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Abstract: Fast-growing methods of automatic data acquisition allow for collecting various types
of data from the production process. This entails developing methods that are able to process vast
amounts of data, providing generalised knowledge about the analysed process. Appropriate use of
this knowledge can be the basis for decision-making, leading to more effective use of the company’s
resources. This article presents the approach for data analysis aimed at determining the operating
states of a wheel loader and the place where it operates based on the recorded data. For this purpose,
we have used several methods, e.g., for clustering and classification, namely: DBSCAN, CART, C5.0.
Our approach has allowed for the creation of decision rules that recognise the operating states of
the machine. In this study, we have taken into account the GPS signal readings, and thanks to this,
we have indicated the differences in machine operation within the designated states in the open
pit and at the mine base area. In this paper, we present the characteristics of the selected clusters
corresponding to the machine operation states and emphasise the differences in the context of the
operation area. The knowledge obtained in this study allows for determining the states based on
only a few selected most essential parameters, even without consideration of the coordinates of the
machine’s workplace. Our approach enables a significant acceleration of subsequent analyses, e.g.,
analysis of the machine states structure, which may be helpful in the optimisation of its use.

Keywords: sensor data; mining machinery; activity recognition; clustering; GPS data

1. Introduction

Nowadays, companies are looking for innovative methods and techniques to maximise
the efficiency of their operations and optimise the usage of their fixed assets. Because
of progressive technological development and increasing hardware capabilities of data
acquisition and storage, approaches based on the analysis of machinery data are gaining
importance. The gathered data enables monitoring and ongoing insight into the operation
of the utilised equipment, as well as its comprehensive and complex evaluation. Currently,
very detailed and precise machine-specific data are available to companies, characterising
the operation of all the main components of the machine, often recorded continuously. This
constitutes a valuable opportunity to understand a machine’s performance from a broader
perspective, trying to discover new patterns and specific work behaviours based on the
analysis of its various parameters. The discovered dependencies can be used to improve
the effectiveness and increase safety by indicating the activities and states generating the
highest load for the machine. As a result of the acquired knowledge, the company may
undertake real changes of unfavourable work parameters and, therefore, obtain notable
benefits such as reduction of fuel consumption, an extension of the machine’s operating
time, or minimisation of extreme and dangerous states of the machine’s operation.

Increasing expectations of the business environment, and also in the mining industry,
stimulate the implementation of innovative solutions in the scope of productivity, work
safety, and rational use of assets. An additional factor determining the searching and
development of innovative methods is the fact that heavy machinery is characterised by
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considerable complexity of operating parameters, often imposed by the highly demanding
conditions under which it operates. These aspects result in the fact that often defining
the cause of an undesirable event or explicitly indicating patterns in the specifics of the
machine operation depends on many variables and conditions and can be a challenging
task. The existing techniques and analytical software currently used in data analysis allow
comprehensive analyses to be conducted, enabling the specificity and complexity of the
analysed machine operation data to be taken into account. In view of these considerations,
it has been concluded that complementing the existing methods with additional assump-
tions reflecting the specificity of machine operation may contribute to more accurate and
promising analysis results.

One of the interesting directions of machinery data analysis is its activity recognition
based on raw sensor data. Various techniques can be used in the activity recognition task,
especially from a common data mining task, namely clustering. This task aims to identify
groups of observations with characteristics that are as similar as possible within a particular
cluster and dissimilar across different clusters. Clustering is often applied in machine
learning, social network analysis, geosciences, decision making, document retrieval, and
image segmentation [1,2]. In scientific literature, several clustering approaches have
been developed: partitional, hierarchical or density-based methods, and other paradigms
such as nearest neighbour-based clustering, fuzzy clustering, and neural network-based
clustering [2,3].

The paper is devoted to enhancing activity recognition of the wheel loader operation
with data from the Global Positioning System (GPS). We have assumed that broadening the
analysis of the loader’s operating states with the location data may improve the quality of
the information on wheel loader operation and its efficiency. In this research, we aimed to
fill the gap in the field of activity recognition of mining machinery based on sensor and GPS
data by using clustering and classification techniques. Results of the analysis provide addi-
tional knowledge about the operating characteristics of the equipment and may contribute
to a better understanding of the specific operation of the equipment and the effectiveness
of the operations carried out. The main contribution of our work is a demonstration that
localisation data should be taken into consideration in activities” analysis.

In our approach for activity recognition, we used density-based clustering with the
DBSCAN algorithm. The variables included in the analysis are related mainly to engine
performance, driving system, bucket statuses that were selected from a broader set based on
an assessment of data completeness, and principal component analysis (PCA). Discovered
clusters were named based on statistical analysis results and, subsequently, named activities
were analysed regarding identified working areas (mine base and open pit). We also
prepared a description of defined activities as a rule set to enable labelling the raw sensor
data, e.g., for process monitoring needs, using tree-based classifiers.

Obtained results confirmed a statistically significant difference in distributions of
variables characterising defined activities in the identified areas. Thus, during process
monitoring and activities analysis, these findings can bring more in-depth knowledge
about machinery operation that can be helpful in the decision-making process regarding
equipment management.

The paper is organised as follows: Section 2 provides an overview of the most impor-
tant scientific literature in the field of machine condition recognition and data analysis with
the use of GPS data. In Section 3, we introduce the dataset used for the analysis and the
methodology applied to assign data to operation areas and a brief description of data min-
ing methods used in our research. The results of the conducted analyses are presented in
Section 4, along with a discussion. Finally, in Section 5, we formulate concluding remarks.

2. Related Works

The application of analytical techniques based on data obtained from sensors in state,
activities, and operating conditions of machinery identification is commonly discussed in
the literature. Especially in recent years, numerous publications have been published that
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deal with the topic of evaluating and monitoring machines based on their performance data.
The literature analysis indicated examples of practical implementations of analytical meth-
ods in the field of monitoring parameters of various machines [4,5], including machines
working in the mining industry [6]. In addition, some examples of the application of data
mining techniques for monitoring working conditions in mining areas to improve safety
by identifying microseismic events (based on classification techniques) can be found in [7].
Other work proposes monitoring and evaluating mine climate conditions based on sensor
data to predict potential hazards [8]. In the more detailed view, an example of applying an
analytical approach to identify different types of activities during construction equipment
operation is presented in [9]. The authors use a data fusion and machine learning algorithm
approach applied to audio and kinematic data to monitor the operations of single pieces
of equipment. In [10], the authors present the application of activity recognition to the
analysis of the construction equipment operation illustrated by the example of a front-end
loader based on supervised machine learning classifiers in [10]. An interesting application
of an analytical approach to operational data of construction equipment is presented in
the publication [11]. The authors use a recurrent neural network to recognise the activ-
ities of an excavator and a front-end loader based on synthetic data. Another example
illustrating the use of operational data in the field of analysis and activity recognition for
construction machinery is the reference publication [12]. Wu C. et al., carried out analyses
of data extracted from a smartphone in terms of a behaviour model for operations and to
identify patterns of agricultural machinery [13]. In the paper [14], the authors analysed the
operation of an LHD (load, haul, dump) machine from an underground copper ore mine
based on statistical analysis and temperature data in the context of maintenance activities.
Langroodi et al., have proposed in their work a new Fractional Random Forest machine
learning method that can be applied to machine activity recognition based on a limited
dataset [15]. This method has been applied to data for excavators and rollers.

In the literature, there are also current examples of analyses based on sensor data
acquired from the loader and complemented by the specifics of the device operator’s work.
The authors of [16] addressed the issue of analysing the characteristics of the machine
operation in different working conditions for a wheel loader considering the driver’s
influence. The authors analysed the operation of the device based on the data of the boom
head cylinder pressure and proposed a method for evaluation of the difficulty level of
the operating conditions based on the radar chart and clustering analysis. The analysis
of braking strategies by deep learning methods for an automatic wheel loader based on
driving data and operator work specifics was undertaken in [17]. Other examples of
using operational data for a wheel loader machine to optimise its performance are given
in [18]. The problem of finding the optimum for the wheel loader work cycle in terms
of fuel efficiency was discussed in the article [19]. The paper presented an algorithm for
improving fuel efficiency and productivity of a loader, which can be applied in the operator
work support or system optimisation and concept selection for loaders.

The subject of clustering sensor data that characterise the operational states of ma-
chines has been addressed in the literature in various papers. J. Amutha et al. conducted
a comprehensive literature review of data clustering methods and algorithms, including
classical optimisation and machine learning techniques [20]. One can find other references
presenting literature research on clustering methods in the field of sensor data analysis
in [2,3,21]. The area of machine operation data clustering is widely addressed in the lit-
erature, especially in the context of equipment condition diagnostics based on various
techniques such as correlation-based clustering [22], clustering maintenance records of
excavator buckets [23], improved K-means clustering for detecting power transformer
abnormal state [24], mean shift clustering in anomaly detection for machine tools [25], and
k-means clustering algorithms for mining shovel failure prognostics [26]. An approach
based on methods such as time series segmentation, clustering, and classification for
analysing the operating states of wheel loader machines to detect anomalies in the time
series dataset was proposed in [27].
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In this work, we aimed to enrich the standard analysis of the obtained clusters with
location data from the GSP signal, which, combined with the map of the working area,
allowed us to distinguish distinct sub-areas within the territory where the machine oper-
ates. Distinguished areas allowed for a more detailed analysis and an indication of more
specific subclusters concerning the operating site. Numerous examples in the literature
review use location-based data, mainly for road and pedestrian traffic or travel behaviour
detection [1,28,29]. Cheng et al., highlight the benefits of using location data to understand
worksite operations better and to analyse the productivity of machines working in the
field effectively [30]. An example of using GPS data to analyse and infer the working of
construction equipment is in [31]. This paper proposes a method to identify workstations
for a group of heavy vehicles, including wheel loaders, excavators and dump trucks based
on GPS data. The proposed method determines the locations of different types of worksta-
tions with a probability density function. The paper [32] presents case studies using GPS
data to analyse construction equipment performance, the job site layout and to visualise
the GPS data through a developed user interface.

The subject of sensor data analysis for industrial machines is an issue that has been
frequently addressed in scientific publications in recent years concerning a wide range of
applications, from issues related to improving efficiency, determining patterns of machine
operation, or investigating anomalous states in order to extend machine lifetime. The
research examples cited above are mainly concerned with the implementation of data
mining techniques for detecting operating states and monitoring machine performance
from sensor data, visual data, and audio data. Other examples of cited publications focus
on the use of machine data to support the work of operators. In the context of machine
operation analysis, the primary and common application of GPS location data is a route
optimisation and ongoing fleet monitoring in management systems. Known methods
of detecting machine conditions do not take into account information about the device’s
current location during operation in terms of more accurate detection of activities. On the
other hand, data on current operating parameters are used mainly to assess the effectiveness
of work or monitor abnormal operating conditions. The combination in the analysis of
both the data on the defined area in which the device is located and selected parameters of
the machine operation allows for developing specific rules to identify the machine’s state
during the working process.

The challenge in evaluating machine performance remains to define the value-added
activities and separate the nonvalue-added activities. The proposed approach, using the
definition of activities in the context of the current location, provides an advantage in the
analysis of machine performance by allowing easy identification of workspace-specific
activities in addition to the main activities. The ability to easily determine the current
operating status can provide a basis for more detailed analyses of machine operation from
a process analysis point of view.

3. Materials and Methods

In this section, we briefly present methods and materials used in our research, namely:
the analysed data set, marking of location perspective in data, as well as selected data
mining techniques applied in our work.

3.1. Data Set

The original raw data set includes 9,810,934 observations and 432 variables covering
six months of wheel loader operation; however, due to quality issues (observations only
with timestamps), we had to select the best samples for further analysis (Figure 1).

For the best candidate of the sample, we selected observations from one week (156,863
observations). In the sample, we identified main groups of variables related, among others,
to engine characteristics (e.g., speed, fuel pressure, fuel temperature, crankcase pressure),
driving system (e.g., speed of the vehicle, acceleration pedal position, parking brake switch),
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bucket statuses and other variables (e.g., GPS position). From the original variable set,
208 variables were excluded from further analysis (containing 100% missing values).
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200.03.09

2020.03.13

Figure 1. Data quality scan visualisation (grey colour denotes missing data).

The principal component analysis (PCA) method was used to select the appropriate
target set of variables for analysis. PCA is a multivariate statistical technique for extracting
information from a data set and representing it as new orthogonal variables, referred to
as principal components. PCA is used to analyse a table of inter-correlated variables. The
main premise of the PCA method is to reduce the dimension of the data used in the analysis,
assuming that the reduction of multidimensionality is carried out maintaining most of the
variability in the data set. This process is often carried out as a preliminary step before
proceeding to further analyses [33,34].

After verification of 208 variables (some of them had a high rate of NAs), 68 vari-
ables were examined. Based on their dependency analysis and PCA analysis, we chose
19 variables with 47,093 observations as the final set used for activity recognition. Selected
variables (due to IP requirements) are presented in Table 1 and in Figure 2.

Table 1. Fragment of variables list used in machine activity recognition.

Item Variable Name Unit
1 wheel-based vehicle speed [km/h]
2 engine speed [rpm]
3 accelerator pedal position [%]
4 engine fuel rate [1/h]
5 engine fuel temperature [°C]
6 lifting bucket state [-]
7 current weight kgl
8 parking brake switch [-]
9 engine shutdown [-]
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Figure 2. Visualisation of PCA analysis (selected variables).

Additionally, we created a variable denoting the area of wheel loader operation, based
on GPS data, with the approach described in the next section.

3.2. Markings of Location Perspective in Data

The assignment of data to the working areas based on the records of GPS coordinates
was performed using the PNPOLY (Point Inclusion in Polygon Test) method. The method
is based on leading a ray horizontally from the tested point and then switching the in/out
status at each polygon edge encountered. An odd number of intersections indicates the
location of the test point inside the polygon.

The inpoly function for the R language [35], which implements the PNPOLY method,
was developed based on the program code included in the work [36]. There is a point.in.polygon
function in R (in the sp package), but it is not suitable for use in pipe mode. This was the
main reason for creating the proprietary inpoly function. The function returns the true
value if the point lies inside the polygon, which is set by an additional data frame with
successive coordinates of forming points.

The data analysed includes the geographic coordinates of the current machine position
(gps_position). The format of this record requires an appropriate transformation for the
extraction of the desired coordinates.

The extraction of longitude and latitude comprised of the following operations were
performed in R:

extracting a string containing GPS coordinates,
creating a list with three separated coordinates,
conversion from a list to a vector,
converting data type to numeric.

After the operations mentioned above, the GPS coordinates and the given area be-
come input parameters to the function inpoly that returns information about belonging to
the area.

Considering the geographical location of a mine and analysing the machine movement,
we distinguished the mine base (1) and two mine exploitation areas (2,3). Other locations
were marked as 0. The mutual position of the areas is shown in Figure 3, as well as the
points describing the areas used in the inpoly function to assign the machine’s current
position to the working areas.
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2 4

Figure 3. Wheel loader operation areas (1—base, 2—mine, 3—minor mine).

The distribution of identified working areas in the sample data set is presented in
Table 2.

Table 2. Distribution of working areas in data set from one week.

Working Area Frequency Percentage (%) CF:::;I:I?C‘; Pgtgﬂ;tei‘(loe/o)
0 1463 0.9 1463 0.9
1 110,933 70.7 112,396 71.7
2 30,592 19.5 142,988 91.2
3 175 0.1 143,163 91.3
NAs 13,700 8.7 156,863 100.0

The main operation area of the analysed machine is the mine base (70% of observa-
tions). One can notice that area no 2 (the exact open pit mine) occurs almost in 20% of
observations. Area no 3 is underrepresented; thus, we decided to join this data with area
no 2. In the case of 1% of observations, the machine worked out of the mine area; for about
9% of observations, we could not identify the working area due to missing data.

Identified areas will be used for the enhancement of machinery activity recognition,
presented in Section 4.

3.3. Selected Data Mining Techniques for Clustering and Results Explanation

Currently, for industrial enterprises, Internet of Things (IoT) systems are a primary
source of vast data gathered during operations, allowing for insight into the process and
its comprehensive analysis. The collected data can be used in the knowledge discovery
process, which can be automated with appropriate data mining methods [37].

In general, data mining approaches can be divided into supervised, unsupervised, or
reinforcement learning [38]. Among different unsupervised learning methods, clustering
is one of the most popular tasks, which has the advantage of uncovering hidden, often
unexpected groups in a data set without any prior knowledge or input about the partition.
Cluster analysis at the stage of exploratory data analysis allows a better understanding or
summary of the data [2].

Clustering is widely implemented in activity recognition tasks [21]. The primary
purpose of a clustering task is to divide instances into different groups, determined by their
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similarity [37]. Researchers have proposed many clustering methods, such as partitioning
clustering (e.g., k-mean, k-medoids, PAM, CLARANS, and CLARA algorithm), hierarchical
clustering (e.g., CURE, BIRCH, and ROCK algorithm), density-based clustering (e.g., DB-
SCAN, OPTICS, and DBCLASD), grid-based clustering (e.g., STRING) or model-based (e.g.,
Self-Organized Map algorithm) [38,39]. Clustering techniques differ in several assump-
tions, such as the procedure for calculating similarity within and between clusters, setting
the threshold for identifying cluster elements, or the methodology for grouping objects
belonging to different degrees into one or more clusters [40]. Depending on the conditions
and type of data, different clustering analysis algorithms result in different clusters. A
comparison of the most popular clustering algorithms with the main assumptions and
limitations of these methods can be found in [41,42].

Considering the characteristics of our data set, we selected the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm because of its main advan-
tages, such as applicability to multidimensional data, robustness to noisy data, ability to
discover clusters of different shapes and sizes, and the lack of requirement to determine
the number of clusters in advance [40].

DBSCAN is recommended as a leading algorithm for clustering high dimensional
data and is the most commonly used density-based algorithm [40].

The main assumption of density clustering approaches is determining and sepa-
rating high- and low-density regions [43]. The DBSCAN algorithm was proposed by
Ester, M. et al., in response to observed challenges for clustering algorithms, such as the
ability to define clusters of arbitrary shape, achieving high efficiency with large data sets,
and requiring little domain knowledge to determine input parameters [44]. The authors
defined a cluster as a set of connected density points that is maximal with respect to
density reachability. The algorithm employs two main input parameters: the neighbour-
hood radius—Eps (neighbourhood of a point) and the minimum number of points in the
neighbourhood—MinPts to determine a density threshold; based on that, the data are
aggregated into clusters. The DBSCAN algorithm with correctly specified parameters can
produce clusters of any shape [45]. For a point in a cluster, a neighbourhood of a specified
radius must contain at least a minimum number of points, i.e., the density must exceed the
mentioned threshold, and the chosen distance function indicates the shape of the neigh-
bourhood. There are two types of points within a cluster: core points, which are located
inside the cluster, and border points, which are points on the border of the cluster [44].
The DBSCAN algorithm is also used to efficiently discover noise in the data, which is
defined as a set of points in the database that do not belong to any of the clusters [44,46],
so-called outliers.

In an analysis of discovered clusters, as an explanation of results, we used decision
trees which enabled the formulation of rules for assigning observations to proper clusters
in the analysed area. A method for solving classification problems such as decision trees
is characterised primarily by its intuitiveness, simplicity of interpretation of results, and
reasonable accuracy [47], enabling prediction of categorical outputs with tree or rule
structures. Trees are graphical representations of the decision-making process in which
the structure consists of internal nodes representing attribute tests (decision nodes) and
leaf nodes corresponding to predicted class labels [48,49]. There are many algorithms for
classification using decision trees, the most popular of which are: CART [50], CHAID [51],
QUEST [52], and C5.0 [53,54] as a successor of the C4.5 algorithm [55], which is based on
ID3 [56]. The main improvement of the C5.0 is boosting technology, allowing the addition
of each sample weight to determine its importance [53].

In explanation of clustering results, we tested CART and C5.0 algorithms (with various
settings). The CART algorithm is the most commonly used decision-tree technique [50]
which allows the detection of structures even in complex data and the construction of
accurate and reliable models [57]. Based on labelled data, CART trees enable the discovery
of rules that can be used to classify new data. This method is an example of binary recursive
partitioning using the GINI index. Binary partitioning can be performed repeatedly, and
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instances in a node can only be divided into two groups [58]. The second algorithm used
to describe the obtained clusters is the C5.0 algorithm (with the rule model option). The
(5.0 algorithm employs an information gain rate to build a decision tree. Information gain
is determined for each feature in the data set to identify the best split points [54,59].

In order to increase the accuracy of a classifier like a classification tree, pruning
techniques aim to reduce the size of the tree by eliminating the less frequent sections of the
tree that are considered non-critical and have low classification ability. Pruning reduces
the complexity of the tree and consequently improves the classification performance
by preventing overfitting [60]. In the case of used algorithms, we tested the following
parameters for pruning: cp—complexity parameter (CART) and Min Cases parameter as
the smallest number of samples that must be put in at least two of the splits (C5.0). The
complexity parameter (cp) denotes the minimum improvement in the model needed at
each node. It is based on the cost complexity of the model. The cp parameter helps speed
up the search for splits because it can identify splits that do not meet this criterion and
prune them before the tree becomes too wide [61].

4. Results and Discussion

Our data set with 18 variables (the time variable was omitted in clustering task) was
analysed with R library dbscan [62]. Since the DBSCAN algorithm is sensitive to Eps and
MinPts settings, we ran multiple calculations with various values of parameters. The
Eps parameter setting started from the analysis of the KNN plot for k = 18 (number of
dimensions) (Figure 4). At first, we tested a value that corresponded to the curve’s inflexion
point (that is 0.5). In the beginning, we changed the value of the Eps parameter with step
0.05. When the number of clusters decreased, we adaptively decreased the Eps value. In
the case of MinPts value, firstly, we assumed a number of points equal to a number of
dimensions +1 (19); however, we obtained many outliers. We repeated the calculations by
doubling and tripling this number. Finally, we chose MinPts as 57 points and Eps value as 0.6.

18-NN distance

T
0 10000 20000 30000 40000

Points (sampie) soned by distance

Figure 4. KNN plot for k = 18.

The DBSCAN algorithm, with defined parameters as above, found five clusters in our
data set (Figure 5). Black dots in the figure denote outliers (not clustered observations).

The distribution of observations among discovered clusters is presented in Figure 6.
Cluster 0 contains outliers—only 145 observations were collected in this cluster (0.3% of
observations). The largest, cluster 1, contains almost 52% of observations (24,338), and
cluster 3 contains 32% observations (15,303). Smaller clusters, no 2 and no 4, contain 8%
(3763) and almost 7% of observations (3251), respectively. Finally, cluster 5 contains 0.6%
of observations.
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Figure 5. Clustering results (with outliers marked as black dots).
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Figure 6. Distribution of observations in clusters.

Selected statistics of the discovered clusters are presented in Table 3.

cluster

Based on presented statistics, the following description of activities was prepared:

Cluster 1—Moving/travelling;

Cluster 2—Stoppage with engine ON;
Cluster 3—Normal work with loading;
Cluster 4—Stoppage with loading;
Cluster 5—Engine OFF.

Distributions of discovered clusters in the identified working areas are presented

in Figure 7.
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Table 3. Basic statistics of the discovered clusters.

Variable Name

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Min Median Max Min Median Max Min Median Max Min Median Max Min Median Max

wheel-based vehicle speed 0 5 21 0 0 0 0 4 20 0 0 0 0 0 0
engine speed 621 1128 2015 0 791 1495 645 1117 1699 0 793 1606 0 0 52
accelerator pedal position 0 29 72 0 0 57 0 29 72 0 0 53 0 0 0
engine fuel rate 0 15 55 0 3 27 0 15 55 0 3 24 0 0 0
engine fuel temperature 0 21 26 0 21 28 0 19 23 0 6 25 0 16 17
lifting bucket state 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
current weight 0 0 0 0 0 0 —24,608 1072 29,353  —4210  —2233 6213 0 0 0
parking brake switch 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
shutdown engine 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

(]

w

O —
4 _
[E——)
. 5

Figure 7. Distribution of clusters and observations in identified working areas (x axis = area, y axis
= cluster).

As can be observed, the main activity in the mine base area (area no 1) is regarding
Normal work with loading, while the dominant activity in the open pit area is Moving
(Figure 7—right figure). Thus, we can conclude that the main area of efficient work is the
mine base area, and usage of wheel loader in the open pit has a rather auxiliary character,
e.g., raw material moving (distribution of activity no 2 and 4—Stoppage with/or without
loading). Activity Engine OFF is mainly observed in the mine base area.

In further investigations, we analysed whether there was a difference between machine
behaviour in areas of work. In other words, whether a place of work influences the
characteristics of the discovered activity. We performed a statistical analysis of distributions
of variables in each cluster versus working area.

In Table 4, we present the statistical analysis results regarding the comparison of
selected numerical variable distributions in the working areas for each activity. Since none
of the numerical variables in the data set is normally distributed, to test the differences
within groups, we chose the non-parametric Wilcoxon test. Colours in the table indicate
statistically significant test values.

Comparison of variable boxplots in each cluster and area are presented in Figure 8.

Statistical analysis of selected variables in each cluster confirmed that there is a statis-
tically significant difference in their distributions in the defined areas for most variables.
Thus, during the process monitoring and activities analysis, these differences should be
taken into consideration.
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Table 4. Results of the Wilcoxon test for group comparison.

Variable N Wheel-Based Engine Accelerator Engine Engine Fuel Current
anable Name Vehicle Speed Speed Pedal Position =~ Fuel Rate =~ Temperature Weight
median 1 5.0 1120 29.6 16.6 22.0 0
Cluster 1 median 2 59 1131 28.8 14.6 21.0 0
p value <0.01 <0.01 <0.01 <0.01 <0.01 -
median 1 0 800.5 0.8 5.4 5.0 0
Cluster 2 median 2 0 651.0 0 2.6 21.0 0
p-value - <0.01 <0.01 <0.01 <0.01 -
median 1 47 1122 29.6 15.6 19.0 1127.5
Cluster 3 median 2 1.6 915 10.0 5.9 21.0 665
p value <0.01 <0.01 <0.01 <0.01 <0.01 <0.05
median 1 0 798.2 0 4.6 5 —2236
Cluster 4 median 2 0 649.9 0 2.6 22 5996
p-value - <0.01 >0.05 <0.01 <0.01 <0.01
median 1 0 0 0 0 16.0 0
Cluster 5 median 2 0 0 0 0 - -
p-value - - - - - -

For a better description of discovered clusters and considering revealed differences,
we attempted to discover rules enabling raw data labelling. In this task, we examined
selected classifiers with CART and C5.0 algorithms.

Firstly, we divided the data set randomly (without data of cluster 0, denoting outliers)
into train and test subsets with the proportion of 80% (37,558 observations) and 20%
(9390 observations), respectively. Subsequently, we trained classifiers and checked them
on the test data set. In Tables 5 and 6, we present the main parameters and the obtained
results (the most similar results obtained for the two classification algorithms are marked
with bolded font).

Table 5. Parameters of CART classifiers.

No of Classifier Cp F(rll\rlese;ﬂsiitzsi on "I?::lc: ISZiIaset on ?ecsctu ]rDa:t}a;set
1 0.000250 115 0.9098 0.9085
2 0.000375 87 0.9045 0.9043
3 0.000600 34 0.8890 0.8882
4 0.000750 30 0.8874 0.8858
5 0.001000 27 0.8854 0.8851
6 0.002000 17 0.8758 0.8765
7 0.002500 9 0.8602 0.8608

The simplest classification tree (no 7) obtained using the CART algorithm is presented
in Figure 9.

The performed tests have shown that both algorithms have built the tree models
enabling accurate prediction of the tested class: wheel loader activity in the working
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area. The most valuable rules, due to their confidence, obtained from comparable-in-size
classifiers: CART with 18 rules (no 6) and C5.0 with 17 rules (no 5), are presented in Table 7.
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Figure 8. Boxplots of selected variables (a—f) in the perspective of clusters and working areas. (Red colour denotes area 1,

blue colour denotes area 2).

According to Table 7, we can observe that obtained rules are characterised by a
high or very high confidence level (0.73-1.0). Rules responsible for classifying machine
characteristics as a particular activity are very similar for both applied classifiers; however,
in some cases are different in the level of variable occurrence in the tree structure.
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Table 6. Parameters of C5.0 classifiers.

No Min C Numbers of Accuracy Accuracy
of Classifier 1n f-ases Rules on Train Dataset on Test Dataset
1 50 41 0.9040 0.8954
2 100 22 0.8870 0.8825
3 150 17 0.8830 0.8797
4 200 16 0.8800 0.8778
5 250 17 0.8770 0.8729
6 300 13 0.8760 0.8732
7 600 9 0.8480 0.8436
12
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Figure 9. Classification tree CART.

The key machine operating parameters for assigning an observation to activity 1,
identified similarly by both types of classifiers, are primarily lifting_bucket_state and
parking_brake_switch (less than 0.5; in practice, only 0 or 1 are possible). Based on en-
gine_fuel_temperature, classification to area 1 is made for temperatures less than 15/16 °C
and area 2 for temperatures greater than 15/16 °C. However, in the C5.0 tree, additional
rules have been formulated related to vehicle speed. The rules determining assignment
to activity 2 are based on the parameters such as parking brake_switch > 0 and lift-
ing_bucket_state <= 0. Similar to activity 1, depending on engine_fuel_temperature,
observations are classified into area 1 (temperature less than 19 °C) or area 2 otherwise.
Classification to activity 3 is based, among other criteria, on the parking_brake_switch
variable, whose value, in this case, equals 0. Depending on the values taken by the
lifting_scoop_weight variable in the C5.0 tree, the observations are classified in area 1 (lift-
ing_scoop_weight > 0) or area 2 when this variable takes a value less than 0. In the CART
tree, another variable related to lifting is taken into consideration—Ilifting_scoop_weight. As-
signment to activity 4 is based largely on 3 variables, parking_brake_switch, lifting_bucket_state,
and engine_fuel_temperature, where the first two variables should be greater than 0, while
temperature greater than 20 °C determines the classification of the observation as activity 4
in area 2, while less than 20 °C is in area 1. The rule for classifying into cluster 5 in the C5.0
tree is mainly based on variable engine_shutdown greater than 0. CART tree extends rules
with additional variables. The general conclusion can be made, comparing similarities and
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dissimilarities of variables used in tree classifiers, that indication of the operation of wheel
loader in the open pit area is related to the greater temperature of engine fuel, which can
be explained by more inconvenient conditions of work as downhill rides and elevation
differences that impact loading of the engine.

Table 7. Rules describing wheel loader activities in the working areas.

CART C5.0
Activity
Rule Confidence Rule Confidence
lifting_bucket_state =0 engine_fuel_temperature <= 15
1.1 parking_brake_switch =0 0.897 parking_brake_switch <=0 0.904
engine_fuel_temperature < 16 lifting_bucket_state <=0
lifting_bucket_state = 0 wheel_based_vehicle_speed > 9.85
1.2 parking_brake_switch = 0 0.735 engine_fuel_temperature> 15 0.874
engine_fuel_temperature >= 16 lifting_bucket_state <=0
lifting_bucket_state = 0 engine_fuel_temperature<= 19
21 pe?rkmg_brake_swﬁch >0 0.981 parklpg_brake_swuch >0 0.983
engine_fuel_temperature < 19 engine_shutdown <=0
engine_shutdown =0 lifting_bucket_state <=0
lifting_bucket_state = 0 engine_fuel_temperature > 19
2.2 parking brake_switch > 0 0.938 parking brake_switch > 0 0.941
engine_fuel_temperature >=19 lifting_bucket_state <=0
lifting_bucket_state > 0 engine_fuel_temperature <=20
3.1 parking_brake_switch =0 0.998 lifting_scoop_weight > 0 1.0
lifting_scoop_count >=1 parking_brake_switch <=0
lifting_bucket_state > 0 engine_fuel_temperature > 20
parking_brake_switch <=0 lifting_scoop_weight <=0
32 lifting_scoop_weight <1 0.868 parking_brake_switch <=0 0.873
engine_fuel_temperature >=21 lifting_bucket_state > 0
lifting_bucket_state > 0 engine_fuel_temperature <= 20
41 parking_brake_switch > 0 0.995 parking_brake_switch > 0 0.995
engine_fuel temperature < 21 lifting_bucket_state > 0
lifting_bucket_state > 0 engine_fuel temperature > 20
4.2 parking_brake_switch > 0 0.909 parking_brake_switch > 0 0.911
engine_fuel_temperature >= 21 lifting_bucket_state > 0
lifting_bucket_state = 0
5.1 parking_brake_switch >=0 0.996 engine_shutdown > 0 0.966

engine_fuel_temperature < 19
engine_shutdown > 0

Rules describing conditions (variable values) enable data labelling considering area
of operation. The labelled data can be further used for visualisation and process analysis,
e.g., in the machinery monitoring systems. Such labelled activities can be further analysed,
among others, with process mining techniques and used for process modelling and analysis,
e.g., with process maps (Figure 10).

Analysis of activities in different areas can support understanding specific conditions
of operation needed to optimise equipment efficiency and its usage. For example:

e longer travelling time in the mine area can cause a loss in the effective time of working;
one can consider leaving machines in the mine area and arranging for a faster means
of transport for service personnel to the machine—it can result in saving working
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time, increasing the use of the loader, and reducing the cost of fuel used by the loader
to get to the job site.

e automatic detection of the loading activity can allow for its correlation with the fuel
consumption associated with this activity, and detailed data on the weight transferred
in the bucket can be the basis for determining the optimal weight that should be
loaded on the bucket to minimise the cost of loading.

e the more frequent activity of loading in the base area may be a reason for purchasing
an additional machine.

e the analysis of changes in the structure of activities over time may show significant
changes in the use of machines that will justify (demonstrate the need of) a decision on
periodic leasing (renting, etc.) of machines from external entities, which will reduce
operating costs.

G
J

Moving
34

Engine OFF
3

Figure 10. A process model of wheel loader operation.

In the further works, we plan to investigate the abovementioned issues related to a
more in-depth analysis of dependencies between characterised activities and selected KPIs,
as well as overall efficiency based on process-oriented analytics.

5. Conclusions

In this paper, an analysis of sensor data characterising the operation of a wheel loader
in an open pit mine was presented. The purpose of the analysis was to effectively identify
machine activities based on a real operational dataset. A subset of the entire dataset
was considered in the study, including variables related to engine operation, driving
system, bucket statuses and other variables, which have been clustered using the density
method and the DBSCAN algorithm. We further extended the analysis with GPS data,
which allowed us to divide the working area into subareas (mine base and open pit).
Based on the statistical characteristics of the obtained clusters, we have named them, and
together with the identified working areas, we have identified the statistical differences
of variable distributions in clusters (activities) performed in various areas. The analysis
results encouraged us to develop classifiers describing clusters in the form of rules, which
can be helpful in raw data labelling in the future. In this part, we used selected classifiers
based on the CART and C5.0 algorithms. As a result, we presented the most valuable rules
for wheel loader activity recognition.

Obtained results showed that density clustering methods can provide an efficient
multidimensional space search for compact and sensible clusters of observations in a real,



Energies 2021, 14, 3422

17 of 19

References

noisy dataset. Moreover, the introduction to analysis of the location variable enabled us
to identify the statistically significant differences in machinery operation in two defined
working areas. These findings have also been positively validated by tree classifiers,
with high accuracy rates on train and test datasets. From built classifiers, one can extract
valuable rules (with high confidence factor), enabling definition/recognition of activity
during process monitoring.

The identified rules require validation in a real-life environment and verification
on-site during activity execution, which is planned in the next stage of our research.
Then, after positive validation result, rules can be applied, e.g., in machinery or process
monitoring systems.

The discovered dependencies can be used to improve the effectiveness and increase
the safety of operation by indicating the activities and states generating the highest load
for the machine. As a result of the acquired knowledge, the company may undertake
real changes of unfavourable work parameters and, therefore, obtain notable benefits
such as reduction of fuel consumption, an extension of the machine’s operating time, or
minimisation of extreme and dangerous states of the machine’s operation.

Remarkably, distinguishing the states of a machine’s work is a necessary condition
for developing an algorithm that automatically determines the usage of a machine and
calculates detailed indicators that consider the diversity of these states. The values of
these parameters can be a premise in the decision-making process to change the utilisation
of a machinery park in a mining company. In the presented analysis, consideration of
the identified working areas allowed to prove the existing differences in the quantitative
characteristics of activity concerning the place of machine operation. It should be noted
that the analysed machine is one of many used in the mine, so automation of its activity
recognition should be an integral part of the online analysis related to the machinery park.

In addition, the analysis conducted in the article is one of the steps in the development
of a system that allows the calculation of the optimal operating conditions based on data
collected from multiple machines. Processed data provide information about the different
stages of production. They can be the basis for determining the real-time indicators of the
effectiveness of used machinery and also can provide a basis for decisions about the timing
of repairs or maintenance ahead of equipment failure. Awareness of such a need, strength-
ened by the results of data analysis, allows for planning the appropriate time and duration
of activities related to the replacement of worn-out machine elements during scheduled
downtime. This can help to avoid losses generated as a result of unplanned downtime.

The findings obtained from the analysis presented above can contribute to the knowl-
edge base for MES (Manufacturing Execution System) systems in many areas specified
by the international standardization organization MESA International (Manufacturing
Enterprise Solutions Association International).
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