 0 4 2 98.2 6.07 113,919 119,591 2.6568 0.2412
Low-5 0 5 2 98 6.07 114,383 120,136 2.6863 0.2386
Low-6 0 6 2 97.8 6.07 114,190 119,815 2.6927 0.2396
Low-7 0 7 2 97.8 6.07 115,036 120,659 2.7055 0.2372
Low-8 0 8 2 98.1 6.07 111,672 117,269 2.6364 0.2422

Next, in accordance with the rules of the art, the same process of generating typical
low-ceiling photogrammetry products was conducted using the photogrammetric software.
This process followed the same procedure and processing settings as the ones applied
for generating reference products. The result was 17 products generated from degraded
images. Table 2 presents the basic data of the surveys based on degraded data. It should be
noted that a real flight altitude (ca. 100 m) was fixed, and the one shown in the table was
calculated by the software. Table 3 shows the root mean square error (RMSE) calculated
for control point locations. During the image processing process, the control points were
manually indicated by the operator for each dataset. The fact that it was possible to develop
models from all degraded data, and that the software selected for this task completed the
process without significant disturbance is noteworthy.
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Table 3. Control points’ RMSE for the degraded dataset. X—Easting, Y—Northing, Z—Altitude.

Task Name X Error (cm) Y Error (cm) Z Error (cm) Total Error Imag.e Pix
(cm) (pix)
Noise 8.4020 9.6224 2.3212 12.9835 5.0720
Blur-1 8.8888 10.7857 2.5800 14.2127 5.5300
Blur-2 8.8691 10.7893 2.5590 14.1993 5.5210
Blur-3 8.8499 10.7562 2.5367 14.1581 5.4990
Blur-4 8.7548 10.5660 2.4773 13.9436 5.4120
Blur-5 8.7308 10.5434 2.4603 13.9084 5.3920
Blur-6 8.6983 10.4072 2.4487 13.7829 5.3460
Blur-7 8.7131 10.4564 2.4522 13.8299 5.3630
Blur-8 8.6437 10.3358 2.4190 13.6892 5.3040
Low-1 3.1234 3.0810 0.9155 4.4818 2.9270
Low-2 42267 5.1344 1.5349 6.8252 4.3040
Low-3 4.2444 5.1715 1.5380 6.8647 4.3310
Low-4 4.2609 5.2049 1.5435 6.9014 4.3560
Low-5 42014 5.1513 1.0163 6.7246 4.1950
Low-6 4.2515 5.1952 1.5395 6.8873 4.3460
Low-7 4.2491 5.1908 1.5421 6.8831 4.3430
Low-8 4.2623 5.2130 1.5454 6.9087 4.3600

2.6. Image Restoration and Model Processing

All 17 complete sets of degraded images (Table 2) were subjected to degradation
elimination. The resulting images for each set were used to generate further sets of
photogrammetric products. This process was similar to the one involving reference models,
with the same processing software settings being used. Figure 5, as well as Figures 6 and 7,
show a visual comparison of the method’s operation for a fragment of one of the images.
These figures present the reference image (ground truth) (a), degraded image (b), and
restored image (c).

Figure 5. Image visual comparison for denoise task: (a) Ground truth; (b) Degraded; (c) Restored.

Figure 6. Image visual comparison for denoise and deblur task: (a) Ground truth; (b) Degraded;
(c) Restored (image presented for kernel = k4).
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Figure 7. Image visual comparison for deblur and super-resolution task: (a) Ground truth; (b) De-
graded; (c) Restored (image presented for kernel = k4).

A visual analysis of the aforementioned images indicates that the method significantly
restores the image, enabling significant denoising, deblurring, and improving resolution.
In p