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Abstract: Estimation and control of wheel slip is a critical consideration in preventing loss of traction,
minimizing power consumptions, and reducing soil disturbance. An approach to wheel slip estima-
tion and control, which is robust to sensor noises and modeling imperfection, has been investigated
in this study. The proposed method uses a simplified form of wheels longitudinal dynamic and the
measurement of wheel and vehicle speeds to estimate and control the optimum slip. The longitudinal
wheel forces were estimated using a robust sliding mode observer. A straightforward and simple
interpolation method, which involves the use of Burckhardt tire model, instantaneous values of
wheel slip, and the estimate of longitudinal force, was used to determine the optimum slip ratio
that guarantees maximum friction coefficient between the wheel and the road surface. An integral
sliding mode control strategy was also developed to force the wheel slip to track the desired optimum
value. The algorithm was tested in Matlab/Simulink environment and later implemented on an
autonomous electric vehicle test platform developed by the Nanjing agricultural university. Results
from simulation and field tests on surfaces with different friction coefficients (µ) have proved that the
algorithm can detect an abrupt change in terrain friction coefficient; it can also estimate and track the
optimum slip. More so, the result has shown that the algorithm is robust to bounded variations on the
weight on the wheels and rolling resistance. During simulation and field test, the system reduced the
slip from non-optimal values of about 0.8 to optimal values of less than 0.2. The algorithm achieved
a reduction in slip ratio by reducing the torque delivery to the wheel, which invariably leads to a
reduction in wheel velocity.

Keywords: electric tractors (ET); sliding mode control; wheel slip control; driving force observer;
Burckhardt traction model

1. Introduction

In precision agriculture, the primary objectives are to improve production efficiency;
reduce environmental degradation; and, more importantly, optimize the use of available
resources such as energy, water, seeds, and fertilizer. In line with these objectives, electric
tractors (ET) were introduced into agricultural productions. In ET, electric motors are
used for traction, while chemical batteries, fuel cells, or ultracapacitors are used as energy
sources. Compared to internal combustion engines, electric tractors have the advantages of
having fewer components, being emission-free, having high efficiency, being independent
from petroleum, and having quiet and smooth operations [1]. ET is also easy to handle
because its dynamic can be easily realized by controlling the electric motor. ET’s advan-
tages are realized because electric motors, which are its prime components, have a quick
torque response and can be easily controlled by manipulating voltage [2]. To leverage
on the advantages of electric vehicle technologies, electric tractors were developed for
pesticide applications and other agricultural purposes. The main advantages are that such
operation does not require high power; as such, their power demand can be met by the
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electric batteries [3–8]. Though much progress has been achieved on improving batteries’
performance, its energy density is still lower than that of conventional fuel, and the cost
is still high [9–13]. Studies have been conducted with the sole aim of increasing the oper-
ating range of electric vehicles, and these studies have led to the development of various
techniques for reducing power consumption. Online traction control and optimization is
among the most promising researched areas.

A critical role is played by traction control in vehicles’ dynamic control. It improves
drive efficiency, increases safety, and makes the system more stable [14]. Traction is the
force that propels the vehicles in the direction of motion; it is generated by the friction
between the wheels and the road/terrain surface. Friction is dependent on many variables,
including road type, road conditions, wheel types, wheel slip, vertical load, tire wear
state, and temperature [14,15]. Additionally, it is affected by operation parameters such as
velocity and acceleration. Researchers in vehicles’ dynamic controls have lumped all these
factors affecting the friction into a single parameter call friction coefficient. This parameter
is found to be dependent on the wheel slip. There exists an optimum value of slip, for
each road type and set of conditions, at which the friction coefficient is high. Since the slip
affects friction coefficient and invariably the traction force, it is used as the control variable
in most of the traction control. Therefore, traction controls are designed to regulate slip to
the optimum value. By so doing, degradation of driving performances resulting during
sudden acceleration in poor road conditions is eradicated. One more benefit is that the
power consumption is also reduced. Unfortunately, traction control is generally difficult
because of the uncertainty and nonlinearity associated with the friction between the wheel
and road surface [16].

The earliest studies on traction control were based on maximum transmissible torque
estimation (MTTE), model following control (MFC), and velocity feedback. However, the
most recent studies were based on slip feedback. This change in focus is connected to the
fact that there is a strong relationship between slip rate and traction force, and the ease of
slip estimation due to the development and availability of improved sensors [17–22].

Previous studies were mainly directed to address the problems of estimating the veloc-
ity of the vehicle. Difficulties, such as drift caused by DC offset while using accelerometers,
high cost of optical sensors, and their susceptibility to contamination by mud or water
necessitated the development of traction control that does not depend on vehicle velocity
estimation [23–27]. Model following control (MFC) does not need information on vehicle
velocity or acceleration; it is based on only wheel torque and wheel velocity. However, to
accommodate worst-case scenario in a real field environment, high control gain is required
in tuning the controllers, and this constrains the performance of the method [2,28–30].
MTTE is another means of traction control without the need to estimate vehicle speed. It
is an improved form of MFC, and it centers on comparing the maximum torque devel-
oped based on the vehicle dynamic model and the one measured using sensors. When
wheels slip, a difference is obtained between the two torques, and this difference is feed-
back to the controller. The method’s major drawbacks are high sensitivity to variation in
wheel inertia and steering difficulty in situations where the wheels have different friction
coefficients [29,31,32].

Traction control that is more robust to changes in terrain types, the unknown wheel-
terrain conditions, and does not have the limitations of MFC and MTTE was achieved
through slip feedback control. However, it is only applicable where a reliable estimate
of vehicle velocity is available. Because it was found experimentally that the traction is
highest at the slip range 15–30% for many terrains, earlier studies on slip feedback pegged
the optimum slip within this range [33]. However, it was found that the optimum value of
slip is dependent on tires, operation parameters, and road conditions. These have led to
the development of slip controls based on a real-time estimate of the optimum slip, which
correspond to high friction between tire and road surfaces. Lookup tables were used to
estimate optimum slip, and gave a satisfactory performance on the various roads. Because
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lookup-table-based systems are detuned to consider the worst scenario, such as wet or icy
roads, a suboptimal controller is usually obtained [16].

The most recent research trend is the online estimation of optimum slip for different
terrains in various conditions. In [33], the performances of fuzzy logic and sliding mode
observer were tested for optimum slip estimation. The study established that observer
techniques are appropriate for online estimation of peak adhesion coefficients for different
tire-road surface conditions. In [34], the optimal slip value was obtained by taking the first
derivative of the slip–adhesion function, the point at which the derivative is equal to zero
is taken as the point of optimum slip. The main problem of the method is that it gives
an average value of the optimum slip. Furthermore, studies have shown that it mainly
estimates high slip changes such as the change from dry road to gravel [35]. Additionally,
machine learning applications such as the support vector machine (SVM) and artificial
neural network (ANN) have been applied in estimating optimum slip, especially in a
situation of low changes in slip value (same road and condition). However, the problem of
a tradeoff between generality and estimation speed remains [36].

Due to its ability to perform good unbiased estimation, the recursive least square
algorithm (RLS) has been employed to estimate road friction conditions [37]. The algo-
rithm also has a fast response speed, strong anti-jamming capability, and can deal with
nonlinearities associated with complex tire models [38,39].

This work’s main objective is to develop an algorithm for the online traction control of
electric vehicles used in agricultural fields. The original contribution lies in combining the
robustness of sliding mode controller and observer, with the simplicity of the Burckhardt
model, to accurately estimate the optimum maximum friction coefficient and the slip ratio
at which it occurs. The use of sliding mode observers to estimate the longitudinal wheel
force has eliminated the use of expensive sensors in measuring the force. In essence, the
study includes developing an optimum slip estimation algorithm by using the Burckhardt
traction model, and the design of integral sliding mode controller for tracking the optimum
slip. The systems’ performance was evaluated in the Matlab/Simulink environment.
Finally, the system was implemented on an electric vehicle test platform and tested in
different terrain types.

2. Materials and Methods
2.1. Vehicle Modelling

Four degrees of freedom vehicle model was established by considering the motion
along the x, y, and z-axis, also considered is the yaw moment along the z-axis. As depicted
in Figure 1, the vehicle has a rear-wheel steering system. The x and y axes reside in the
ground plane, while the z-axis is perpendicular to the plane of x-y.

Because low speed of operations and flat terrain are considered, the effect of aerody-
namic force and grade resistance were neglected to simplify the model. The machine is
designed to work in unstructured terrain where soil under the wheels may not be the same.
The following are the equations necessary for development and analysis of traction control.

Longitudinal force on the vehicle:

M
(
ax −

.
γ ∗Vy

)
= Fx f r + Fx f l + Fxrr + Fxrl − (Froll, f r + Froll, f l + Froll, rr cos δ + Froll,rl cos δ) (1)

Lateral force on the vehicle:

M
(
ay −

.
γ ∗Vx

)
= Fy f r + Fy f l + Fyrr + Fyrl − (Froll,rr sin δ + Froll,rl sin δ) (2)

Yaw moment of the vehicle:

Iz =
(

Fx f r + Fxrr

)
wr −

(
Fx f l + Fxrl

)
w f +

(
Fyrr + Fyrl

)
lr −

(
Fy f r + Fy f l

)
l f (3)

where M denotes the mass of the vehicle at center of gravity (CG); ax denotes the longitudi-
nal acceleration of the vehicle; ay denotes the lateral acceleration of the vehicle; Vx denotes
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the longitudinal velocity of the vehicle; Vy denotes the lateral velocity of the vehicle;
.
γ

denotes the yaw rate of the vehicle; and δ denotes the steering angle.

Figure 1. Free body diagram of the vehicle: (A) view from the top and (B) view from the side.

Fxi stands for the longitudinal tire-road friction force for the wheels; Fyi stands for the
lateral tire-road friction force for the wheels; Froll,i stands for the rolling resistance force on
wheels direction of travel; the subscript, i, in Fxi, Fyi, and Froll,i stands for f l, f r, rl, and rr,
respectively, with f l, as front left; f r, front right; rl, rear left, and rr, rear right, respectively.

l f stands for distance from the vehicle center of gravity to axis that passed through
the center of the front wheels; lr, distance from the vehicle center of gravity to the axis that
passed through the center of the rear wheels; W f and Wr, front and rear wheelbase (equal
length); HCG, height of the center of gravity; and CG, the center of gravity.

Vertical forces acting on each wheel are defined as follows [40,41]:

Fz f r

Fz f l

Fzr f

Fzrr


= M·



( l f × g + Hcg × ax
L

)(
1
2 −

Hcg
W f
× ay

g

)
( l f × g + Hcg × ax

L

)(
1
2 +

Hcg
W f
× ay

g

)(
lr × g + Hcg × ax

L

)(
1
2 −

Hcg
Wr
× ay

g

)(
lr × g + Hcg × ax

L

)(
1
2 +

Hcg
Wr
× ay

g

)

 (4)
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where Fz f r, Fz f l , Fzrl , and Fzrr are the vertical force on the front right, front left, rear left, and
rear right wheel, respectively; g, is acceleration due to gravity; and L = l f + lr.

The dynamic of each wheel model can be described by the torque balance of the
system in Figure 2, as shown in Equation (5):

.
ωi =

Tmi
J
− r·Fxi

J
(5)

where J stands for the wheel inertia including motor and reducer; Tmi, the torque transmit-
ted to the wheels;

.
ωi, wheels rotational acceleration; and r, wheel radius.

Figure 2. Free body diagram of one wheel.

Wheels longitudinal slip is defined in Equation (6). To avoid a situation whereby the
denominator of the slip function becomes zero, which will lead to an infinite value for the
slip, a small constant value of 0.05 m/s was set as the minimum value for the slip function
denominator.

λi =
ωi·r−Vx

ωi·r
(6)

where λi stands for wheel longitudinal slip and ω stands for wheel rotational speed.
The road friction coefficient µi(λ), which is a nonlinear function of many physical

variables including the velocity of the vehicle, the road surface conditions, and slip ratio, is
defined as

µi(λ) =
Fxi
Fzi

(7)

2.2. Slip Dynamic Based on a Simplified Vehicle Model

The slip dynamic, which is the basis for formulating traction control algorithm, is
developed in this section. In order to reduce computational demand on controller, the
following simplifications were made in the slip dynamics: it is assumed that viscous torque
developed at the wheels’ axles is negligible compared to the torque developed by the
longitudinal force, and the yaw rate and lateral acceleration were also set to zero. Due
to weight transfer, the tractive force that develops at each of the wheels is assumed to be
different. Furthermore, it is assumed that the wheels longitudinal velocity (Vwi = ωi·r),
and the vehicle longitudinal velocity are greater than or equal to zero (Vwi ≥ 0 and Vx ≥ 0).
To control traction or speed of the vehicle, the torque delivered to the wheels by the electric
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motor is the parameter to be manipulated; therefore, the torque is the control input. Because
the structures of the traction models of each of the wheels is similar, method for controlling
the tractive force of only one wheel is going to be described. These simplifications may
cause some uncertainties; however, real systems are far from being idealistic, uncertainties
and unmodelled dynamics are inevitable, and robust controllers are usually used to take
charge of these systems’ limitations [42].

The simplified longitudinal acceleration model based on one-wheel dynamics, derived
from Equation (1), is given.

ax =
∑ Fxi −∑ Froll

M
(8)

From Equation (6), the wheels rotational speed as a function of slip ratio and vehicle
speed can be written as

ωi =
Vx

r

(
1

1− λi

)
(9)

When the slip function in Equation (6) is differentiated, the following function is obtained:

.
λi =

Vx

ω2
i ·r

.
ωi −

1
ωi·r

ax (10)

While the state variables in Equation (10) are
.

ω, the wheel rotational acceleration and
ax, the vehicle longitudinal acceleration, the variable of interest in the design of the slip
controller is the slip ratio. Therefore, the slip dynamic model in (10) was manipulated to
make the slip ratio and vehicle velocities the state variables.

By substituting Equations (5) and (9) into Equation (10), the following model for slip
dynamic function is obtained:

.
λi = −

1
Vx

(
1− λi

M

(
∑ Fxi −∑ Froll

)
+

r2(1− λi)
2

J
·Fxi

)
+

r(1− λi)
2

J·Vx
Tmi (11)

For the sake of simplicity purpose, we take

f fi = −
1

Vx

(
1− λi

M

(
∑ Fxi −∑ Froll,i

)
+

r2(1− λi)
2

J
·Fxi

)
(12)

And

ggi =
r·(1− λi)

2

J·Vx
(13)

Therefore, the slip dynamic in Equation (11) can be written as

.
λi = f fi + ggi·Tmi (14)

2.3. Wheel Longitudinal Force Observer

In this section, an observer is proposed to identify the longitudinal force of each wheel.
Due to the high cost of commercially available sensors for online measurement of tire longi-
tudinal force, Fxi, efficient technique of estimation for these forces is strongly recommended.
The fast dynamics of wheels’ vertical forces make the longitudinal force, which is depen-
dent on the wheel’s vertical force, unsuitable for adaptive compensation. Additionally,
the large uncertainty in the friction coefficient between the terrain and the wheel makes it
unsuitable for robust compensation because of the need for high loop gain [43]. Therefore,
an observer was designed to estimate the longitudinal force. Due to finite convergence;
insensitivity to modeling errors; modeling uncertainties; and measurement noise, a sliding
mode observer was chosen [44–50]. Values of vehicle mass and wheel inertia, accurate
measurement of wheel torque, and speed were used in the observer models.
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Design of the Observer

Because of the lack of cost-effective sensors for measuring longitudinal force, observers
are used to estimate the force from the measurement of other variables. The use of the
observer also solves the problem of noise in the measuring sensors. An observer was
designed to estimate the friction force between the tire and the soil using wheel angular
velocity, torque, and wheel dynamic model. In the observer’s design and implementation,
numerical differentiation to obtain angular acceleration was avoided because of its sensi-
tivity to measurement noise and quantization, as reported in [43]. Under the assumption
that wheel inertia (J) is known, first-order sliding mode observer was designed as follows.

First, based on the procedure described in [3,43,51], the wheel torque balance in
Equation (5) is estimated as

J·
.

ω̂i = Tmi − r·L(ωi, ω̂i) (15)

where
.

ω̂i is the state estimate of the ‘wheel’s angular acceleration; ω̂i is the state estimate of
the ‘wheel’s angular velocity; and L(ωi, ω̂i) is a discontinuous input signal for the observer.

The discontinuous input signal for the observer in Equation (15) is defined as

L(ωi, ω̂i) = Ωi·sign(sωi) (16)

sωi = ωi − ω̂i (17)

where Ωi is the observer gain, and sωi is the the sliding variable, which is the difference
between the measured and estimated wheel rotational speed.

The discontinuous signum function in Equation (16) is defined as

sign(sωi) =

{
+1, sωi ≤ 0
−1, sωi > 0

(18)

By differentiating Equation (17), and substituting Equations (5), (15) and (16), the
expression in Equation (19) is obtained

.
sωi =

.
ωi −

.
ω̂i =

−r
J
(Fxi + Ω·sign(sωi)) (19)

As the dynamic function in Equation (19) approaches zero, the discontinuous input
signal L(ωi, ω̂i) will approach Fxi, thereby getting an estimate of Fxi. The function L(ωi, ω̂i)
can only take the values of ±Ω and zero, so it determines the sign of Fxi.

The condition for the sliding variable sωi to converge to zero in finite time was obtained
by formulating the Lyapunov function, V1, [52]. The function is defined as the positive
definite function of the estimation error, sωi:

V1 =
1
2

s2
ωi (20)

The sliding condition that guarantees the attractivity of sωi is obtained by differentiat-
ing Equation (20) as

.
V1 = sωi

.
sωi (21)

By substituting the error dynamic in Equation (19) into Equation (21), the following
expression is obtained:

.
V1 = sωi·

(
− r

J
(Fxi + Ωi·sign(sωi))

)
(22)

This implies that
.

V1 = − r
J
(Fxi·sωi + Ωi·|sωi|) (23)
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Because sωi is ± and the |sωi| is always +1, if Ω is chosen such that the following
inequality is satisfied

Ωi > max(|Fxi|) (24)

It will give
.

V1 < 0 (25)

Satisfying the conditions in Equation (20) and the inequality in (24) proves that the
sliding variable is asymptotically stable.

Theoretically, the input signal of the sliding mode observer switches at an infinitely
high frequency. However, in reality, it is impossible to have such an ideal input signal, so
the system oscillates at a limited frequency, with both high- and low-frequency compo-
nents [53]. Therefore, an equivalent value of the frictional force (Fxi) was obtained from
the low-frequency component of

.
Swi by using lowpass filter. So, only the convergence

of the low-frequency component of discontinuous signal was required to estimate the
longitudinal force [43,51,54].

2.4. Wheel Terrain Interaction and Optimum Slip Estimation

It has been found that the value of the frictional force between the wheel and the
terrain varied with wheel slip, and a particular slip at which the frictional force is high
exists for all the terrains. As a result of this, a lot of traction prediction models that
relate to wheel slip, wheel longitudinal force, and other wheel-terrain parameters have
been developed. Some of the developed models are purely theoretical, while others are
empirical or semi-empirical. The semi-empirical models are computationally faster than the
theoretical ones. They are more general in terms of applicability in comparison to purely
empirical ones [8]. Because the tractor is designed to work on concrete, road, firm soil, and
agricultural farms, a model with broad applicability as well as simplicity is required. Due to
its relatively simple structure, high accuracy in fitting traction data, and broad applicability
in many driving conditions, the Burckhardt tire model was used to characterize this work’s
traction force [55,56]. Compared to the magic formula and other models, which are more
accurate, the Burckhardt tire model provided a good tradeoff between modeling accuracy
and computational cost [50].

The model equation as a function of lambda (λ) is described as

µ(λ)i = c1

(
1− e−c2λi

)
− c3λi (26)

where the parameters c1, c2, and c3 are constant variables that are different for different
terrain. The values for the parameters for some terrains, including high and low friction
coefficient surfaces such as dry concrete and snow, are presented in Table 1.

Table 1. Parameters of road surface adhesion coefficient [57].

Road Surface c1 c2 c3

Dry asphalt 1.28 23.99 0.52
Wet asphalt 0.86 33.82 0.35
Wet pebbles 0.40 33.71 0.12

Snow 0.19 94.13 0.06
Ice 0.05 306.4 0.001

The main problem is that the values of the model parameters are not available for all
the diverse groups of terrains in the real world, and the available ones are not fixed; even
for a particular terrain, they change with the change in surface condition. Moreover, as
shown in Figure 3, the friction coefficient changes with the change in the slip ratio, and it
reaches a peak point at a particular value of slip (optimum), beyond which the value starts
to decline.
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Figure 3. Slip ratio versus friction coefficient.

For high traction, the longitudinal force needs to be controlled at that optimum value
of slip. A simple and feasible interpolation method was put forward for estimating the
instantaneous values of the parameters, maximum friction coefficient, and the optimum
slip for different terrains in previous studies [58,59]. The principle of operation of the
method is shown in Figure 4, and the process is as follows.

Step 1. By estimating the frictional force as in Section 2.3 and substituting the value
equation (7), the instantaneous value of friction coefficient is obtained, while the
instantaneous value of slip was obtained from Equation (6).

Step 2. Using the instantaneous value of slip (λi) and the model parameters of the five
different terrain types shown in Table 1, five sets of transient values for friction
coefficient (µi) are calculated by using Equation (26).

Step 3. Then, five sets of error values (∆i) are generated, by subtracting the estimate
friction coefficient (µ̂i) from the calculated ones (µi).

Step 4. The two smallest error values (∆1 and ∆2) from step 3 are selected.
Step 5. Using Equation (26) and the values of soil parameters (c1, c2 and c3) at the two

points where ∆1 and ∆2 are obtained, two functions are generated:

µx1(λ)i = c1

(
1− e−c2λi

)
− c3λi (27)

µx2(λ)i = c1

(
1− e−c2λi

)
− c3λi (28)

Step 6. Using ∆1 and ∆2 from step 4 and the functions µx1(λ)i and µx2(λ)i from step 5, a
new function is reconstructed to estimate the maximum friction coefficient and
the corresponding slip values at which it occurs (Figure 4 and Equation (29)).

µ(λ)i =
∆1

∆2 + ∆1
µx1(λ)i +

∆2

∆2 + ∆1
µx2(λ)i (29)



Energies 2021, 14, 3394 10 of 24

Step 7. By differentiating Equation (29) and setting the value to zero, the optimum slip
(λopt,i), at which the friction coefficient µ(λ)i is maximum is obtained. The maxi-
mum friction coefficient µmax,i can be obtained as in Equation (30)

µmax,i = f
(
λopt,i

)
(30)

where µmax,i is the maximum tire-road friction coefficient and λopt,i is the corre-
sponding slip ratio of µmax,i.

Figure 4. Optimum slip estimation [49,50] different font sizes and types.

3. Traction Control Design

The procedure of developing a controller for achieving the system’s objective of forcing
the system to follow the desired optimum slip is described in this section.

3.1. Controller Design and Analysis

Due to the need of having high robustness to bounded parameter variations and the
modeling imperfections that exist in wheel-terrain interaction systems, and also the issue
of unmodeled dynamics due to pitch and roll moments, a sliding mode control (SMC)
technique was proposed in this study. SMC has shown superior performance to other
controllers such as PI in our previous study [3]. The controller was first designed without
considering parameter variations, and later it was made robust to bounded parametric
variations. As in all SMC design processes, the sliding surface was designed first, then a
control law, that forced and retained the system at the sliding surface was designed.

3.1.1. The Sliding Surfaces Design

Designing a sliding surface for a second and higher-order systems results in expo-
nential convergence of the state errors to zero, while in the first-order systems it resulted
in a vertical line, which does not yield exponential convergence, in the phase plane. Fur-
thermore, the dynamics outside the sliding surface become difficult to control [43]. In
such cases, integral sliding mode control is used to ensure the state error’s exponential
convergence, even when the system dynamic is not equal to zero. One more advantage
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of integral sliding mode control is that it eliminates the reaching phase completely. An
auxiliary sliding surface was designed as follows [51,60]:

Saux,i = λ̃i(t) + η
∫ t

0
λ̃i(τ)dτ − λ̃i(0) (31)

λ̃i = λi − λ∗i (32)

where Saux,i represents the auxiliary sliding surface; λ∗i the optimum slip ratio; η a positive
constant that determines the convergence rate, τ a dummy variable used for integration,
and λ̃i(0) a constant value that shifts the sliding surface in the phase plane to ensure that
the auxiliary sliding mode starts from the beginning without any reaching phase, for all
initial conditions (that is, Saux(0) = 0).

The value λ̃i(0) was calculated as described in [43,60]; first, the sliding surface was
set to zero:

Saux(0) = 0 (33)

Equation (31) becomes

λ̃i(t) + η
∫ t

0
λ̃i(τ)dτ = λ̃i(0) (34)

The dynamic of the system in (34) was solved by change of variables, such that

z(t)i =
∫ t

0
λ̃i(τ)dτ (35)

So, if z(t)i =
∫ t

0 λ̃i(τ)dτ, then λ̃i(t) =
.
z(t)i and λ̃ (0) =

.
z(0); hence, by substituting

these values, Equation (34) becomes

.
z(t)i + η·z(t)i =

.
z(0)i (36)

As given in [60], the solution the inhomogeneous ordinary differential equation (ODE)
gives in Equation (36) is then the dynamic of z(t), and it is given as

z(t)i = z(0)i·e
−η·t +

1
η
· .z(0)i·

(
1− e−η·t

)
(37)

By expressing Equation (37) in the original variable and simplifying, the following
value was obtained: ∫ t

0
λ̃i(τ)dτ =

1
η

λ̃i(0)·
(
1− e−η·t

)
(38)

Equation (38) has shown that for any nonzero initial slip error (λ̃i(0)), the integrated
error converges to a nonzero value. However, the variable of interest is the slip error, not
the integrated error; therefore, Equation (38) was differentiated once to the slip error as
follows:

λ̃i(t) = λ̃i(0)·e−η·t (39)

So, it can be seen from (39) that the error λ̃i approaches zero as time (t) approaches
infinity, with an exponential rate of η.

3.1.2. Control Law Design

By assuming that the dynamic model’s initial conditions are known, asymptotic output
tracking can be achieved by developing a sliding mode control law that compensates for
the bounded disturbance in the slip dynamic and drives the sliding variable to zero as
time increases.
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By taking the derivative of the auxiliary sliding surface in Equation (33), we get

.
Saux,i =

.
λ̃i + η·λ̃i (40)

Substituting Equation (32) into (40), and assuming that the derivative of the reference
slip is zero (

.
λ∗i = 0), the following expression was obtained:

.
Saux,i =

.
λi + η·λ̃i (41)

The slip dynamic
.
λ from Equation (14) is substituted into (41), and it becomes:

.
Saux = f fi + ggi·Tmi + η·λ̃i (42)

So, the problem of stabilizing the slip dynamics is now reduced to that of forcing
auxiliary sliding variable in Equation (42) to zero, and this was achieved by designing a
stabilizing control input Tmi.

In order to design a stabilizing control input Tmi, a Lyapunov function (V2) was
formulated, and the control input (Tmi), was chosen such that (

.
V2) is negative definite. The

following positive definite function (V2) was chosen as the candidate Lyapunov function:

V2 =
1
2

S2
aux,i (43)

The time derivative of V is given as

.
V2 = Saux,i·

.
Saux,i (44)

Substituting (42) into (44) gives

.
V2 = Saux·

(
f fi + ggi·Tmi + η·λ̃i

)
(45)

In order to make (45) negative definite, the control input Tmi should be chosen as

Tmi = −
f fi + η·λ̃i + Φi·sign(Saux,i)

gg
(46)

With the parameter Φi as positive integer, and substituting (46) in (45), the following
is obtained: .

V2 = −Φi·sign(Saux,i)·Saux,i = −Φi|Saux,i| (47)

Because Equation (47) is negative definite, it is proved that (43) is a Lyapunov function,
and Saux = 0 is an asymptotically stable equilibrium. Therefore, the system trajectory will
converge to Saux = 0 as time approaches infinity, and the sign function in Equation (46) is
defined as

sign(Saux,i) =


−1, Saux,i < 0
0, Saux,i = 0
+1, Saux,i > 0

(48)

3.2. Robust Controller Design

Due to the uncertainty associated with the functions f fi and ggi, their exact value is
not known, only their estimate f̂ f i and ĝgi is known. As reported in [52], the estimation
errors on f f and gg were assumed to be bounded by the following:∣∣∣ f̂ fi − f fi

∣∣∣ ≤ Fi (49)

0 < ggmin,i ≤ gg ≤ ggmax,i (50)
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where Fi is a known function bounding f fi; ggmin,i, minimum value of the function ggi;
and ggmax,i, the maximum values of the function ggi.

Because the control input (Tmi) multiplies the function (ggi), so the estimates of gg
were chosen as the geometric mean of it bound:

ĝgi =
√

ggmin,i·ggmax,i (51)

The bound on the estimation error of ggi in Equation (53) was also expressed in
another form below:

β−1 ≤
ĝgi
ggi
≤ β (52)

The parameter β will be used later in calculating the controller gain (Φi) and it is
given as:

β =

√
ggmax,i

ggmin,i
(53)

Vertical load on the wheels, wheels radius, and rolling resistance were assumed to be
of unknown exact value; this was due to the weight transfer that is caused by longitudinal
acceleration, roll and pitch acceleration, changes in the wheels rolling radius, and the effect
of rolling resistance. Therefore, the functions f fi and ggi were modified to consider the
bounded disturbances on these vehicle parameters as follows [43,52]:

f̂ f i = −
1

Vx

((
1− λi

M̂

(
∑ Fxi −∑ F̂roll

))
+

(
r̂2·Fxi·(1− λi)

2

J

))
(54)

ĝgi = (
√

rmin·rmax)

(
(1− λi)

2

J·Vx

)
(55)

F̂roll = M̂·g·Ĉ (56)

The bounded interval that is used in calculating controller gain (Φi) is also described
in terms of vehicle system parameters follows [43,52]:

Fi =
1

Vx
·(|1− λi|)

∑|Fxi|·
M(

M̂·Mmin

) + g·C

 (57)

where Mmin is the minimum weight on a wheel; M̂ the estimated weight; M the maximum
deviation of weight on a wheel; rmin the minimum wheel rolling radius; rmax the maximum
wheel rolling radius; Ĉ the estimated value of rolling resistance coefficient; and C the
maximum deviation of rolling resistance coefficient.

The modified control law, which is robust to bounded disturbance, is estimated as
follows:

Tmi =
1

ĝgi

(
− ˆf f i − η·λ̃i

)
+

1
ĝgi

(Φi·sgn(Saux,i)) (58)

With this modified control law in (58), the Lyapunov function will be satisfied when
the condition in the inequality in (59), which is used to determine the controller gain (Φi),
is met.

Φi ≥ β·Fi + (β− 1)
∣∣∣ ˆf f i + η·λ̃i

∣∣∣ (59)

3.3. Chattering Elimination

The discontinuous sign function (sign(Saux,i)) was replaced with a hyperbolic tangent
function (tanh(Saux)), so that the chattering of the system around Saux = 0, which leads
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to the demand for high control effort, was eliminated [51,52]. The function is defined
as follows:

tanh
(

Saux,i

ε

)
=

e
Saux,i

ε − e−
Saux,i

ε

e
Saux,i

ε + e−
Saux,i

ε

(60)

where ε > 0; the steepness of the hyperbolic tangent function is determined by ε value.
The control was then modified to

T̂mi = −
f̂ f i + η·λ̃i + Φi·tanh

(
Saux,i

ε

)
ĝgi

(61)

4. Matlab Simulations

To verify the validity of the control strategy and to tune the controller gains for
satisfactory performance before the actual implementation on a real vehicle, a MAT-
LAB/SIMULINK based model of the electric vehicle was built. The values of fixed and
bounded parameters required to simulate the algorithm are shown in Tables 2 and 3.

Table 2. Parameters of the vehicle’s major components.

Parameters Value

Vehicle weight (kg) 1200
Width (m) 2.3
Height (m) 2.5

Wheelbase (m) 2.2
Ground clearance (m) 2.2

Rated power (kW) 4.5
Rated torque (Nm) 21.5

Maximum torque (Nm) 54.9
Rated speed (rpm) 2000

Maximum speed (rpm) 3000
Motor speed reduction ratio 32:1
Total wheel inertia (Kgms2) 1.95

Wheel radius (M) 0.326
Center of Gravity (CG) 1.1

Table 3. Bounded model parameters.

Parameter/Value Minimum
Value Estimate Maximum

Value
Maximum
Deviation

Mass on the wheels (kg) 200 375 600 225
Rolling resistance
coefficient (Croll)

0.1 0.15 0.2 0.05

The developed wheel slip controller, which is based on integral sliding mode control,
the friction force observer, and the optimum slip estimation algorithms, was also imple-
mented in the environment. The diagram in Figure 5 shows the complete Simulink model.

To evaluate the control functionality and to find an optimal controller setup, several
test scenarios that include surfaces with different friction conditions, different speeds, and
different longitudinal accelerations were considered during the simulation. The controller
gains were tuned to get satisfactory tracking performance.
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Figure 5. Diagram of the observer and sliding mode controller.

4.1. Tracking of Friction Coefficient and Robustness Performance

Figure 6 shows the optimum friction coefficient estimation algorithm’s performance
on terrains with friction coefficient values of 0.2, 0.5, and 0.18, respectively. The algo-
rithm could track an abrupt change in friction coefficient from 0.2 to 0.5 and 0.5 to 0.18,
respectively. It converges to a narrow domain, which contains the optimum value within
10 milliseconds (ms).

Figure 7 shows the robustness of the control algorithms to the bounded disturbances
in the vertical load on the wheels and the changes in rolling resistance of the terrains,
respectively. In Figure 7A, the rolling resistance coefficients used for the simulation were
0.1 (C250), 0.15 (C350), and 0.20 (C450), respectively. The corresponding effect on the
tracking ability of the control algorithms was negligible as the graph for overlap each other.
Figure 7B, the response of control algorithm due change in the weight on the wheel is
shown. Three weights of 250 kg (M250), 350 kg (M350), and 450 kg (M450) were used
during the simulation. As in the case of rolling resistance, only a little change is observed
in the controller response speed. However, the graphs do not overlap. This is an indication
that the system is robust to bounded disturbance.
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Figure 6. Estimation of optimum friction coefficient.

Figure 7. Controller robustness to disturbances: (A) RRC variations and (B) weight variations.

The developed system was simulated for acceleration performances, with and without
the traction control algorithm, respectively, in a low µ surface (0.2). In each case, a step
input was applied at the accelerator pedal at 2 s; as a result, the wheel speed increased
rapidly and diverged from that of the vehicle when the controller was not used (Figure 8A).
At 5 s, the wheel speed reached over 11 m/s, while the vehicle speed was just 1.3 m/s.
In the second instance of the simulation, in which the controller was used to the system,
the wheel and vehicle velocity were regulated to about 6.4 and 6.0 m/s in 5 s, respectively
(Figure 8B).
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Figure 8. Velocity performance (A) without control and (B) with control.

Furthermore, accelerating the vehicle without the controller leads to an increase in the
slip from the values around 0.1 before 2 s to a value up to 0.80 after 2-s of the simulation.
However, when the controller was used, the slip was regulated within the range of the
optimum value of 0.08–0.11 (Figure 9A). As shown in Figure 9B, the torque supplied by
the motor was regulated to less than 40 Nm, unlike in the first instance when it reached as
high as 100 Nm despite not accelerating the vehicle to a value comparable to the increase
in wheel velocity. This shows that the increased torque was wasted in slipping the wheels.

Figure 9. Controller performance in low µ terrain: (A) slip variation and (B) torque variation.

4.2. µ Transition Simulation

Another simulation was conducted on a variable µ surface; the value of µ was gradu-
ally reduced from that of dry concrete surface to wet concrete, ice, and finally snow surface
(0.8–0.18); this was to simulate the worst case of µ transition in real field situations. The
vehicle model was steadily accelerated in the test from 0 to 5 s by applying a ramp input.
Like the previous case, the wheel velocity diverged to more than twice the value of vehicle



Energies 2021, 14, 3394 18 of 24

velocity, as shown in Figure 10A, which resulted in the increased wheel slip (Figure 11A),
thereby not accelerating the vehicle significantly.

Figure 10. Velocity performances (A) without control and (B) with control.

Figure 11. Test performance for µ transition: (A) slip variation and (B) torque variation.

However, when the traction controller was applied, the slip ratio was regulated within the
optimum range. The wheel velocity did not diverge as in the first case (Figures 10A and 11A).

As shown in Figure 11B, the torque supplied by the motor when the traction control
was not implemented reached up to 90 Nm before settling down at about 27 Nm. However,
when TC was implemented, it increased steadily to a maximum of about 30 Nm, and
the fluctuation was less. The increase in torque when TC was not used did not result in
increased vehicle velocity, as depicted in Figure 10B, while in the previous instance, it was
used up, to increase slip the wheels.

4.3. Field Experiment

In order to verify the performance of the proposed algorithms, experiments were
designed and conducted using an experimental platform developed by Nanjing agricultural
university (Figure 12), at the Jiangsu Agricultural Machinery testing station. The vehicle
was equipped with four in-wheel electric motors, and its parameters were the same as
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those used during the simulations. The terrain surfaces were dry concrete and moist soil
with estimated friction coefficients of 0.8 and 0.2–0.3, respectively.

Figure 12. Electric vehicle testing platform in the field.

The velocity and drive torque of each wheel was measured using Panasonic A52
series servo motor driver. The model number and precision of the servo driver were
MFME454G1G and 0.1 m/s, respectively. The vehicle velocity and acceleration were mea-
sured by P3 Beidou reference station receiver with a speed precision of 0.03 m/s. The
control algorithm simulates in Section 3 were converted and uploaded to S7-200 Micro-
controller, which is available on the experimental platform. The platform was tested for
acceleration on a low µ surface (wet grassy clayey soil surface). Two tests were conducted,
one with the traction control engage and the other without engaging the algorithm. In
each of the cases, the vehicle was run on a straight line for 35 s at a speed range of about
0–2 m/s. The vehicle was accelerated and decelerated from the beginning to the end of
field during the test. The values of wheel torque, slip ratios, wheel speed, and vehicle
speed were recorded during the test.

As shown in Figure 13A,B, the slip ratio reached up to 0.8 value when the controller
was not engaged, and the value was regulated at less than or equal to 0.15 when the
controller was engaged.

Figure 13. Slip ratio performances (A) with control and (B) without control.
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By controlling the slip, the wheel speed was maintained close to the vehicle speed
as depicted in Figure 14A. In contrast, the wheel speed diverges from the vehicle speed
significantly in Figure 14B, during the test without the controller.

Figure 14. Speed performances (A) with control and (B) without control.

The torque performances of the system are shown in Figure 15; it is observed that the
torque delivered in the controlled case is about a maximum value of 19 Nm, while in the
uncontrolled case, it reached up to 24 Nm; this indicates that the motor delivered more
torque in the uncontrolled test, even though the vehicle accelerated more in the test when
the controller was applied. Therefore, the controller assists in reducing torque wastage.

Figure 15. Torque performances (A) with control and (B) without control.

On a general note, comparing the controller’s simulated and field response, a similar
trend was observed during acceleration and transition from one surface to another. The
controller reduces the torque delivered to the wheels, which decreases the wheel speed,
thereby suppressing the slip ratio to a lower value that cannot cause soil disturbance and
unnecessary loss of energy. However, it is observed that the controller gave more torque
(up to 30 Nm) during the simulation, in comparison to the field test, which was about
19 Nm (Figures 11B and 15A). In both simulation and field tests, the trend of the results for
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slip ratio, torque, and velocity was similar. It can be observed that at some point in the field
test results, the torque and slip ratio were negative; this was due to sudden application of
brake while maneuvering the vehicle in the field.

5. Conclusions

The study proposed and developed an efficient and feasible means of estimating an
optimum slip that corresponds to maximum traction and low soil disturbances. A robust
integral sliding mode control scheme was applied to regulate the slip at the optimum
estimated value that guaranteed high traction force. Using an instrumented electric vehicle
test platform developed by Nanjing agricultural university, the proposed system was
verified to be effective during simulation and field experiments. The controller was able
to quickly estimate and track the optimum slip despite the modelling uncertainties and
changes in terms of weight on wheels and the rolling resistance. The algorithm assigned an
optimal torque to the wheels during acceleration on low µ surfaces, and in the transition
from high to low µ surfaces. It suppressed the slip ratio from the non-optimal value
of about 0.8 and above, to optimal values of less than 0.2. Therefore, the controller is
recommended for use in traction control for maximum traction, reduced soil disturbance,
and lower power consumption.
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Nomenclature

µ friction coefficients
T wheel torque
r wheel radius
b wheel with
λ slip ratio
RLS least square algorithms
PI proportional integral controller
GPS geographical positioning system
Fz vertical load acting on the wheel
M the mass of the vehicle
ax longitudinal acceleration
ay lateral acceleration

L f
distance from the vehicle center of gravity to the axis that passed through
the center of the front wheels

Lr
distance from the vehicle center of gravity to the axis that passed through
the center of the rear wheels

W f , Wr front and rear wheelbase (equal length)
hcg height of the center of gravity
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J wheel inertia including motor and reducer
Ω observer gain
Tm wheel torque
DC direct current voltage
ET electric tractors
MTTE maximum transmissible torque estimation
MFC model following control
SVM support vector machine
ANN artificial neural network
Froll rolling resistance force on wheels
Fxi longitudinal tire-road friction force
Fyi lateral tire-road friction force
Vx vehicle longitudinal velocity
ω wheel rotational velocity
SMC sliding mode control
Croll rolling resistance coefficient
Subscripts
fl front left
fr front right
rl rear left
rr rear right
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