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Abstract: Vegetation encroachment along electric power transmission lines is one of the major en-
vironmental challenges that can cause power interruption. Many technologies have been used to
detect vegetation encroachment, such as light detection and ranging (LiDAR), synthetic aperture
radar (SAR), and airborne photogrammetry. These methods are very effective in detecting vegetation
encroachment. However, they are expensive with regard to the coverage area. Alternatively, satellite
imagery can cover a wide area at a relatively lower cost. In this paper, we describe the statistical
moments of the color spaces and the textural features of the satellite imagery to identify the most
effective features that can increase the vegetation density classification accuracy of the support vector
machine (SVM) algorithm. This method aims to distinguish between high- and low-density vege-
tation regions along the power line corridor right-of-way (ROW). The results of the study showed
that the statistical moments of the color spaces contribute positively to the classification accuracy
while some of the gray level co-occurrence matrix (GLCM) features contribute negatively to the
classification accuracy. Therefore, a combination of the most effective features was used to achieve a
recall accuracy of 98.272%.

Keywords: satellite images; SVM; vegetation encroachment; transmission lines

1. Introduction

The process of delivering electrical power to end users involves three main steps:
generation, transmission, and distribution. The power transmission line is the backbone
infrastructure of the transmission process. There are many environmental factors that can
pose a risk to the transmission process, such as forest fires, wind storms, and vegetation
encroachment [1–3]. Vegetation encroachment is a major challenge that is faced in the
installation, operation, and maintenance processes of transmission lines in areas with high-
density vegetation. The overgrowth of trees can cause flashovers when there is contact
between tree branches and transmission lines, as illustrated in Figure 1. In Malaysia, more
than 60% of the country is forested terrain, where, in the state of Sarawak, approximately
from 2005–2008, 17.58% of power interruptions were due to vegetation encroachment [4].

There are many different methods available for monitoring vegetation encroachment.
Patrol inspection is one of the traditional monitoring techniques, where a team of inspectors
visits the area of possible risk periodically [5]. This technique is time-consuming and needs
to be conducted by a large group of inspectors. Other monitoring methods use advanced
optical remote sensing technologies such as light detection and ranging (LiDAR) data,
synthetic aperture radar (SAR) data, and airborne photogrammetry, which can be very
effective for remote areas [5]. Despite their effectiveness, the data acquisition process is
very expensive with respect to the coverage area. To overcome the high-cost limitation,
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high-resolution satellite images can be used to provide wide geographic coverage at
relatively low cost [6–8]. Generally, satellites are equipped with various types of onboard
sensors that can observe a wide range of the electromagnetic wave spectrum. However,
the price of satellite images increases with respect to the image resolution and the available
multispectral bands.
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Figure 1. Low- and high-density vegetation encroachment on the power line corridor right-of-way (ROW).

Many works have studied the feasibility of using satellite images for monitoring vegeta-
tion encroachment. These studies can be categorized into two main groups. The first group
used the vegetation index methods to detect the vegetation activity along the power line
right-of-way (ROW) such as the normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), and atmospherically resistance vegetation index (ARVI) [9]. Most of
the previous studies focused on using the NDVI for the vegetation detection process [9,10].
The basic concept behind the NDVI is the natural ability of green plants to absorb the red light
band and reflect the near-infrared (NIR) and green bands, where the normalized difference
between the red band and the NIR band represents the NDVI [11–13]. Figure 2 shows the
electromagnetic reflectance from the Earth’s surface of different natural elements. Vegetation
index methods can detect plants with different densities based on the vegetation index calcu-
lation. However, this type of detection depends on the availability of multispectral satellite
data for the target location.

The second group used the stereo satellite images to create a digital elevation model
(DEM) map. The DEM method uses more than one satellite image with different obser-
vation perspectives [14,15]. This method has the advantage of estimating the heights of
objects around the transmission line corridor area. However, the lack of available stereo
image data of suitable resolution can pose a limitation of using this method.

The visible light band of high-resolution satellite images can be a low-cost alternative
to the previous methods as well as being widely and freely accessible by a many satellite
imagery platforms such as Google Maps, Google Earth, and ESRI Imagery. In this paper, we
describe the feasibility of using the visible light band spectrum and the texture properties
of satellite images to classify the vegetation regions besides the power line ROW using the
support vector machine (SVM) algorithm.
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Figure 2. The electromagnetic reflectance from the Earth’s surface of different elements [16].

2. Materials and Methods

In this section, we will discuss the proposed vegetation encroachment detection
process as shown in Figure 3. The overall process has two steps: training and testing. The
training step consists of four processes: manual patch extraction and labeling, automatic
feature extraction, SVM training, and weight storing. While the testing step has three
processes: automatic patch extraction, automatic feature extraction, and class prediction.
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Figure 3. Proposed vegetation encroachment detection method comprising of two stages: training
and testing.

2.1. Dataset Preparation

Multispectral satellite images contain several electromagnetic bands. The visible light
band can be found in most satellite images. The availability of the visible light band
facilitates the process of data collection from different satellite image sources. In this work,
the collected dataset was pre-corrected geometrically, radiometrically, and atmospherically.

The training data were manually collected from different satellite image sources
including Google Maps, Google Earth, and ESRI Imagery. The collected satellite images
had different resolutions and scales. The reason for collecting data from different sources is
to understand the behavior of the extracted features under different conditions which can
contribute to finding a general vegetation density classification solution. There was a total
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of 12,344 training samples gathered. Each sample had a 32 × 32 pixels patch in which 6172
of samples contained high-density vegetation regions and the rest of the samples contained
low-density vegetation regions. The dataset was divided into an 80%, 20% ratio where 80%
of the dataset was used for training and 20% for testing.

2.2. Feature Extraction

The process of analyzing and selecting features from satellite images datasets is a
challenging task. A study by Berberoğlu et al. [17] assessed the incorporation of spatial
and spectral features. The study used the variogram texture feature which was extracted
from the gray level co-occurrence matrix (GLCM) on six bands of Landsat TM satellite
imagery to classify the land-cover areas. A study by Li et al. [18] used a combination of
vegetation index features and image texture features to identify vegetation regions. The
texture features included the GLCM features and the local binary pattern (LBP) feature. On
the other hand, the vegetation index features included the NDVI, radio vegetation index
(RVI), and perpendicular vegetation index (PVI). The authors used the SVM algorithm
for the classification process and the study concluded that the mean value of the NDVI
represents the most effective feature. Additionally, a similar study by Iovan et al. [19]
extracted the GLCM texture features from three color spaces: hue saturation and value
(HSV) color space, XYZ color space, and the CEILAB color space, for two types of images:
the first type was the high-resolution color infrared (CIR) and the second the digital surface
model image. The study concluded that the GLCM features which were extracted from the
HSV color space achieved the best classification accuracy of 95.84%. However, multispectral
satellite data can increase the cost of the monitoring process. Based on the previous works
on vegetation detection from satellite images, we divided the input features into two
categories: color-based features and textural-based features. The color features consist of
the statistical moments of three types of color spaces, which are: the RGB color space, the
HSV color space, and the CIELAB color space, where the color space is the mathematical
representation of colors in different dimensions [20]. In contrast, the textural-based features
consist of the GLCM features, which are: homogeneity, energy, contrast, dissimilarity,
correlation, and angular second moment. The statistical moments were calculated after
flattening the patch image into a one-dimensional vector shape. The statistical moments
are described in (1) to (6) [21,22].

µ =
∑N−1

i=0 pi

N
(1)

σ2 =
∑N

i=0(pi − µ)2

N
(2)

σ =
√

σ2 (3)

µk =
N−1

∑
i=0

(pi − µ)k (4)

µ̃3 =
µ3

σ3 (5)

Kurt[pi] =
µ4

σ4 (6)

where µ, σ, σ2, µ̃3, and Kurt are the mean, standard deviation, variance, skewness, and
kurtosis moments, respectively. N is the vector length and Pi is the vector element. The
textural features have properties that are not affected by the color values. The GLCM
describes the frequent occurrence of values in a specific direction as illustrated in Figure 4.
This method gives an impression of the relationship between neighboring pixel values [23].
In this work, we extracted the GLCM at a fixed angle of zero degrees. The GLCM features
are the features which were extracted from the GLCM map. In this work, the extracted
GLCM features are described in (7) to (12) [23,24]. Figures 5 and 6 show the boxplot analysis
of the statistical moments of the color spaces and the texture features. The boxplots (b), (e),
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and (f) in Figure 6 which are the contrast dissimilarity and correlation, respectively, show
indistinct differences in the range of values between high- and low-density classes.

contrast =
N−1

∑
i,j=0

pi,j(i− j)2 (7)

energy =
N−1

∑
i,j=0

pi,j
2 (8)

homogeneity =
∑N−1

i,j=0 pi,j

1 + (i− j)2 (9)

correlation =
N−1

∑
i,j=0

pi,j

∣∣∣∣∣∣ (i− µi)
(

j− µj
)√

(σ2
i )(σ

2
j )

∣∣∣∣∣∣ (10)

angular second moment = ∑
i

∑
j

(
pi,j
)2 (11)

dissimilarity =
N−1

∑
i,j=0

pi,j|i− j| (12)
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In addition to the GLCM features, the LBP feature was also used as an additional
textural feature. The LBP is used in many applications such as face recognition and texture
analysis [25,26]. The basic concept of the LBP is to convert the gray level image into a set
of labels. The labels are constructed by creating a binary image by taking the threshold
value from a center pixel point against a set of neighboring pixels, usually 3 × 3 pixels,
then converting the binary values into a decimal gray level representation [25]. Figure 7
shows the conversion steps of the LBP image.
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The LBP labeled image contains a two-dimensional integer matrix which can be
impractical for use as a feature, while the rest of the features have a scalar representation.

As an abstraction, we used the sum of all binary values as a single scalar value to
represent the LBP feature. This feature can be described as the sum of the LBP.

2.3. SVM Training

The SVM [27,28] has been used in a wide range of applications. The problems that
the SVM algorithm can solve are related to statistical problems such as regression and
classification problems. Figure 8 represents a simple linear classification problem where
there are two features and two classes that are annotated with blue and red, respectively.
The output of the SVM classifier is one of the labeled classes. The process of training the
SVM model involves finding the optimal slope of the hyperplane and the largest possible
margin that can separate the data with respect to the number of classes, as shown in
Figure 8. The hyperplane equation can be described as in (13) where ω determines the
slope of the plane, b is the bias value, and x is the input feature vector. The optimal margin
width can be determined by the nearest data points from the hyperplane which are called
the support vectors, as shown in Figure 8. The purpose of the margin function is to predict
the output class for every new data point, as in (14) where ỹ is the predicted class.

ωT .x + b = 0 (13)

ỹ
{

0, i f ωT .x + b < 0
1, i f ωT .x + b ≥ 0

(14)
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The ability of machine learning algorithms to learn corresponds to the ability of
minimizing the error loss. In the SVM, the process of maximizing the margin is proportional
to minimizing error loss. There are two types of margins: soft and hard. The hard margin
is the optimal case where no data points are allowed inside the margin. On the other hand,
the soft margin allows a few margin violations, which provides more dynamic classification
to avoid overfitting. The number of points that can violate the margin can be regulated
by a margin error cost c parameter where a larger c value means fewer margin violations.
However, not all classification problems can be solved using linear models. A kernelized
SVM version can be used to transform the classification problems into higher dimensions,
resulting in non-linear transformations. The SVM algorithm has several kernels for solving
different types of classification complexity. Equations (15)–(18) show the SVM kernels used
in this study, which are: linear, Gaussian radial basis function (RBF), polynomial kernels,
and sigmoid [27,28].

linear = k(x, xi) = (x)T .(xi) (15)

Gaussian RBF = k(x, xi) = exp
(
−γ‖x− xi‖2

)
(16)

polynomial = k(x, xi) =
(

γxT .xi + r
)d

(17)

sigmoid = k(x, xi) = tanh
(
γxT.xi + r

)
(18)

standard value =
(xi −mean)

STD
(19)

The symbol (x, xi) is the data elements, γ is a parameter, d is the polynomial order,
and r is a constant. The input feature vector was scaled using (19) to enhance the fitting
process. Parameter optimization algorithms can be used to set the optimal values of the
kernel parameters and the error cost parameter in order to achieve the best performance.
In this work, the grid search algorithm [29] has been used to optimize the parameters of
four SVM kernels and the corresponding margin error cost parameter for every kernel, as
shown in Table 1. The grid search algorithm has two steps, firstly, a grid of parameters
values is proposed by the user, and secondly, the grid search algorithm uses the k-fold cross-
validation technique to evaluate the performance of all the possible parameter combinations.
The best cross-validation performance achieved by the RBF kernel is shown in Table 1.
Figure 9 represents the training metrics of the SVM algorithm with the optimized Gaussian
RBF kernel. Despite the large value of the error cost parameter, the cross-validation curve
proves that there is no overfitting as the testing results are very close to the training results.

Table 1. SVM kernel parameter optimization.

Parameter

Kernel C γ r d Cross-Validation
Recall Accuracy

Linear 10 - - - 0.96421
RBF 100 0.01 - - 0.98274

Polynomial 1000 0.01 1 2 0.98003
Sigmoid 1000 - 0 - 0.86830
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Additionally, Figure 9 describes the scalability and the performance of the trained
SVM model. The scalability curve measures the ability of the trained model to be scaled
using many workstations to deal with a large amount of input data without losing the
classification performance. The recall accuracy can be described as the number of total true
positive labels TP over the sum of the total true positive labels and false negative FN labels,
as shown in (20) [30].

recall =
TP

TP + FN
(20)

2.4. Automatic Patch Extraction

The input image was divided into n × n-pixels patches where the total number of
patches N represents the total segments.

N =

⌊
(

w
n + s

)
2
⌋

(21)

N =

⌊(
w

n + s

)
+

(
h

n + s

) ⌋
(22)

If the input image has a square shape, the width w and the height h are equal. The
total number of patches N can be calculated as in (21). The offset between patches s controls
the density of the patches as shown in Figure 10. If the input image is not square, then the
number of patches N can be described as in (22).
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Figure 10. The process of patch creation where n is the patch width and height, w is the image width,
h is the image height, and s is the step between patches.

The process of dividing the image into small patches aims to reduce the processing
time. However, the detection time is proportional to the number of sliced patch images,
where more images require more execution time. Table 2 shows the relation between patch
size, image slicing time, and classification time in seconds. However, the patch should
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have a reasonable size, for example, a patch size of 4 × 4 pixels cannot be used due to the
poor-quality extracted values. Figure A1 shows an examples of vegetation encroachment
detection with different patch sizes.

Table 2. SVM kernel parameter optimization.

1300 × 1300-Pixel Image

Patch Size (Pixel) Slicing Time (s) Feature Extraction +
Classification Time (s) Total Detection Time (s)

128 × 128 0.442927 9.429314 9.872241
64 × 64 0.818342 12.76653 13.58487
32 × 32 2.415230 18.02610 20.44133
16 × 16 82.29790 111.42492 193.7228

3. Results

In this section, we will discuss the performance when using different feature configu-
rations and the corresponding detection results.

After training the SVM model, the model was tested on a new subset of data and
Figure 11 shows the SVM testing confusion matrix. The trained SVM model achieved a
testing recall classification accuracy of 98.55% for the low-density vegetation class and
98.78% for the high-density vegetation class. Figure 12 shows the SVM receiver operating
characteristic (ROC) curve of the support vector classifier (SVC), where AUC represents
the area under the curve. As illustrated previously in Figures 5 and 6, there were some
features that did not have any apparent difference in range between high- and low-density
vegetation patches. These features can affect the classification accuracy. Table 3 shows the
cross-validation performance of different feature configurations.
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Table 3. Recall accuracy of the proposed model compared with different feature configurations.

Cross-Validation Recall Accuracy

Feature SVM
(Poly)

SVM
(Linear)

SVM
(RBF)

SVM
(Sigmoid)

Statistical moment of the RGB color space 0.96906 0.95975 0.96760 0.83979

Statistical moment of the RGB color space + skew
moment + kurtosis moment 0.97586 0.96291 0.97513 0.83469

Statistical moment of the HSV color space 0.96469 0.95594 0.96478 0.88515

Statistical moment of the CIELAB 0.96833 0.94792 0.96898 0.87332

Statistical moment of the RGB color space + statistical
moment of the HSV color space 0.97359 0.96285 0.97424 0.84879

LBP feature 0.54291 0.53562 0.54331 0.45829

GLCM features 0.81687 0.77013 0.81736 0.66287

GLCM features + LBP feature 0.84453 0.79393 0.844534 0.64049

GLCM features + statistical moment of the RGB color
space + statistical moment of the HSV color space +

statistical moment of the CIELAB color space
0.97617 0.97449 0.97935 0.88700

Selected features 0.9800 0.96421 0.98274 0.86830

As observed from Table 3, some features are essential to increase the classification
accuracy, such as the RGB statistical moments and the HSV statistical moments. However,
not all the GLCM features are effective.

We selected only the most effective GLCM features, which were: homogeneity, ASM,
and energy. In addition, we used the LBP as we observed an enhancement in the cross-
validation recall accuracy when we used the LBP feature with the GLCM features, as
shown in Table 3. The selected features represent the total effective features, which were:
the statistical moments of the RGB color space, the statistical moments of the HSV color
space, homogeneity, ASM, energy, and the LBP. Figure 13 shows an example of the proposed
vegetation density classification result around the power line corridor ROW, where the
green regions represent the low-density vegetation patches and the red regions represent
the high-density vegetation patches. The recall accuracy of the SVM classifier was compared
to other machine learning classifiers, which were: tree, random forest, k- nearest neighbor
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(KNN) and naïve Bayes, as shown in Figure 14. All the machine learning classifiers were
optimized and evaluated with the best performance against the SVM (RBF kernel), where
the SVM classifier scored the best recall accuracy of 98.274%.
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Figure 13. Examples of the vegetation density classification results along the power line corridor
area with a patch size of 32 × 32-pixels and step size of s = 4. The red regions represent high-density
vegetation and the green regions represent low-density vegetation.

Despite the effectiveness of the visible light band on the vegetation density classifica-
tion accuracy, the topography of the land plays a major role in deviating the reflected elec-
tromagnetic wave from the Earth’s surface. A heterogeneous surface affects the anisotropy
of the reflected electromagnetic solar irradiance due to the diffusion between the terrain
slopes, which can provide a deviated pixel value [31]. However, this effect can be analyzed
at the macro- and micro-level using different methods. The diffused equivalent slope
model (dESM) is one of the proposed solutions to simulate and analyze the effect of the
micro-slope on the anisotropy reflectance under different illumination conditions, which
can help to evaluate the level of pixel value deviation [32].
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4. Conclusions

In this paper, we discussed the effect of using color and texture features to classify
the vegetation density along the power line corridor ROW from the visible light band of
high-resolution satellite images into two classes of high- and low-density vegetation. We
proposed to use only the most effective features by analyzing the behavior of both color
and texture features. The results showed that there were some features that reduced the
classification accuracy, which were: the CIELAB statistical moments, correlation, dissimilar-
ity, and contrast. The proposed feature configurations gave the best result among the other
configurations, where the recall classification accuracy was 98.272% using the SVM RBF
kernel. The results emphasize the possibility of using satellite images with the visible light
band only to detect the vegetation encroachment along the power line ROW. The limitation
of the study was the inability to identify tree heights around the power line corridor.
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