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Abstract: Photogrammetry using unmanned aerial vehicles has become very popular and is already
commonly used. The most frequent photogrammetry products are an orthoimage, digital terrain
model and a 3D object model. When executing measurement flights, it may happen that there are
unsuitable lighting conditions, and the flight itself is fast and not very stable. As a result, noise and
blur appear on the images, and the images themselves can have too low of a resolution to satisfy
the quality requirements for a photogrammetric product. In such cases, the obtained images are
useless or will significantly reduce the quality of the end-product of low-level photogrammetry. A
new polymodal method of improving measurement image quality has been proposed to avoid such
issues. The method discussed in this article removes degrading factors from the images and, as a
consequence, improves the geometric and interpretative quality of a photogrammetric product. The
author analyzed 17 various image degradation cases, developed 34 models based on degraded and
recovered images, and conducted an objective analysis of the quality of the recovered images and
models. As evidenced, the result was a significant improvement in the interpretative quality of the
images themselves and a better geometry model.

Keywords: UAV; neural networks; deblur; denoise; super resolution; neural network

1. Introduction

Photogrammetry using unmanned aerial vehicles, understood to be a tool for taking
measurements, combines the possibility of ground, air and even suborbital photogram-
metric measurements [1], at the same time being a low-cost competition for conventional
aerial photogrammetry or satellite observation. The well-established photogrammetric
techniques and technologies, already used with classic aircraft, were quickly adapted
to low-level solutions with unmanned aerial vehicles (UAVs). Acquiring data from a
low level using unmanned aerial vehicles—although in principle the same as the pro-
cess in the case of classic aerial photogrammetry—due to obvious equipment differences
and flight possibilities, generates new problems, encountered only in the event of UAV
photogrammetry [2].

Commercial UAVs used in photogrammetry have a minor maximum take-off mass
(MTOM) up to 25 kg, although the most commonly used models weigh up to 5 kg. Few
possibilities of transporting additional loads and limitations on UAVs mass enforce the need
to reduce the weight of all components carried by the vehicle. Miniaturization involves,
among others, global navigation satellite system (GNSS) receivers, inertial units (INS), and
optoelectronic devices (visible light, thermal imaging and multispectral cameras), often
making these devices less sophisticated and accurate. Whereas, regarding digital cameras
used on UAVs, they are usually small structures. Commercial UAVs usually use integrated
cameras with a sensor from 1/2.3 ‘’ (DJI Mavic Pro) through to 1’ (DJI Mavic Pro 2, DJI
Phantom 4 Pro) to APS-C (DJI Zenmuse X7) (Shenzhen DJI Sciences and Technologies Ltd.,
Shenzhen, China). Such structures do not utilize such image compensation systems used
in air photogrammetry such as time-delayed integration (TDI) [3,4], bright lenses with
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constant internal orientation parameters and low distortion. Such a situation may lead to a
number of errors in the data acquisition process, for example, blur and noise, which affects
the quality of photogrammetric processing.

Nowadays, with the use of UAVs for measurement during various construction
projects and monitoring natural environment phenomena so frequently, data acquisition
can sometimes be forced by the schedule of a given project or the uniqueness of an in-
dividual natural phenomenon. In such cases, there are often no suitable measurement
conditions, there are insufficient lighting conditions, and there is not much time for the
UAV flight itself. Such a forced flight schedule and time can lead to image degradation.
Most frequently, the sensor ISO sensitivity is increased to avoid photo underexposure,
which generates higher noise visible in the images [5]. Limited time forces the operator to
fly at higher speeds, which combined with extended shutter speed generates blur. Such
phenomena are particularly intensified with small CMOS (Complementary Metal-Oxide-
Semiconductor) image sensors, frequently used in commercial UAVs. As a result, the
quality-related requirements of photogrammetric processing might not be satisfied.

The primary determinants of a photogrammetric process are its qualitative require-
ments. They are usually specified by the end user of the product and can take various
forms, e.g., specifications in a given contract, certain minimum official requirements, or
adopted standards. In this context, a photogrammetric process can be defined as a set of
interconnected activities, the execution of which is necessary to obtain a specific result—the
required image quality. The concept of quality has numerous definitions, with one of them
defining quality as a process adaptability to set requirements. Therefore, reaching the
required quality will strictly depend on the main factors of a given process. A factor is
defined as a certain process activity impacting quality. The quality of the photogrammetric
process can be built on three main pillars (Figure 1) [6]:

• Procedures—every aspect of the image data collection process, which stem from the
execution method and its correctness. In other words, within this group, the following
process elements can be distinguished: applied flight plan (altitude, coverage, selected
flight path, and camera position), GNSS measurement accuracy, selected time of day,
scenery illumination quality, etc.;

• Technical elements—all technical devices and their quality used to collect data, for
instance, technical capabilities and accuracy of the lenses, cameras, stabilization
systems, satellite navigation system, receivers, etc.;

• Numerical methods—the capabilities and characteristics of the algorithms and mathe-
matical methods applied for data processing.
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Figure 1. Photogrammetric process quality pillars.

Each of the aforementioned factors significantly impacts image quality, and their skill-
ful balancing and matching to the existing measurement conditions and set requirements
enables reaching an assumed objective. Importantly, there is no single path to achieving
the required quality. For example, a required ground sampling distance (GPD) for a given
image distance can be obtained through changing UAVs’ flight altitude (procedural factor)
or changing a camera (technical factor), alternatively, by applying numerical methods for
increasing image resolution, e.g., super-resolution algorithm [7] (numerical factor).
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Several of the interesting, latest publications can be presented regarding procedural
factors. The authors of [8] discussed a new approach to planning a photogrammetric
mission, especially in terms of complex scenery. Complex sceneries are ones where the
terrain is of variable elevation, and with scattered terrain obstacles and objects. Such a
terrain requires an unconventional approach to flight planning. Traditional flight plans,
well-established and frequently used, are widely discussed by Eisenbeiss et al. in [9]. In
the works of [10,11], the authors discuss flight planning procedures to analyze changes in a
coastal zone. The authors of [12] address the issues associated with beach measurements
and show a highly interesting procedural factor. The recommended time of day for beach
measurements was early morning. Owing to a change in the time of day, the mean error
was reduced twofold. The issue related to the impact of sun position on image quality
has been further studied in [13]. Its authors also show the effect of forward overlap on
the root mean square error (RMSE), while indicating recommended values. The studies
in [14,15] present the impact of ground control point (GCP) arrangement and the number
of image accuracy.

Of course, the photogrammetric processing accuracy depends on the quality of used
equipment. In terms of technical factors, the greatest impact will be that of the quality and
type of UAV navigation, orientation and stability systems, camera type, shutter type and
lens type [16,17]. UAVs equipped with simple RTK (real-time kinematics) receivers are
becoming popular today. Using this navigation sensor significantly improves the accuracy
of direct determination of external orientation elements [18–21]. Some authors even state
that using RTK receivers on UAVs enables to withdraw from GCP development [22].
Vautherin et al. [23] showed how the shutter type affects the image quality. Global shutters
still have the dominance over cheaper rolling shutter solutions. Publications of [24–26]
describe the impact of GCP measurement accuracy and arrangement on image quality.

Numerical methods used in processing digital images significantly affect the quality
of a photogrammetric image [27]. For example, the issue of a nonmetric camera calibra-
tion algorithm and its impact on the geometry of photogrammetric processing [28–30].
The authors are constantly developing new calibration methods, reaching a significant
improvement in the geometry of the end images [31]. The authors of [32] presented a new
numerical way of improving the geometric quality of an image with single-strip blocks
using the Levenberg–Marquardt–Powell method. The article in [33] discusses a method for
eliminating the impact of weather conditions on the quality of photogrammetric images.
Some authors also suggest comprehensive solutions to this issue, noting that certain fac-
tors significantly impact the quality of a photogrammetric process, while designing and
constructing UAVs with their own calibration and processing algorithms [34]. Neural net-
works, especially the ones based on deep models, are widely used also in photogrammetry.
Such cases include, for example, the following methods of improving photogrammetric
processing quality [6,7,35–39].

Due to the data in contemporary photogrammetry having a fully digital form, the
algorithms and numerical methods used to process them will highly affect the end re-
sult [40]. It can be concluded that each numerical method used within the data processing
process, starting from processing single values of digital sensor pixels [41], through writ-
ing them on a memory card or transferring the data to a server, to a full range of digital
software-implemented photogrammetry methods will impact the final result. Therefore,
the technique is to optimally select and choose those that lead to the lowest quality losses.
In practice, software-implemented numerical methods are already properly selected and
the user has no influence on changing them, and only on certain processing parameters
instead. Furthermore, as observed in research [6], through the application of advanced
processing algorithms, modern photogrammetric software is remarkably resistant to image-
degrading factors and is able to generate the model, although the final result usually has
low geometric quality.

In photogrammetric practice, especially in the event of using UAVs in commercial
tasks, there may be a situation when the correct selection of procedural and technical
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factors is insufficient. As a result, achieving the required photogrammetric product quality
can be unfeasible. Consequently, the following approach can be formulated and expressed
as follows. In the event of UAV images containing typical quality-degrading elements, such
as noise, blur, and low resolution, one can apply an additional process to eliminate these
factors, hence improving the final quality of a photogrammetric product. This additional
process interferes only with the image data directly prior to their processing, therefore,
it does not change the elements of the software itself. The modern image restoration
methods were used to confirm this thesis and develop a new method of improving pho-
togrammetric image quality. These methods were also tested in terms of their impact
on image quality, processing, and final photogrammetric models. The outcome of the
conducted research was the development and presentation of new solutions in the field of
low-level photogrammetry:

• the impact of three basic image quality-degrading factors (noise, blur, and low resolu-
tion) on the processing in modern photogrammetry software and on the quality of
models based on such images was assessed,

• a polymodal algorithm for improving measurement image quality based on neural
networks and numerical methods was developed,

• image-degrading factors were eliminated, their quality was objectively assessed,
and basic photogrammetric products were developed. Models developed from the
recovered images, which are images after elimination of degradation factors, were
compared with a reference model.

2. Materials and Methods
2.1. Process Description

Figure 2 shows the applied research and data processing processes. The process
is commenced with a data acquisition block. Image data was collected using a typical
commercial UAV—DJI Mavic Pro. Unmodified images were used as reference data (ground
truth). Further copies of the images were subjected to noise, blur, and low-resolution
simulating degradation. One dataset with added noise, 8 sets with added blur, and 8 sets
with simultaneous blur and reduced resolution were generated. All these images were
used to create photogrammetric models. The next stage involved subjecting the modified
images to the polymodal method for improving image quality and once again used to
develop models. The research process involved comparing the image quality at individual
processing stages and evaluating the quality of models generated based on these images.
The study utilized various software and software environments, which are shown in
Figure 2.

2.2. Image Degradation Model

The objective of image restoration (IR) methods is to recover latent pure image x based
on its degraded form y, which can be expressed by a quotation:

y = D(x) + n (1)

where D is a noise-independent degradation operation, n represents the additive white
Gaussian noise (AWGN) of standard deviation σ. This paper assumes that noise, blur,
and low resolution would degrade the measurement images and, consequently, lead to
degraded photogrammetric processing. Opposing operations, denoising, deblurring, and
super resolution, respectively, will improve the quality of degraded images and lead to
improved quality of photogrammetric processing. They can be classified as numerical
methods of improving photogrammetric processing quality, described in the Introduction.
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For a typical blur, the degradation model can be expressed as follows:

yb = x ∗ k + n, (2)

where x ∗ k is a two-dimensional convolution of a pure image and the blur kernel k. More
information on blur in low-level photogrammetry can be found in [6]. Unlike the study
in [6], the authors of this paper used 8 different blur kernels (Figure 3) that were adopted
as in [42,43]. The proposed blur kernels, in connection with noise and low resolution led
to the development of degraded test data. The blur kernels presented here were chosen
to complement the kernels presented in the study [6], where very intense motion blur
was simulated.
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The degradation model for an image with reduced resolution is expressed by the
following equation:

ylr = (x ∗ k) ↓ s + n (3)
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where ↓ s means simple image direct downsampling [44] at every s× s pixel, where s
is a downscaling factor, here s = 2. In the case of super-resolution algorithms, such an
image degradation model is deemed most correct [43,45]. More information on how low
resolution impacts a photogrammetric model, and on other models of increasing resolution,
can be found in [7].

Noise can be defined as a certain accidental and unwanted signal. In the context of
captured images, noises are an undesirable byproduct of image capture and recording,
and constitute certain redundant information. The noise source in digital photography is
primarily the image capturing, recording, and transmission channel. Outcomes of noise
include undesirable effects like artifacts, unreal generated individual pixels of random
quality, lines, emphasized object edges, etc. [46]. The authors of this paper adopted the
Gaussian model of additive noise. This noise, also called electronic noise, is generated
primarily as a result of signal amplification in the recording channel and directly in CCD
(Charge Coupled Device) and CMOS sensors, as a result of thermal atomic vibration [46].
It should be stressed that an elevated noise or distortion level in input photogrammetric
images can lead to significant degradation of the stereo-matching process. This applies to
all stereo-vision algorithms, however, to a varying extent [47]. Such a situation can directly
impact the developed model. Assuming that in Equation (1), D(x) will be the identity
function, hence, random variable n in Equation (3) adopts the Gaussian density function
pn
(

xp
)
, which can be expressed as [47]:

pn
(

xp
)
=

1√
2πσ

e−
(x−µ)2

2σ2 (4)

where xp means the value of a single image pixel x, µ is the mean value 0 adopted herein,
and σ is the standard deviation, adopted herein in the range from 0 to 50.

2.3. Restoration

As mentioned in the Introduction, the development of a method for improving image
quality was based on already existing numerical methods, functioning in other fields. The
assumption also was that the method used in the research had to have the plug and play
capability [42,48–59], which means being functional without the need for user interference.
The plug-and-play methods used for image restoration problems can perform generic image
restoration independent of the degradation type. That capability is especially essential in
real applications, due to the fact that during UAV data acquisition, the degradation factors
can be very different and random. Moreover, a common feature of these methods is also
that they are relatively simple to use, which means that they can be easily implemented
within available environments or integrated with existing software, and that they are based
on well-known numerical methods.

To put it simply, all aforementioned methods solve Equation (1) in different ways.
One of the methods is Bayesian inference, therefore, Equation (1) can be solved using the
rule of maximum a posteriori probability (MAP), which can be formally expressed as [60]:

x̂ = arg min
x

1
2σ2 ‖y−D(x)‖2 + λR(x) (5)

where the solution minimizes an energy function of a data term 1
2σ2 y−D(x)2 and a prior

term λR(x) with regularization parameter λ. As stipulated by the source literature [60–63],
the methods for solving the Solution (5) can be divided into two groups, namely, model-
based methods and learning-based methods. They have their pros and cons. As a rule of
thumb, model-based methods are rather flexible and offer numerous tasks (D), but they
unfortunately need more time for calculation. On the other hand, learning-based methods
can provide results very quickly but require long learning time and are not as flexible.
Learning is limited to a specific task only (D). For photogrammetric purposes, the solution
presented herein was adopted directly after [60], therefore, denoising will be conducted
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using a learning-based model, while deblurring and resolution improvement through
model-based methods. Readers who want to further explore the issues of deblurring and
resolution improvement through learning-based models are welcome to study [6,7], where
learning-based methods were applied for photogrammetric purposes. As presented there,
the methods were very effective and were able to restore even very blurry images, and in
the case of super resolution, generate high-quality high resolution images, nevertheless, the
methods were applied only for one separate degradation problem. Moreover, the approach
presented in these works uses neural networks, that which require a long learning process,
and the large training dataset, that which is generally not problematic for one task only.
The polymodal image restoring method presented here should solve 3 degradation factors
at one time, therefore, what is required is a different methodology.

As already mentioned, denoising was conducted using a DRUNnet neural network [53].
This network is classified as a convolutional neural network (CNN) and is able to remove
noise of various levels, based on a single model. The backbone of DRUNnet is the well-
known U-Net network [64] and consists of four scales, with each of them having an
identity skip connection between 2× 2 strided convolution (SConv) downscaling and 2× 2
transposed convolution (TConv) upscaling operations. The number of channels in each
layer, from the first to the fourth is 64, 128, 256, and 512, respectively. The activation function
does not appear before the first and last convolutions, and before the SConv and TConv
layers. Additionally, every residual block has only one ReLU activation function. A neural
training database consists of 8794 images acquired from four following datasets [65–68].

Data term and prior term in Equation (5) can be decoupled using half quadratic
splitting (HQS) algorithm [69] as introduced in [53]. Therefore, the HQS introduces the z
auxiliary variable, resulting in:

x̂ = arg min
x

1
2σ2 ‖y−D(x)‖2 + λR(z) (6)

which can be solved by minimizing the following problem:

Lµ(x, z) =
1

2σ2 ‖y−D(x)‖2 + λR(x) +
µ

2
‖z− x‖2 (7)

where µ is the penalty parameter. This problem can be solved through iterating two
sub-problems for x and z, whereas the other variables are fixed:

xk = arg min
x
‖y−D(x)‖2 + µσ2 ‖x− zk−1‖2

zk = arg min
x

1

2
(√

λ/µ
)2 ‖z− zk‖2 +R(z) (8)

Therefore, the zk solution task comes down to finding a proximal point of zk−1 and
usually has a closed-form solution dependent on D. For the deblurring task, assuming that
the function sport in Equation (2) is executed based on circular boundary conditions, a fast
solution to xk is:

xk = F−1

(
F (k)F (y)− αkF (zk − 1)

F (k)F (k) + αk

)
(9)

where F (·) and F−1(·) mean the Fast Fourier Transform (FFT) and inverse Fast Fourier
Transform, respectively, and F (·) describes the complex conjugate of F (·).

The solution to zk for the super-resolution task, assuming that the function spot in
Equation (3) is executed based on circular boundary conditions, can be taken from [53,70]:

xk = F−1

 1
αk

d−F (k) ~
(F (k)d) ⇓ s(

F (k)F (k)
)
⇓ s + αk

 (10)
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d = F (k)F (y ↑ s) + αkF (zk−1) (11)

where ~ means a distinct block processing operator with element-wise multiplication.
Degraded images were subjected to the presented method. Therefore, the polymodal

method of improving the quality of photogrammetric images involves solving three sub-
problems, namely, denoising, deblurring, and super resolution.

2.4. Reference Data Acquisition

The reference images was acquired using a DJI Mavic Pro (Shenzhen DJI Sciences and
Technologies Ltd., China) UAV. The UAV is a typical representative of commercial aerial vehi-
cles, designed and intended mainly for amateur movie creators. The flexibility and trustwor-
thiness of these platforms were quickly appreciated by the photogrammetric community.

The flight was planned and executed as per a single grid [71] over an urban infras-
tructure fragment. The area of the test space is 0.192 km2, with the flight conducted at an
altitude of 100 m above ground level (AGL), with a longitudinal and transverse coverage of
75%. 129 images were taken and supplemented with metadata and an actual UAV position.
In addition, a photogrammetric network was established that consisted of 16 ground con-
trol points (GCPs), evenly arranged throughout the entire study area. The GCPs’ position
were measured with the GNSS RTK accurate satellite positioning method and determined
relative to the PL-2000 Polish state grid coordinate system and their altitude relative to the
quasigeoid. Commercial Agisoft Metashape ver. 1.6.5 (Agisoft LLC, St. Petersburg, Russia)
software was used to process the data. The results for the reference model, read from a
report generated by the software, are shown in Table 1 and the visualizations are presented
in Figure 4.
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Table 1. Accuracy-related data of the created reference model.

Flight Altitude Ground
Resolution Tie Points Projections Reprojection

Error

105 m 3.05 cm/pix 134,894 450,874 0.952 pix
Camera locations and error estimates

X error (m) Y error (m) Z error (m) XY error (m) Total error (m)
2.60381 2.36838 44.9193 3.51981 45.057

GCP locations and error estimates
X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (cm)

8.8375 11.0233 2.59586 14.1285 14.365

2.5. Degraded Models

The aforementioned relationships were used to create research data. Image data
acquired during a reference flight were noised, blurred, and their resolution was reduced.
One dataset with added Gaussian noise of σ = 15, 8 sets with added Gaussian noise of
σ = 7.65 and variable blur, and 8 sets with low resolution (s = 2) and variable blur. Blur
was changed for each set, indicating the blur kernel (Figure 3), so that a given kernel is
invariant for all images in the set. This enabled generating a total of 17 complete sets of
degraded images (Table 2).

Table 2. Reported survey data for the degraded dataset.

Task
Name

Noise
Level (σ)

Blur
Kernel (k)

Down
Sample (s)

Flying
Altitude

(Reported) (m)

Ground
Resolution

(cm/pix)

Tie
Points Key Points Mean KP

Size (pix)
Reprojection

Error

Noise 15 0 0 102 3.06 157,662 167,865 6.2568 0.2629
Blur-1 7.65 1 0 105 3.05 150,367 160,282 5.1729 0.2814
Blur-2 7.65 2 0 105 3.05 146,891 155,971 5.2177 0.2811
Blur-3 7.65 3 0 105 3.05 143,123 151,473 5.3352 0.2782
Blur-4 7.65 4 0 104 3.05 141,878 149,727 5.5492 0.2726
Blur-5 7.65 5 0 104 3.05 142,278 150,383 5.6549 0.2729
Blur-6 7.65 6 0 104 3.05 142,454 150,469 5.7461 0.2697
Blur-7 7.65 7 0 104 3.05 142,545 150,834 5.6724 0.2710
Blur-8 7.65 8 0 104 3.05 140,163 147,779 5.8739 0.2654
Low-1 0 1 2 83.6 6.08 59,159 63,549 6.7321 0.1681
Low-2 0 2 2 97.4 6.07 120,169 126,437 2.8486 0.2284
Low-3 0 3 2 97.9 6.07 117,191 122,997 2.7376 0.2356
Low-4 0 4 2 98.2 6.07 113,919 119,591 2.6568 0.2412
Low-5 0 5 2 98 6.07 114,383 120,136 2.6863 0.2386
Low-6 0 6 2 97.8 6.07 114,190 119,815 2.6927 0.2396
Low-7 0 7 2 97.8 6.07 115,036 120,659 2.7055 0.2372
Low-8 0 8 2 98.1 6.07 111,672 117,269 2.6364 0.2422

Next, in accordance with the rules of the art, the same process of generating typical
low-ceiling photogrammetry products was conducted using the photogrammetric software.
This process followed the same procedure and processing settings as the ones applied
for generating reference products. The result was 17 products generated from degraded
images. Table 2 presents the basic data of the surveys based on degraded data. It should be
noted that a real flight altitude (ca. 100 m) was fixed, and the one shown in the table was
calculated by the software. Table 3 shows the root mean square error (RMSE) calculated
for control point locations. During the image processing process, the control points were
manually indicated by the operator for each dataset. The fact that it was possible to develop
models from all degraded data, and that the software selected for this task completed the
process without significant disturbance is noteworthy.
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Table 3. Control points’ RMSE for the degraded dataset. X—Easting, Y—Northing, Z—Altitude.

Task Name X Error (cm) Y Error (cm) Z Error (cm) Total Error
(cm)

Image Pix
(pix)

Noise 8.4020 9.6224 2.3212 12.9835 5.0720
Blur-1 8.8888 10.7857 2.5800 14.2127 5.5300
Blur-2 8.8691 10.7893 2.5590 14.1993 5.5210
Blur-3 8.8499 10.7562 2.5367 14.1581 5.4990
Blur-4 8.7548 10.5660 2.4773 13.9436 5.4120
Blur-5 8.7308 10.5434 2.4603 13.9084 5.3920
Blur-6 8.6983 10.4072 2.4487 13.7829 5.3460
Blur-7 8.7131 10.4564 2.4522 13.8299 5.3630
Blur-8 8.6437 10.3358 2.4190 13.6892 5.3040
Low-1 3.1234 3.0810 0.9155 4.4818 2.9270
Low-2 4.2267 5.1344 1.5349 6.8252 4.3040
Low-3 4.2444 5.1715 1.5380 6.8647 4.3310
Low-4 4.2609 5.2049 1.5435 6.9014 4.3560
Low-5 4.2014 5.1513 1.0163 6.7246 4.1950
Low-6 4.2515 5.1952 1.5395 6.8873 4.3460
Low-7 4.2491 5.1908 1.5421 6.8831 4.3430
Low-8 4.2623 5.2130 1.5454 6.9087 4.3600

2.6. Image Restoration and Model Processing

All 17 complete sets of degraded images (Table 2) were subjected to degradation
elimination. The resulting images for each set were used to generate further sets of
photogrammetric products. This process was similar to the one involving reference models,
with the same processing software settings being used. Figure 5, as well as Figures 6 and 7,
show a visual comparison of the method’s operation for a fragment of one of the images.
These figures present the reference image (ground truth) (a), degraded image (b), and
restored image (c).
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A visual analysis of the aforementioned images indicates that the method significantly
restores the image, enabling significant denoising, deblurring, and improving resolution.
In practice, the noise has been completely eliminated, and the images exhibit a significantly
higher interpretative quality. Furthermore, the visual assessment of all restored images
(c) indicates that they have a very similar or even identical quality. It is virtually difficult to
assess their degradation extent, which enables the conclusion that all products based on
these images will also exhibit similar interpretative and geometric quality, regardless of the
problem source.

The assessment of image quality and the evaluation of the results of the presented
polymodal method in comparison with the degraded images was conducted on the basis
of four different image quality metrics (IQM): blind referenceless image spatial quality
evaluator (BRISQUE) [71], natural image quality evaluator (NIQE) [72], perception-based
image quality evaluator (PIQE) [73] and peak-signal-to-noise ratio (PSNR) [74]. Chosen
no-reference image quality scores generally return a nonnegative scalar. The BRISQUE
score is in the range from 0 to 100. Lower score values better reflect the perceptive qualities
of images. The NIQE model is trained on a database of pristine images and can measure
the quality of images with arbitrary distortion. NIQE is opinion-unaware and does not
use subjective quality scores. The trade-off is that the NIQE score of an image might not
correlate as well as the BRISQUE score with human perceptions of quality. Lower score
values better reflect the perceptive quality of images with respect to the input model. The
PIQE score is the no-reference image quality score, and it is inversely correlated with
the perceptual quality of an image. A low score value indicates high perceptive quality,
and a high score value indicates low perceptive quality. A higher PSNR value provides a
higher image quality, and at the other end of the scale, a small value of the PSNR provides
high numerical differences between images. Figure 8 presents the calculated results of the
aforementioned image quality evaluators in graphical form.
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An analysis of the aforementioned results shows that in terms of perceptive quality
improvement (BRISQUE index), significant improvement in the resolution improvement
subtask (task: sr), and minor improvement in denoising were achieved. The BRISQUE
index values are clearly high in terms of the deblurring task, although the visual analysis
clearly indicates significant quality improvement. On the other hand, the NIQE (natural
image quality evaluator) index correctly indicates image quality improvement in each
task. This means that, objectively, the quality of each image has been very explicitly
improved, and the NIQE index values in certain cases are very similar to the reference
values. Interestingly, the NIQE value for the denoise task indicates even better image
quality after noise reduction than that of the ground truth image (obtained straight from
a camera and unmodified). This means that the noise present on ground truth images
was minor, as natural for a sensor of small digital cameras. Residual noise reduction on
the ground truth image enabled to fully eliminate the noise, which translated into an
improved NIQE index value. The PIQE index, similarly to BRISQUE, indicates a general
improvement, however, the values are clearly overstated for the deblurring task. The
popular PSNR index indicated a significant improvement of image quality in all tasks, with
the highest value observed for deblurring, for which BRISQUE and PIQE showed quite
the opposite.

Images subjected to the quality improvement method were used as a base to develop
successive, typical photogrammetric products. This process followed the same procedure
and processing settings as the ones applied for generating reference products and degraded
images. The result was 17 products generated from images with improved quality.

Table 4 presents the basic study data based on images without blurring. Table 5 shows
the RMSE calculated for control points’ location for the restored dataset.

Table 4. Reported survey data for the restored dataset.

Task Name
Flying

Altitude
(Reported) (m)

Ground
Resolution

(cm/pix)
Tie Points Key Points Mean KP Size

(pix)
Reprojection

Error

Denoise 105 3.04 155,845 164,901 5.3908 0.2790
Deblur-1 105 3.04 144,744 153,653 4.7013 0.2959
Deblur-2 106 3.04 145,039 153,773 4.5899 0.3029
Deblur-3 106 3.04 143,553 151,660 4.5506 0.3072
Deblur-4 106 3.04 143,907 151,548 4.5854 0.3085
Deblur-5 106 3.04 142,921 150,196 4.6104 0.3096
Deblur-6 106 3.04 143,172 150,364 4.6520 0.3088
Deblur-7 106 3.04 143,590 151,112 4.6311 0.3081
Deblur-8 106 3.04 142,349 149,539 4.6615 0.3099

SuperRes-1 106 3.04 137,771 147,044 4.4076 0.3020
SuperRes-2 106 3.04 137,131 146,260 4.4005 0.3033
SuperRes-3 106 3.04 136,268 145,549 4.3965 0.3025
SuperRes-4 106 3.04 138,467 148,249 4.4112 0.3022
SuperRes-5 106 3.04 139,382 149,123 4.3895 0.3041
SuperRes-6 106 3.04 139,540 149,425 4.3984 0.3034
SuperRes-7 106 3.04 138,952 148,805 4.3964 0.3032
SuperRes-8 106 3.04 138,136 148,051 4.3263 0.3076
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Table 5. Control points’ RMSE for the restored dataset. X—Easting, Y—Northing, Z—Altitude.

Task Name X Error (cm) Y Error (cm) Z Error (cm) Total Error (cm) Image Pix (pix)

Denoise 8.7724 10.4970 2.5069 13.9078 5.4130
Deblur-1 9.0044 11.0874 2.6820 14.5328 5.6640
Deblur-2 9.0454 11.1670 2.7056 14.6233 5.7010
Deblur-3 9.0804 11.2650 2.7266 14.7237 5.7430
Deblur-4 9.0521 11.2429 2.7066 14.6857 5.7240
Deblur-5 9.0454 11.1881 2.6959 14.6377 5.6970
Deblur-6 9.0326 11.1774 2.6838 14.6193 5.6810
Deblur-7 9.0291 11.1570 2.6885 14.6024 5.6810
Deblur-8 9.0259 11.1893 2.6801 14.6236 5.6820

SuperRes-1 9.1536 11.4198 2.7825 14.8977 5.8170
SuperRes-2 9.1633 11.4254 2.7752 14.9066 5.8180
SuperRes-3 9.1718 11.4320 2.7868 14.9191 5.8220
SuperRes-4 9.1614 11.3960 2.7679 14.8816 5.8120
SuperRes-5 9.1543 11.4001 2.7840 14.8833 5.8190
SuperRes-6 9.1532 11.3995 2.7652 14.8787 5.8110
SuperRes-7 9.1573 11.4041 2.7675 14.8852 5.8100
SuperRes-8 9.1951 11.4607 2.7958 14.9571 5.8430

3. Results

This chapter analyzes and discusses the geometry of all developed photogrammetric
products based on restored images. It should be noted that all processes were correct
and without disturbances, and the applied photogrammetric software did not indicate
significant difficulties in generating products. Figure 9 shows a full summary of the basic
quality parameters relating to the photogrammetric product, namely, reprojection error,
total RMSE for GCPs, and number of key points.

The reprojection error (RE) for models based on restored images in all tasks adopts
higher values than the reference ones and the values generated for degraded images. The
difference between the error for degraded images and restored images is minor, yet slightly
higher. The values in terms of total RMSE for GCPs are similar to the reference values. This
means that significant improvement is observed in this respect. The number of key points
is close to the values generated for the degraded models. All the aforementioned values
differ much from the ground truth values, but it is possible to identify certain dependencies.
RE values are not improved, RMSE for GCPs are improved, and the number of key points
increases. The rather subtle differences in this respect enable a conclusion that the model
geometry will be preserved.

The geometric quality of the developed topography models was evaluated using the
methods described in [75,76], and similarly to the analyses performed in [6]. An M3C2
distance map (Multiscale Model to Model Cloud Comparison) was developed for each
point cloud. The M3C2 distance map computation process utilized 3-D point precision
estimates stored in scalar fields. Appropriate scalar fields were selected for both point
clouds (referenced and tested) to describe measurement precision in X, Y, and Z (σX, σY,
σZ). The results for sample cases are shown in Figure 10.
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The statistical distribution of M3C2 distances is close to normal, which means that a
significant part of the observations is concentrated around the mean. The means (µ) for all
cases adopted negative values, which means that each model, both degraded and restored,
was displaced on average by approximately 20 cm relative to the reference model. It
should be noted that the degraded models exhibited greater differences from the reference
model. All models based on restored images exhibited lower mean (µ) than in the case
of the equivalent model for the same degradation parameters. Standard deviation was
about 1 m. The M3C2 distance was approximately 1 m for the models in their eastern
part (blue color) near the quay, where the water surface is recorded. Furthermore, one can
notice a significant number of random points of extreme deviation in the northern and
southern parts. Even a 1 meter difference in the flyover area (central model part Low-7
blue color) can be observed for extremely damaged cases (Low-7). This directly means
that flyover altitude (object altitude above ground level) has been incorrectly calculated by
the software. After restoring the images, this difference minimizes to around zero (green
points—SuperRes-7). A similar situation is observed with a noised model. This proves that
model geometry is significantly improved.
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In areas where the M3C2 distance takes higher values, it was observed that tie points
exhibited lower measurement precision, which was manifested by higher values of σX,
σY, σZ. These values are calculated in millimeters (mm). Therefore, it was decided to
additionally assess the quality of all products by conducting a statistical analysis of tie
point precision (dσ), expressed by Formula (12):

dσ =

√
(σX)

2 + (σY)
2 + (σZ)

2 (12)

The statistical analysis included the median and standard deviation of tie point
precision (dσ) and was calculated for each case. The numerical results are shown in
Table 6 for the median value and Table 7 for standard deviation. The graphical comparison
of the data from the tables is shown in Figure 11.

Table 6. Median values for individual cases (mm).

Task/Kernel 1 2 3 4 5 6 7 8

Ground Truth 121.5112
Blur 158.0656 156.5566 155.5781 158.5508 161.6197 161.3598 161.0773 162.7287

Deblur 142.5501 141.8642 140.8487 141.7976 141.3076 142.2502 143.2718 142.0673
Low 242.3442 95.2261 91.0714 86.7184 99.5156 87.4444 88.2774 84.1599

Super 127.9740 127.1332 126.2845 129.7804 129.5772 131.4754 130.5548 128.8021
Noise 174.4342

Denoise 155.4079



Energies 2021, 14, 3457 17 of 23

Table 7. Standard deviation values for individual cases (mm).

Task/Kernel 1 2 3 4 5 6 7 8

Ground Truth 1320.0
Blur 1333.3 1516.7 1475.7 1483.5 1364.8 1644.2 1419.2 1336.4

Deblur 1315.0 1342.7 1203.4 1254.1 1188.7 1163.0 1259.5 1241.7
Low 4858.3 0892.2 0934.8 0792.6 0945.6 0828.0 0837.5 0828.3

Super 1214.6 1114.7 1101.5 1136.4 1213.6 1163.9 1095.7 1169.2
Noise 2002.9

Denoise 1402.6
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Figure 11. Change in the value of the median (a) and standard deviation (b) for all cases.

A results’ analysis clearly shows that the precision of tie point position determination
was improved in each case, which consequently translates to improved geometric quality
of the product. Median improvement for the noise reduction task is approx. 20 mm. The
improvement for the blur reduction task depended on the kernel and amounted to 15 to
20 mm, while in the case of resolution improvement, this value varied from 40 to about
60 mm. It should be noted that the values of the “Low” task are converted from the ground
resolution value, which was approximately twice as high for this task. Therefore, when
comparing the results of this task with the “Super” task, the calculated precision values
should be multiplied by 2. A reduction of the standard deviation was also noted for all
cases, which also means improved geometric quality and precision of the product.

The last element of the results’ analysis was a visual analysis of orthophoto maps,
digital elevation models, and dense point clouds. Figures 12 and 13 contain several
representative cases showing orthophoto map fragments and digital elevation model
(DEM) fragments.
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Figure 12. Visual comparison of an orthoimage fragment.

The visual assessment enables a conclusion that a significant improvement in the
interpretative quality of the products was achieved in each case. Improved image quality,
evidenced objectively in the previous section, clearly contributes to the improved orthoim-
age quality, which seems obvious. More details can be distinguished on products based
on restored images. These details are also clearer and exhibit less noise. The geometric
improvement (proven above) also translates to DEM quality. DEMs based on restored
images have a clearly lower amount of terrain unevenness. Products developed using
degraded images also exhibit clear, minor unevenness in places where there is no such
object in reality, with the source of this situation being the imprecise determination of
tie points.
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4. Conclusions

The presented method supports the photogrammetric process by eliminating image-
degrading factors, while allowing to correctly generate accurate photogrammetric models.
As shown by analysis, the geometric and interpretative quality of the models is similar
to that of the reference models, and is significantly higher than that of models based on
degraded images. The discussed image quality improvement method comprehensively
removes three factors that degrade photogrammetric models and improves the quality of
end products.

Geometric accuracy of the models generated from the restored images was maintained,
which is evidenced by the low standard deviation of the compared models. This deviation
is stable for different blur kernels and various combinations of degradation factors. Degra-
dation factors can appear in pairs or as a simultaneous cluster of all above. Such cases
are particularly encountered for small sensors, with poor lighting (e.g., overcast sky). and
upon fast UAV flight. The discussed method allows to use images from such measurements
that are not fully correct, and ultimately develop a correct model.

The interpretive quality of textured products and images clearly increased. It has been
shown, beyond any doubt, that reducing the degrading factor significantly improves image
perception, and the objects depicted in an orthoimage are clearer.

The polymodal method of improving the quality of degraded images applied within
these studies has been tested using typical photogrammetric software. Surprisingly, the
software turned out to be rather resistant to these factors and enabled generating models
based on all test data, even the ones with the highest degradation factors.

Degraded images are to be eliminated from a typical, not modified, photogrammetric
process. In specific cases, it may turn out that all images within an entire photogrammetric
flight will have various defects. Contrary to the appearance, such situations are not rare.
The camera’s instrumentation and control system can adjust exposure for each image, and
in the case of dynamic scenery, along with changing lighting, blur, and noise can appear
on images from one flight. The presented method harmonizes all images, eliminating
degrading factors.

Commonly used photogrammetric software, especially their versions of Cloud com-
puting, will enable introducing this additional option that will eliminate undesirable degra-
dation. This method is so fast that a user will be virtually unable to notice a significant
slowdown of the photogrammetric model construction process. Furthermore, the versatility
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of the method and the independence from the degradation character means that its practical
application will significantly expand the capabilities of photogrammetric software.
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