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Abstract: Gas turbine power plants are widely employed with constrained efficiency in the industrial
field, where they often work under variable load conditions caused by variations in demand, leading
to fluctuating exhaust gas temperatures. Suitable energy harvesting solutions can be identified
in bottoming cycles, such as the conventional Organic Rankine Cycles (ORC) or the innovative
supercritical CO2 (s-CO2) systems. This paper presents a detailed comparison of the potential of
ORC and s-CO2 as bottomers of industrial gas turbines in a Combined Heat and Power (CHP)
configuration. Different gas turbine models, covering the typical industrial size range, are taken into
account and both full- and part-load operations are considered. Performance, component dimensions,
and operating costs are investigated, considering ORC and s-CO2 systems specifics in line with the
current state-of-the-art products, experience, and technological limits. Results of the study show that
the s-CO2 could be more appropriate for CHP applications. Both the electric and thermal efficiency
of s-CO2 bottoming cycle show higher values compared with ORC, also due to the fact that in the
examined s-CO2 solution, the cycle pressure ratio is not affected by the thermal user temperature. At
part-load operation, the gas turbine regulation strategy affects the energy harvesting performance in
a CHP arrangement. The estimated total plant investment cost results to be higher for the s-CO2,
caused by the higher size of the heat recovery heat exchanger but also by the high specific investment
cost still associated to this component. This point seems to make the s-CO2 not profitable as the
ORC solution for industrial gas turbine heat recovery applications. Nevertheless, a crucial parameter
determining the feasibility of the investment is the prospective carbon tax application.

Keywords: supercritical CO2; ORC; gas turbines; heat recovery; part-load; CHP; design; economic
analysis

1. Introduction

The availability of natural gas at relatively low cost and the intensification of environ-
mental regulations on air pollutants and CO2 emissions have resulted in a shift toward
gas-based power generation [1] which, in turn, is leading to the growth in Gas Turbine
(GT) market. Nowadays, GTs represent one of the most widely diffused prime mover
technologies for power generation in the industry thanks also to their simplicity and
flexibility. Indeed, simple cycle GTs have the valuable advantages of (i) limited space
requirements and reduced specific costs for moderately sized units; (ii) being placed online
within minutes for fast start-up and by remote automation, so that only occasional on-site
supervision is needed. As a consequence, GT engines are particularly suitable to operate
under part-load conditions, to sustain those industrial processes characterized by fluctu-
ating energy demand and also in isolated locations. For instance, GT units are usually
employed in the oil and gas sector, in on-shore and off-shore installations, where they
are incorporated into the oil refining process or into natural gas compressor stations for
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pumping natural gas through pipelines [2]. In addition, GT systems find application also
in other areas: industries such as cement, glass, drying, pulp, and paper mills; chemicals
production; and tertiary buildings.

The reduction of energy consumption in industry, with the implementation of new
and more efficient power generation technologies, are fundamental aspects to meet the new
global emission targets and cut process costs [3]. Industries employing simple cycle GTs
as prime movers still offer great potential margin for low-cost energy savings and carbon
reductions through energy efficiency improvements. Indeed, basic industrial GT engines
have limited size, ranging up to 50 MW, with low inherent efficiency, typically not above
40%. A significant amount of fuel energy input is rejected as hot exhaust at relatively high
temperatures (400–600 ◦C) [2]. Figure 1 shows estimated data of heat rejected by many
commercial GT units (database of commercial GTs available in Thermoflex software [4] is
used) covering the range of size of industrial machines.
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Figure 1. Overview of industrial GT exhaust temperature, air flow, and waste heat ranges calculated
at full load conditions, assumed to cool the exhaust gas down to 80 ◦C.

This wasted energy could be profitably used as a secondary thermal resource in
order to increase the efficiency of fuel usage and to mitigate environmental drawbacks.
Wasted heat can be firstly utilized to generate additional electric energy to support the
industrial process or to be sold to the grid. Moreover, Combined Heat and Power (CHP) so-
lutions, providing steam or hot water for industrial processes, can further improve primary
energy utilization, playing a significant role in achieving economic and environmental
benefits [5–7].

A well proven Waste Heat Recovery (WHR) solution for large size power plants
consists in a steam power plant as the bottomer of the GT. However, small/mid-size
industrial GT cannot be always compatible with the traditional steam bottoming cycle
featuring complex architecture, especially in industrial applications for which the GT
operating conditions often vary following the site demand. More appropriate alternatives
might consist in more flexible bottoming cycles, which allow simpler generation of the
vapor, thanks to lower critical temperatures of the working fluid. Suitable solutions for
the considered operating range are identified in the Organic Rankine Cycle (ORC) and the
innovative CO2 Brayton cycle, or supercritical CO2 cycle (s-CO2) [8]; Figure 2 compares
the different operating range of heat to power conversion technologies based on bottoming
thermodynamic cycles for WHR applications.
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Figure 2. Comparison of different operating range of heat to power conversion technologies based
on bottoming thermodynamic cycles for WHR applications (source [8]).

The use of an organic fluid as working fluid, in place of water, introduces several
advantages over conventional steam plants for low- to mid-temperature applications [9]:
lower fluid specific volume resulting in smaller, more compact, and cheaper equipment;
higher condensing pressures (being equal the condensing temperature), reducing turbine
size requirements and air-in leakage potential; and dry turbine expansion, avoiding mois-
ture droplets that can cause erosion damage of the turbine blades. More specifically, s-CO2
technology is competitive with the ORC solution, thanks to its other exclusive features,
including high density fluid similar to liquid water throughout the cycle; non-toxic, inex-
pensive, nonflammable working fluid; and abundant working fluid, possibly provided by
greenhouse gas emission sequesters [10].

ORCs are quite diffused in the market and commonly used to generate power in
different industrial heat recovery applications with more than 340 MW of installed capacity
in the world [11,12]. Many of these applications are WHR from gas turbines, mostly
installed on compressor stations along gas pipeline. Important WHR opportunities also
come from the cement, metal, and glass industries; nevertheless the ORC installed capacity
in these sectors is still scarce compared to its potential [13–16]. The barriers that prevent
the growth of this market are, in particular, the lack of green incentives and the long-term
paybacks, which determine a high risk on the investment. In addition, industrial capital
budgets are limited, and industries usually prefer to give priority to safer investments
closer to the company’s core business [17].

The s-CO2 cycle has also long been known, but despite the extensive research carried
out in the field, the technology is still at an early stage and not yet ready to be introduced
in the market. Current challenges in the s-CO2 design concern: (i) the development of
compact high pressure heat exchangers at reasonable cost, (ii) the reduction of leakage and
mechanical losses in turbomachines, and (iii) the optimal regulation and safe operating
conditions of the compressor close to the CO2 critical point [13]. Nowadays, different
research programs are being carried out by both industrial and academic research institutes,
to develop prototypes of s-CO2 and study how to overcome these issues. Among them
must be mentioned the “EPS100”, proposed by Echogen as the first megawatt topping-class
commercial-scale supercritical s-CO2 heat engine, in the phase of validation testing [18],
specifically designed for small-scale gas turbines combined cycle (~30 MW total output)
applications.

The literature on ORC for industrial WHR applications is extensive; in particular, a
detailed investigation of ORC potential as bottomer in an industrial application, comparing
several GT models also at part-load operation, is proposed by Bianchi et al. [19]. However,
the same does not apply for s-CO2. The research is still scarce regarding the medium-to-
low temperature CO2 power cycles applications, especially considering industrial GTs as
topper cycle. It can be cited the study proposed by Zhou et al. [20], analyzing complex
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combined cycle system for off-shore GT WHR, involving s-CO2 plus a transcritical CO2 cy-
cle. The analysis is applied to the commercial GT model “Solar TITAN 130”, demonstrating
promising performance and economic gains for s-CO2 application in the oil and gas sector.

At present, only few studies are dedicated to comparing ORC and s-CO2 as industrial
WHR solutions. The study of Astolfi et al. [21] compares CO2 power cycles and ORC, pro-
viding thermodynamic performance maps as a function of different heat sources’ maximum
temperature (200–600 ◦C) and cooling grades. The authors demonstrated that the most
convenient choice sensibly depends on the actual boundary conditions. Yoon et al. [22]
compared the off-design performance of ORC and transcritical CO2 cycle, as the bottoming
cycle of a micro gas turbine. They highlight how a CO2 recuperated cycle can be more
performant at part-load operations than a simple ORC. In particular, the CO2 recuperated
cycle exhibits a more efficient heat exchange process at the heat recovery unit, due to the
presence of the recuperator. However, a more comprehensive analysis could be performed
also including an ORC recuperated configuration.

Except for a few works, the literature lacks studies regarding applications of CO2-
based WHR, in industrial likely operating conditions and specific comparison with its
main competitor, the ORC. In a previous work of the authors [23], a preliminary analysis
has been performed, comparing s-CO2 and ORC pure electric and CHP configurations as
bottomer of different GT models in design conditions. The additional novel contribution
of this work relies on a more systematic investigation on ORC and s-CO2 potential as
energy harvesting technologies inside an industrial facility, employing GT at both full
and part-load operation. The performance of ORC and s-CO2 systems are evaluated
as bottoming of selected industrial GT models in CHP configuration. For this purpose,
Thermoflex commercial software, providing the GT PRO gas turbine library, has been used
for the simulations. The ORC and s-CO2 systems specifics and costs assumptions have
been chosen in line with industrial products and state-of-the-art research experience. A
comprehensive analysis has been carried out discussing energy results in terms of electric
and thermal power additional production, efficiency, primary energy savings, but also
components dimensions, costs, and feasibility. The performance of the whole power plant
is evaluated both in design and in part-load operating conditions to account for a realistic
load profile.

In comparison to the existing publications, it is the aim of the present work to offer an
original contribution in the following aspects:

• The s-CO2 supercritical cycle is systematically evaluated as bottomer of different
GT models for industrial applications, considering realistic operating conditions and
part-load operation.

• A comparison between ORC and s-CO2 power systems performance as industrial
WHR solutions is performed. The analysis accounts not only for the thermodynamic
cycle but also for the systems specifics and technological limits determined by the
state of the art of the technologies.

• An investment cost assessment is proposed for a comprehensive comparison be-
tween ORC and s-CO2 power systems. The influence of the design aspects affecting
the investment cost are discussed in detail, highlighting the difference between the
compared systems.

The paper is organized as follows: Section 2 describes the analyzed power plant con-
figurations, its specifics, and assumptions made for the simulations; Section 3 explains the
adopted modeling approach; Section 4 presents the performance results both in design and
at part-load conditions; in Section 5, considerations about component size and investment
costs are made; in Section 6, the economic assessment of the bottoming cycles based on the
yearly operation is evaluated; and finally Section 7 presents the main conclusions.

2. Power Plant Specifics and Operating Conditions

In this section, the assumptions in terms of analyzed power plant architectures, oper-
ating conditions, and imposed technological limits are described. First of all, the whole
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plant configuration is presented, then the gas turbines, the s-CO2, and the bottomer cycle
selected specifics are discussed in more detail in the dedicated subsections.

2.1. Plant Architecture

The combined heat and power plant comprises the topper gas turbine unit and
the bottomer cycle, generating electricity to sustain the electric user and the hot water
circuit supplying heat to the thermal user (as schematized in Figure 3). In the considered
configuration, the gas turbine exhaust gas is directly conveyed into the heat recovery heat
exchanger, here named “GAS HX”.
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The considered s-CO2 system, represented in Figure 3a, is based on the closed Brayton
thermodynamic cycle. In this cycle, the CO2 circulates through the plant being heated into
the heat recovery heat exchanger (“GAS HX”), expanded into the turbine, cooled (into the
“COOL HX1”), and pressurized by means of a compressor. A simple recuperated cycle
is considered as a basic compact and flexible setup. Thus, the efficiency of the s-CO2 is
enhanced using an internal heat recuperator (“REC HX”). A generator (GEN) converts
the shaft mechanical power into electric power to supply to the electric user. Two heat
exchangers employed for cogenerative purpose are present into the plant, named “COOL
HX1” and “COOL HX2”, recovering heat respectively from the CO2 cooling heat exchanger
and from the exhaust gas, downstream of the GAS HX, to supply thermal power to the
thermal user hot water circuit.

The ORC subcritical recuperated architecture, represented in Figure 3b, is chosen
as comparative bottoming system according to the current state of the art of waste heat
recovery applications [8]. In this cycle, an organic fluid circulates through the plant being
evaporated and superheated into the heat recovery heat exchanger (“GAS HX”), expanded
into the turbine, condensed (into the “COOL HX”), and pressurized by means of a pump.
An internal heat recuperator (“REC HX”) is used also in this case to improve the cycle
efficiency, without over complicating the plant. A generator (GEN) converts the shaft
mechanical power into electric power to supply to the electric user, whilst the condenser of
the ORC serves as heat exchanger for cogenerative purpose, to supply thermal power to
the thermal user hot water circuit.
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Before discussing the single systems specifics, some boundary operating conditions
concerning the whole power plant operation, are here introduced. These conditions regard:
(i) the hot water temperature requested by the thermal user and its return temperature,
assumed equal to 90 ◦C and 25 ◦C, respectively; (ii) the minimum temperature of the gas
turbine exhaust gases at the exhaust stack, limited at 125 ◦C to avoid the cold-end corrosion
issues in the exhaust stack.

Related to these assumptions is the choice of considering two gas heat exchangers for
the s-CO2 configuration, instead of one (see heat exchangers GAS HX and COOL HX2, in
Figure 3a). COOL HX2, placed downstream GAS HX, allows to maximize the gas residual
heat recovery, by further cooling down the gas until the minimum stack temperature.
Indeed, in the s-CO2 case, it has been observed that a single heat exchanger would not
allow to discharge the gas below 250 ◦C, causing just a partial heat recovery [23]. On the
contrary, the GAS HX of the ORC solution has proved to be more performant, as discussed
in more detail in the results section.

2.2. Industrial Gas Turbines Specifics

A variety of gas turbine models with different size are employed in industrial ap-
plications. Small and mid-size machines (MW size range) are used in flexible multiple
arrangements, installed on board of small production facilities, usually operating at part-
load conditions, e.g., in off-shore plants. Larger power rating units (ranging up to tens
of MW), both heavy-duty and aeroderivative machines, are preferred instead on larger
facilities requiring higher power needs and working under more stable conditions. Thus,
to perform a systematic analysis, four different types of commercial gas turbines, in terms
of size and regulation strategy, are investigated; in particular, gas turbine models often
used in the oil and gas sector are considered [19,24].

The design data of selected GT units are summarized in Table 1. These gas turbine
models are characterized by sizes ranging between 1 and 30 MW, with efficiency values
increasing with the size, from 24% for Kawasaki GPB15 up to 36% for Siemens GT 700
machine. Important variables to also consider are the temperature and the flow rate of the
exhaust gases, which affect the amount of energy that can be recovered by the bottomer
power cycle. In particular, exhaust gas mass flow rate raises with the gas turbine size and
it ranges between 8 and 89 kg/s for the selected gas turbines. Exhaust gas temperature is
centered around 500–550 ◦C, varying between 474 and 574 ◦C.

Table 1. Selected gas turbines nominal data.

Kawasaki
GPB15
(GT1)

GE5
(GT2)

Solar Titan 130
(GT3)

Siemens GT 700
(GT4)

Output power (MW) 1.5 5.5 15 30
Turbine inlet temperature

(◦C) 991 1232 1093 1260

Pressure ratio (-) 9.4 14.8 15.7 17.6
Efficiency (%) 24.2 30.6 33.3 36

Exhaust flow rate (kg/s) 8 19 49 89
Exhaust temperature (◦C) 520 574 474 518

Regulation strategy VTIT VIGV VTIT VSS

These values can significantly vary at part-load conditions, strongly influencing the
bottoming cycle performance.

Figure 4 reports manufacturer data provided by the GT PRO gas turbine library [4],
showing how the exhaust flow rates and temperatures values vary with the gas turbine load
for the different models; it can be observed that different gas turbine regulation strategies
determine different trends. Three kinds of regulation strategies can be distinguished, here
named VTIT (variable turbine inlet temperature), VIGV (variable inlet guide vanes), and
VSS (variable shaft speed), which consist of:
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• VTIT—variable amount of fuel injected in the combustor into a constant air mass
flow rate; hence, regulating the air–fuel ratio and so the turbine inlet temperature.
This leads to exhaust temperatures, which decrease as the gas turbine load (GT load)
decrease, whilst the exhaust flow rate remains almost constant. GT1 and GT3 are
examples of gas turbines regulated by means of the VTIT control.

• VIGV—variable compressor geometry resulting in a variable air mass flow. This kind
of regulation strategy allows to work at part-load conditions without decreasing the
operating temperatures, whilst the mass flow rate decreases with the load. GT2 is an
example of gas turbine regulated by means of the VIGV control.

• VSS—variable shaft speed at the gas generator in multi-shaft engines. This is the
strategy that allows for the most limited reduction in shaft efficiency at part-load con-
ditions, compared to the other strategies. A decrease in both the exhaust temperature
and flow rate occurs in this case. GT4 is an example of gas turbine regulated with the
VSS control strategy.
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2.3. Supercritical CO2 Cycle and ORC Specifics

The choice of the s-CO2 component specifics and boundary operating conditions,
as shown in Table 2, are derived from a literature survey based on different studies and
experimental data [20,22,25,26]. The compressor minimum inlet temperature and pressure
are imposed respectively equal to 35 ◦C and 75 bar. This choice grants maintaining super-
critical conditions all along the cycle, given CO2 temperature equal to 31 ◦C and critical
pressure equal to 74 bar. In line with the current research data, the cycle maximum pressure
is limited to 300 bar because of technological limits. The turbine and the compressor
isentropic efficiencies values are considered different for s-CO2 power plant size lower
or higher than 3 MW to account for the machine size-effect over the performance. The
recuperator thermal effectiveness minimum pinch point assumed for the heat exchangers,
pressure drops, and heat loss values are also reported in Table 2, and are chosen equal for
the ORC and the s-CO2 systems for a fair comparison between the two systems.
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Table 2. Bottomer cycles design specifics.

s-CO2 ORC

Size <3 MW >3 MW <3 MW >3 MW

Fluid Carbon Dioxide MM Cyclopentane
Low pressure 75 bar 0.9 bar 3.7 bar

High pressure upper limit 300 bar 17 bar 40 bar
Turbine isentropic efficiency 85% 90% 80% 85%

Op. machine isentropic efficiency 70% 80% 60%
Recuperator thermal effectiveness 80%

Pressure drop across heat
exchangers 1%

Heat exchangers normalized
heat loss 1%

Heat exchangers minimum
pinch point 5 ◦C

Other limits
Min. temperature = 35 ◦C Max. temperature = 280 ◦C
(supercritical threshold) (stability limit)

The ORC components specifics and boundary operating conditions are selected as
consistent with existing industrial established products [19] (see Table 2). The first design
decision concerns the choice of the working fluid. Cyclopentane and hexamethyldisiloxane
(MM) (respectively belonging to the hydrocarbon and the siloxane families) are the selected
fluids since they are state-of-the-art organic fluid in industrial medium waste heat recovery
application [19]. Fluids belonging to the hydrocarbon and siloxane families are demon-
strated to be the most suitable fluids for the medium temperature applications, thanks to
their quite high critical temperature. Indeed, a value of the critical temperature quite similar
or slightly higher than the target evaporation temperature is suggested to simultaneously
achieve good thermal matching between fluids and exhaust gas and to avoid excessively
low vapor densities, which lead to increasing system cost. Cyclopentane and MM feature
similar critical temperature and thermal stability limits, while they appreciably differ in
terms of critical pressure and molecular weight. In particular, MM presents a higher molec-
ular weight, which leads to lower speed of sound during the expansion, allowing to design
the turbine with a lower number of stages (even only a single stage). This is the main
reason why MM is the ideal candidate for small size applications (ORC size < 3 MW), even
if, on the other hand, due to its high molecular weight, MM also presents smaller enthalpy
drop and expansion specific works if compared to cyclopentane.

The operating conditions bounded by the selection of a working fluid rather than
another are the cycle maximum temperature and the evaporating and condensing pres-
sure values. In more detail, the temperature is conservatively limited to 280 ◦C to not
overcome thermal stability limit corresponding to 300 ◦C. The cycle maximum pressure
(corresponding to the evaporating pressure) is limited to the 90% of the critical pressure
value (equal to 45.1 bar for the cyclopentane and 19.4 bar for the MM). The condensing
pressure instead mainly depends on the cooling medium temperature. Its value can be
considered as a first approximation equal to the fluid saturation pressure value at the
cooling medium temperature (see Figure 5a). In this case also, the turbine and the pump
isentropic efficiencies values are considered different for ORC power plant size lower or
higher than 3 MW, to account for the machine size-effect over the performance.

Fluids thermodynamic properties useful for the analysis are reported in Figure 5;
where the saturation pressure and density are plotted against temperature.
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3. Modeling Approach

Thermoflex commercial software [4] was used to simulate the whole combined power
plant, involving both the gas turbine unit and the bottoming cycle, i.e., the s-CO2 or the ORC
system. Thermoflex is software dedicated to designing complex power plants, which relies
on a built-in library of components modeled on the base of a lumped parameters approach.
By following three consecutive steps, namely “Thermodynamic design”, “Engineering
design”, and “Off-design”, the software allows for the simulation of the energy systems
performance both in design and off-design operation. In the first step, “Thermodynamic
design”, the software solves preliminary energy and mass balances to evaluate the plant
thermodynamic performance. In the second step, the “Engineering design”, the size and
the geometry details of each components is established, on the basis of the imposed design
boundary conditions and components specifics. Finally, in the “Off-design” step, being
defined the design characteristics of single components, it is possible to evaluate the plant
performance in operating conditions different from the design ones.

The approach used to model the single components of the plant at part-load conditions
is described below:

• The gas turbine unit is modeled as a single component by means of a black box
approach. This component can simulate a wide choice of commercial gas turbine
models that are featured in the GT PRO gas turbine library, accounting for design
data and performance maps directly supplied by the manufacturers. The bottomer
cycle instead is modeled by connecting the single components that constitute it: i.e.,
the heat exchangers, turbine, condenser, and operating machine. In this case, some
inputs defining the components performance must be imposed by the user. Specific
component inputs are summarized in Table 2.

• The heat exchangers’ off-design behavior is described by the so called “thermal
resistance scaling” method. Following this method, the design point convective heat
transfer coefficients (UAdes) of the generic fluid involved in the heat exchange, is
scaled as function of the ratio between the actual mass flow rate,

.
m, and the one

calculated in the design point,
.

mdes. A scaling exponent equal to 0.8 (which recalls the
exponent for the Reynolds number in the Dittus Boelter correlation) is applied to the
mass flow rate ratio. This approach is valid since the thermal–hydraulic properties of
the fluids do not change much over the range of considered conditions, and the fluid
velocity remains the main parameter affecting the heat transfer coefficients.

UA = UAdes ×
( .

m
.

mdes

)0.8

(1)
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It can be pointed out that in conditions of fluid phase change or in proximity of the
critical pressure, the program implement a discretization of the heat exchanger for
the determination of the heat exchanger’s UA, automatically assigning distinct zones
for each phase of the fluid, or if the pressure is near the critical pressure, 13 equally
weighted zones are assumed. Normalized heat loss in the heat exchangers is computed
as a percentage, relative to the heat transferred out of the higher temperature fluid. The
pressure drops across the heat exchangers, ∆p, is obtained by means of Equation (2),
expressing the relationship between the flow resistance coefficient µ (initialized in the
design-point), the pressure drops, the mass flow rate

.
m, a dimensional constant C,

and the average specific volume v (mean between the specific volumes at the inlet and
at the outlet).

µ =
∆p

v× .
m2 × C

(2)

• The turbine inlet conditions, in terms of temperature and flow rate, vary at part-
load operation depending on the exhaust gas temperature and flow rate values. The
turbine inlet temperature, T, is kept equal to its maximum possible value, respecting
the constraints related to the GAS HX performance and the fluid thermal stability
limit. The off-design inlet pressure, p, is determined consequently by assuming the
“sliding pressure” part-load control. Following this regulation strategy, the pressure at
the turbine nozzle inlet vary proportionally to the mass flow rate,

.
m, in order to keep

constant the flow function parameter value, FF, assuming chocking conditions.

FF =

.
m×
√

T
p

= const (3)

However, there are situations in which it is not possible to maintain constant the
flow function parameter, as happens for example when the fluid temperature at the
expander inlet changes significantly. In this case, the turbine isentropic efficiency,
ηis, is reduced with respect to its full load value, ηis,des, based on the flow function,
as follow:

ηis = ηis,des −
( .
m×

√
v/p

)
des

.
m×

√
v/p

(4)

4. Performance Results
4.1. Design

In this section, the s-CO2 and the ORC configurations are compared in their design
operation as bottoming cycles of the four different selected gas turbines. Indexes analyzed
in this section are (as defined in Table 3): (i) the heat recovery effectiveness, ε, (ii) the bot-
toming cycle efficiency, ηbott, (iii) the relative, λ, and absolute bottoming power production,
Pnet,bott, (iv) the plant efficiency, η and τ and primary energy savings, PES.

Table 3. Performance indexes for design performance evaluation.

Index Equation

Heat recovery effectiveness ε = Qrec/Qava = QGAS HX.
mex ×cp,ex ×(Tex−Tamb)

Bottoming cycle efficiency ηbott = Pnet,bott/QGAS HX
Relative bottoming power production λ = Pnet,bott/PGT

Bottomer expander power Pexp, with Pnet,bott = Pexp − Pop. machine
Electric efficiency η =

Pnet,bott+PGT
F

Thermal efficiency
τ =

Qcog
F , with Qcog ={

QCOOL HX1 + QCOOL HX2 , i f s− CO2
QCOOL HX , i f ORC

Primary energy saving
PES = 1− 1

η
ηre f

+ τ
τre f

,

with ηre f = 52.5% and τre f = 90% (source [28])
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Figure 6a indicates that the ORC system can recover a higher amount of thermal power
at the heat recovery heat exchanger (“GAS HX”), showing higher heat recovery efficiency,
slightly increasing with the gas turbine size (GT size). The better heat recovery performance
of the ORC is also due to the heat transfer coefficients of the MM and cyclopentane
compared to the CO2 cases, especially given by the fluid phase change inside the evaporator.
As anticipated in Section 2, because of the better heat recovery performance of the ORC, this
configuration is able to fully exploit the exhaust gases’ residual heat by means of a single
heat recovery heat exchanger. On the contrary, for the s-CO2 case, it has been observed that
a single heat exchanger would not allow to discharge the gas below 250 ◦C, causing just a
partial heat recovery. From these considerations comes the choice of considering two gas
heat exchangers for the s-CO2 configuration, instead of one (see heat exchangers GAS HX
and COOL HX2, in Figure 3a), with the aim of further exploiting the exhaust residual heat
to provide additional thermal power to the cogenerative thermal user.
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efficiency.

Despite the ORC presenting higher heat recovery efficiency, the s-CO2 is demonstrated
to better exploit the recovered thermal power, showing higher bottoming cycle efficiency,
up to the 28% (see Figure 6b). The ORC efficiency instead does not exceed the 18%.
In general, the bottoming cycle efficiency increases with the GT size and the thermal
power available with the exhaust gas. More specifically, some considerations can be made
about the bottoming cycles’ performance in combined heat and power application and the
influence of the thermal user requested temperature. It is observed that the ORC expander
enthalpy drop (thus, the specific work) can be considerably affected by the condensing
temperature, which determine the condensing pressure and the expander pressure ratio,
consequently. This is not valid instead for the s-CO2 pressure ratio, which does not depend
on the thermal user requested temperature. This explains the not excellent ORC electric
production performance [23].

The bottoming cycle power production depends on both the heat recovery efficiency
and the cycle efficiency and, more specifically, the product between the two. Figure 7
presents the bottoming cycle design performance in terms of actual power production,
showing that the s-CO2 is the system that exhibits a higher electric power production
under the same topper gas turbine. The s-CO2 allows generating, on average, 31% of the
power produced by topper gas turbine, whilst the ORC, 25% (see Figure 7a). The relative
bottoming power production decreases with the gas turbine size, caused by the increase of
the gas turbine efficiency, which leads to a decrease of the relative rejected heat.
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Figure 7. Bottoming cycles’ design performance: (a) relative and (b) absolute bottoming power
production.

The absolute net bottomer power production ranges between 578–81,117 kW and
447–6580 kW, for the s-CO2 and the ORC, respectively (see Figure 7b), increasing with the
GT size. An interesting point to take into consideration is the amount of power required
by the operating machine to sustain the bottoming cycle, and its weight on the expander
power production, equal on average to 40% for the s-CO2 and to 9% for the ORC. This
point indeed may not be determinant on the energetic performance, but it can be when
evaluating the economic aspect, as discussed in the economic results section.

To comprehensively evaluate the electric and thermal performance of the whole power
plant, the PES index is plotted on the electric and thermal efficiency cartesian plane in
Figure 8. The electrical efficiency increases with the GT size ranging between the 35% and
the 45%. It means that the plant electric efficiency increments with respect to the gas turbine
efficiency only, on average of 8.7 percentage points with the s-CO2 and of 7.0 percentage
points with the ORC bottoming system. On the other hand, the thermal efficiency generally
decreases by increasing the GT size, due to the consequent decreasing relative discharged
heat. The thermal efficiency is limited in a narrow range centered around the 36% for the
ORC solution, whilst it varies more for the s-CO2 case, ranging between the 37% and the
44%. The corresponding PES values are increasing with the GT size and largely positive in
many cases (up to 22% for GT4 with s-CO2 cycle). The achievable primary energy savings
are attractive in most of the cases. Only in case of GT1 does the ORC bottomer becomes
less attractive, showing PES close to 0.

4.2. Part-Loads

In this section the part-load performance of the bottoming cycles is analyzed as a
function of the GT load, varying between its technical minimum, assumed equal to 40%,
and full load. The trends of the bottoming cycle produced electric and thermal power,
normalized on their design values, are reported in Figure 9. The normalized values are
useful to immediately compare the effect of the gas turbines regulation strategy on the
bottoming cycles’ part-load performance.
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Focusing on the electric production (see Figure 9a), it can be observed that the s-CO2
system maintains higher part-load performance when working with GT1 and GT3 turbines
regulated by means of the VTIT strategy; thus, working with almost constant exhaust flow
rate (see Figure 4a). On the contrary, the ORC power plant results to be more performant
when working with GT2, and following GT4, GT1, and GT3, thus benefitting from working
with exhaust temperatures that do not change significantly with respect to the design
values (see Figure 4b).

The same considerations apply to the thermal power production at part-load condi-
tions (see Figure 9b). It can be also observed that a higher performance derating occurs for
the ORC configuration with respect to the s-CO2, except for the GT2 case, which is instead
in line with the s-CO2 curves.

5. Components Size and Investment Considerations

Besides performance considerations, it may be also important to take into account
some design aspects affecting the investment cost and the system footprint. In this section,
different size indexes are introduced as necessary to estimate the component investment
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costs, by means of chosen cost correlations. Then, the size and investment results are
discussed.

5.1. Indexes and Correlations

The size indexes comprise the heat exchangers global heat transfer coefficient, UA,
and the turbine size parameter, SP. The first depends on the heat exchanger exchanged
power, Q, and its mean logarithmic temperature difference, ∆Tml ; see Equation (5). The
second is defined as the ratio between the fluid volume flow rate evaluated at the expander
outlet pressure, and the isentropic enthalpy drop trough the expander, ∆his; where the
volume flow rate is given by the ratio between the fluid mass flow rate,

.
m, and its density,

ρout,is, see Equation (6). Thermodynamic properties of the working fluid are calculated by
means of the Refprop thermodynamic library [27].

UA =
Q

∆Tml
(5)

SP =

( .
m/ρout,is

)0.5

∆his
0.25 (6)

The generic formula to evaluate the i-th component investment cost, Ci, is based on
re-scaling a reference cost value, Cref, by the ratio between the actual component size, sizei,
and its reference size value, sizeref [29]. An exponent, n, is usually applied to the scaling
factor and the effect of some operating conditions can be accounted by applying some
correction factors, corr, see Equation (7). In this analysis, the correlation parameters (as
reported in Table 4) come from literature works providing data from s-CO2 and ORC and
specific components vendors (respectively [30,31]).

Ci = Cre f

(
sizei

sizere f

)n

× corr (7)

Table 4. Cost correlations.

Component Cref Value Size Parameter Sizeref Value n corr

s-CO2 [30]

Turbine 149,732 EUR * Pexp 1 MW 0.5561 /
Compressor 1,008,600 EUR * Pop. machine 1 MW 0.3992 /

GAS HX 40.55 EUR * UAGAS HX 1 W/K 0.7544 /
REC HX 40.55 EUR * UAREC HX 1 W/K 0.7544 /

COOL HX1,2 26.96 EUR * UACOOL HX 1 W/K 0.75 /

ORC [31]

Turbine 1,230,000 EUR SP 0.18 m 1.1 /
Pump 14,000 EUR Pop. machine 200 kW 0.67 /

GAS HX 1,500,000 EUR UAGAS HX 4000 kW/K 0.9 f (pmax)
REC HX 260,000 EUR UAREC HX 650 kW/K 0.9 f (pmax)

COOL HX 530,000 EUR ACOOL HX 3563 m2 0.9 /

* Values converted from original values in US dollar.

5.2. Results Discussion

The computed values of the heat exchangers global heat transfer coefficients and
the turbine size parameter are reported in Figure 10. Figure 10a shows the total heat
exchanger size (expressed in terms of UA) and its distribution between the different heat
exchange sections, “GAS, HX”, “REC, HX”, and “COOL, HX”. From Figure 10a, it can be
observed that the total heat exchanger size is similarly divided among the various heat
exchange sections, varying the examined gas turbine for a given bottoming cycle solution,
whilst the UArec,HX value is similar between the s-CO2 and the ORC solutions, suggesting
similar internal heat recovery conditions, and UAgas,HX and UAcool, HX can greatly differ.
s-CO2 UAgas,HX is on average 9 times the ORC UAgas,HX, mainly because of the higher
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convective heat transfer coefficient of cyclopentane/MM into the evaporator, also due to
the fluid phase change, which guarantees a more performant heat exchange. Concerning
instead “COOL HX” (comprehending both “COOL HX1” and “COOL HX2” for the s-CO2),
UAcool,HX values are more similar between the different configurations. However, a slight
increase in the size parameter is observed when using the ORC rather than the s-CO2
solution, indicating worse matching between the working fluid heat exchange profile and
that of the cold source. This analysis suggests that higher heat exchanger investment costs
can be expected if installing s-CO2 bottoming cycle rather than ORC, given the higher total
heat exchanger size, which can be more than 3 times the ORC configuration’s one.
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Opposite conclusions can be drawn from the turbine size parameter analysis. Focusing
on Figure 10b, it can be observed that comparing the different bottoming cycle options, the
s-CO2 exhibits lower turbine size parameter values, mainly due to the higher density of
the fluid passing through the expander. Indeed, the s-CO2 cycle works at high pressures,
between 300 and 75 bar, corresponding to relatively high CO2 density values that range
between 700 and 60 kg/m3. Cyclopentane and MM, instead, both expand in ORC at lower
pressure and lower density (below 10 kg/m3), leading to less compact expander machines
(see Figure 5b).

The investment cost results reflect the considerations made about the components
size. Figure 11 shows that the s-CO2 requires significantly higher heat exchanger costs
because of the large size of the GAS HX but also the high investment cost still associated
to this component, due to the current challenges related to the structure design and the
selection of materials compatible with the high cycle pressures and the strong corrosive
behavior that CO2 shows at high temperatures [32]. The s-CO2 also requires larger size (see
Figure 7b) and more expensive operating machines. On the other hand, the ORC operates
with larger turbines, which entail higher expander investment costs. In the view of the
above, the total investment cost, given by the sum of the single component costs, result in
being fairly higher for the s-CO2 rather than for the ORC, despite the s-CO2 present both
better electric and thermal performance (as discussed in Section 4).
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6. Yearly Operation and Economic Assessment

A yearly demand profile of a natural gas compressor station is considered here as
reference case study to evaluate the yearly energetic production of the proposed bottoming
cycles, namely the s-CO2 and the ORC, and their feasibility. In first analysis, an average
carbon tax value is assumed for the reference case. Then, the investment is evaluated by
considering also more favorable economic conditions, i.e., a full load yearly demand profile
and a higher carbon tax value.

6.1. Economic Indexes

The return on the investment is estimated by assuming that introducing the bottoming
cycle produces a fuel saving as it would cover the energy demand that otherwise should
be provided by another energetic system. This primary energy saving, EPES, is computed
as follows, considering both the electric, Enet,bott, and the thermal energy production, Ecog,
in a year:

EPES =
Enet,bott

ηre f
+

Ecog

τre f
(8)

The reduction of the fuel consumption is reflected in reduced greenhouse gas emis-
sions and in reduced plant operation costs. The differential net present value has been
calculated according to Equation (9), where CFi is the differential cash flow at the i-th year
corresponding to the yearly avoided costs, q is the discount rate assumed equal to 6%, I is
the total investment, and PB is the payback period considered equal to 20 years.

∆NPV =
PB

∑
i=1

CFi

(1 + q)i − I (9)

The avoided costs include the fuel purchasing reduction and the CO2 emission avoided
cost. The cost due to the fuel consumption is function of the fuel saving and its specific
cost per unit of primary energy, C f uel . The cost due to the CO2 emissions is computed as
the product between the avoided mass and its specific cost, CCO2. It is assumed that the
avoided CO2 amount is equal the CO2 mass that would be produced by the stoichiometric
combustion of the fuel saved, assumed to be natural gas (thus, the fraction of carbon, xC, is
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likely considered equal to 0.75 and the lower heating value, LHV, is considered equal to
47 MJ/kg [33]).

CFi = EPES ×
(

C f uel +
44
12
× xC

LHV
× CCO2

)
(10)

C f uel is chosen equal to the average natural gas price in Europe in 2019, 26.7 EUR/MWh [34],
and a reference carbon tax value is selected equal to 40 EUR/ton, as in line with its average
value in some European countries [35].

6.2. Reference Case Results

In the reference case, the gas turbine load profile of a natural gas compressor sta-
tion [36] is considered. The number of operating hours (on the yearly base) in which the
gas turbine works at given GT load are presented in Figure 12. It is shown that the gas
turbine works at full load for about half of the operating hours, whilst for the rest of the
time, the GT load is almost equally distributed between the 50% and the 90%.
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Figure 12. Reference yearly demand profile of a natural gas compressor station (source [36]).

A summary of the design performance results, the yearly energy production and
savings, is reported in tabular form (see Table 5). As discussed in the previous sections,
the s-CO2 configurations exhibit better performance than the ORC, in design operation,
both concerning the electric and the thermal production. The yearly energetic results
demonstrate that this applies also to the yearly based performance; indeed, the s-CO2
allows saving, on average, 16% more fuel than the ORC solution and consequently also
16% more CO2 emissions. The same increase is observed for the yearly economic gain.

Table 5. Results summary.

GT1 GT2 GT3 GT4

s-CO2 ORC s-CO2 ORC s-CO2 ORC s-CO2 ORC

Bottomer size (MW) 0.58 0.45 1.70 1.30 3.86 3.19 8.11 6.58
Electric power output (MW) 2 1.87 7.02 6.65 16.25 15.66 35.73 34.54

Thermal power (MW) 2.65 2.23 6.94 6.42 15.07 13.49 29.30 28.36
Electric energy (GWh/year) 15.32 14.43 54.36 51.95 124.81 120.69 274.38 266.89

Thermal energy (GWh/year) 21.47 17.12 56.55 52.46 121.52 103.57 233.24 220.31
Fuel saving (GWh/year) 32.19 25.64 87.63 78.45 189.62 161.75 371.16 342.37

Avoided emissions (tonCO2) 1.88 1.50 5.13 4.59 11.09 9.46 21.72 20.03
Economic gain (kEUR/year) * 75.33 60.01 205.09 183.61 443.80 378.57 868.68 801.30

* Reference case results—Figure 12 demand profile and CCO2 = 40 EUR/ton

Yet, in spite of the significant economic gain expected from the s-CO2 operation, the
net present value of the investment does not seems to always be favorable on this system,
as shown in Figure 13 (see “s-CO2 ref” and “ORC ref” data). This is mainly due to the fact
of the still high investment costs associated with this fledgling technology, in particular
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concerning the recovery heat exchangers. However, given the considerable economic gain,
it is not excluded that once the technology becomes established, s-CO2 may become a
very competitive solution for industrial gas turbines’ heat recovery. On the other hand,
the current lower investment costs required to install an ORC system make this solution
practical and often profitable.
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6.3. Costs Parametric Analysis

Factors that can influence the bottoming cycles’ feasibility, and which can considerably
vary from application to application, are the user profile demand and the carbon tax value.
The profile demand can be more or less shifted to high or low loads, whilst the carbon
tax value is variable from country to country can be null or even equal to 108 EUR/ton,
as in the case of Sweden [35]. Thus, to complete the economic analysis, the investment is
evaluated by considering also more favorable economic conditions, i.e., a full load yearly
demand profile (see Figure 13a) and a higher carbon tax value, equal to 108 EUR/ton (see
Figure 13b).

These results reveal that among the two analyzed factors, the most decisive one on the
return of the investment is surely the carbon tax value. It is observed, indeed, that higher
values of the carbon tax reduce the gap between the gain obtained with the ORC and the
one obtained with the s-CO2 (see Figure 13b). This is due to the higher valorization of the
avoid emissions, which are the 15% higher for the s-CO2 than for the ORC (see Table 1).
Generally, with higher values of the carbon tax, the s-CO2 system may become convenient
as the bottomer of all the analyzed gas turbines, as well as the ORC, with a net present
value more than twice of its reference value.

The return on the investment is instead less sensitive to the variation of the profile
demand (see Figure 13a). Working at full load during the entire year does not grant such a
significant gain equal to the one obtainable by introducing a high carbon tax. Comparing
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the case at the reference load profile and the full load profile, the net present value increase
of the 17%. However, in some cases, the yearly demand profile can be decisive to have a
return on the investment, for example, when the investment is uncertain and the net present
value is near to zero. This is the case of the GT1-ORC and the GT3 s-CO2 configurations,
which are not convenient if operating at part-load conditions, but they can become so if
working at full load during the entire year.

Other several factors can then affect the return on the investment, among which are
the natural gas cost and the discount rate (directly influencing the net present value) and
the ambient temperature (influencing the performance and indirectly the net present value).
Studies dedicated to the parametric analysis of these factors are already proposed by the
authors for what concerns the ORC industrial WHR application (as the reader can find
in [19]). Future works are instead under development to focus deeply on investigating
these aspects focusing on the s-CO2 systems only.

7. Conclusions

This paper presents a detailed investigation and comparison of ORC and s-CO2
potential as bottoming recovery cycles in combined heat and power plant configuration
inside industrial facility, comparing several gas turbine models at part-load operation. The
findings of this work can be summarized as follows:

• Despite the ORC presenting higher heat recovery efficiency, the s-CO2 demonstrates
better exploitation of the recovered thermal power, showing higher bottoming cycle
efficiency, up to the 28%. The ORC efficiency instead does not exceed the 18%. The
ORC specific work is considerably affected by the condensing temperature, which
determines the condensing pressure and the expander pressure ratio, consequently.
This is not valid for the s-CO2 pressure ratio, which does not depend on the thermal
user requested temperature, making the s-CO2 most suitable for combined heat and
power plant applications. The s-CO2 thermal efficiency is also greater than that of the
ORC, with largely positive PES values, up to 22%).

• At part-load operation, an influence of the gas turbine regulation strategy over the
bottoming cycles’ performance can be observed. In particular, the s-CO2 system
maintains higher part-load performance when working with turbines regulated by
means of the VTIT strategy, thus working with almost constant exhaust flow rate. On
the contrary, the ORC power plant benefits from working with exhaust temperatures
that do not change significantly with respect to the design values.

• In economic terms, the total plant investment cost results in being conspicuous for
the s-CO2 rather than for the ORC. The s-CO2 requires very higher heat exchangers
costs, because of the large size of the heat recovery heat exchanger, but also to the
high specific investment cost still associated to this component. The s-CO2 also
requires larger size and more expensive operating machines. On the other hand, the
ORC operates with larger turbines due to the lower densities of the fluid during the
expansion process, which entail higher expander investment costs. However, this cost
item is not counterbalanced by the previous.

• Considering the analyzed scenarios, the high investment costs still associated with
the s-CO2 technology make it already not practical for industrial gas turbine heat
recovery applications (no return on the investment), except in the case where a high
value carbon tax value is applied. On the contrary, the current lower ORC investment
costs make this solution profitable, granting a return on the investment in most of the
cases. However, given the considerable economic gain, it is not excluded that once the
technology will be established, the s-CO2 may become very competitive in this sector.
Nowadays, a crucial parameter determining the feasibility of the investment is surely
the carbon tax value. The influence of the user profile demand is instead less strong,
even if it can be decisive when the investment is uncertain and the net present value
close to zero.
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Nomenclature

Acronyms and Abbreviations
CHP Combined Heat and Power
GT Gas Turbine
HX Heat Exchanger
Norm. Normalized
ORC Organic Rankine Cycle
Op. Operating
s-CO2 PES Supercritical CO2 Cycle
VIGV Primary Energy Saving
VSS Variable Inlet Guide Vanes
VTIT Variable Shaft Speed
WHR Variable Turbine Inlet Temperature Waste Heat Recovery
Symbols and Greek letters
A Heat transfer area (m2)
C Cost (EUR)
CF Cash flow (EUR)
corr Correction factor
E Energy (Wh/year)
F Power introduced with fuel (W)
FF Flow function
h Enthalpy (J/kg)
I Total investment (EUR)
LHV Lower heating value (J/kg)
.

m Mass flow rate (kg/s)
NPV Net Present Value (EUR)
p Pressure (bar)
P Electrical power (W)
PB Payback period (years)
q Discount rate (-)
Q Thermal power (W)
SP Turbine size parameter (m)
PES Primary energy saving (-)
T Temperature (K)
U Heat transfer coefficient (W/m2/K)
xC Carbon fraction (-)
∆ Difference
ε Heat recovery efficiency (-)
η Efficiency (-)
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Subscripts
amb Ambient
ava Available
bott Bottomer
cog Cogenerative
des Design
ex Exhaust gas
exp Expander
is Isentropic
mac Machine
ml Mean logarithmic
out Outlet
rec Recovery
ref Reference
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