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Abstract: This paper presents issues related to the adaptive control of the drive system with an
elastic clutch connecting the main motor and the load machine. Firstly, the problems and the main
algorithms often implemented for the mentioned object are analyzed. Then, the control concept based
on the RNN (recurrent neural network) for the drive system with the flexible coupling is thoroughly
described. For this purpose, an adaptive model inspired by the Elman model is selected, which is
related to internal feedback in the neural network. The indicated feature improves the processing of
dynamic signals. During the design process, for the selection of constant coefficients of the controller,
the PSO (particle swarm optimizer) is applied. Moreover, in order to obtain better dynamic properties
and improve work in real conditions, one model based on the ADALINE (adaptive linear neuron) is
introduced into the structure. Details of the algorithm used for the weights’ adaptation are presented
(including stability analysis) to perform the shaft torque signal filtering. The effectiveness of the
proposed approach is examined through simulation and experimental studies.

Keywords: recurrent neural network; ADALINE; signal filtering; signal processing; speed control;
two-mass system; electrical drive

1. Introduction

The continuous development of industrial processes’ automation creates demand
for precision, speed and consequently, higher productivity [1,2]. Industrial automation is
based mainly on different types of electrical servo systems. In electrical drives, usually,
the cascade control concept is implemented. The control structure is divided into two or
three main loops. The inner loop is responsible for suitable fast electromagnetic torque
control. It can have different structure, depending on the driving motor. For example, it can
be realized by a current controller for the DC motor or a FOC structure for the induction
motor. The outer loop(s) realize the speed (position) control task [3,4]. Depending on
the type of the mechanical structure, a simple PI controller (one-mass system) or more
advanced concepts (multi-mass system) can be implemented. The type of the specific
control algorithm depends on the design requirements and operation condition of the drive.
It can be complicated in the case of system parameter uncertainty, noise levels, types of
sensors and a lack of the information of selected system states (thus a special estimator is
needed to estimate the unmeasurable signals).

Electrical drive systems can be divided into many groups, taking into account different
factors. One possible portion criterion is the type of mechanical connection between the
driving motor and the load machine. In the case of a stiff connection, the model of
the mechanical part takes the simplest form. It consists of one rotating mass, which
encompasses the electrical motor, and a load machine. Obviously, it means that the speed
of the driving motor is equal to the speed of the load machine. This model is called a
one-mass system in the literature. When the speed of the driving motor is different from the
speed of the load machine, a more complicated model, called a two-mass system, should
be used. In this case, the mechanical shaft is characterized by a finite stiffness coefficient.

Energies 2021, 14, 3389. https://doi.org/10.3390/en14123389 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8472-1053
https://doi.org/10.3390/en14123389
https://doi.org/10.3390/en14123389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14123389
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14123389?type=check_update&version=2


Energies 2021, 14, 3389 2 of 26

The characteristic problems which occur here are torsional vibrations, and they negatively
influence the system performances. Firstly, they influence the reliability of the whole drive
system, and additional limits of shaft torque amplitude are required in this drive. Secondly,
the speed and the position accuracy of the motion control system are affected. In addition,
the vibrations can negatively influence the working environment [5–13].

In order to successfully suppress torsional vibrations, different approaches have
been developed over the years. In general, they can be divided into passive and active
frameworks. The first comprises concepts based on the application of additional mechanical
dampers, which increase the damping coefficient of the system. Although those approaches
allow to successfully suppress vibrations, they also possess some disadvantages. Firstly,
they increase the total cost of the system, and secondly, there must be a place to fix the
mechanical damper to the system. The active frameworks are based on the implementation
of special control algorithms. The classical controller for a standard electrical drive is based
on the classical PI/PID concept. This approach is efficient only for a one-mass system
with constant parameters and negligible nonlinearities. Since it is not effective enough for
the two-mass system, some solutions have been proposed in the literature. The simplest
approach for the structure with a PI controller is based on an alternative location of the
system closed-loop poles. Since the double (classical) location is not effective, the poles can
be placed on a circle or line with an identical real part or damping coefficient [9,10]. These
locations can increase the damping ability of the control system, but only within a limited
range of parameters. The authors also considered the application of a PID controller [9].
In this case, the designer has three control coefficients, so the independent location of
four closed-loop poles is still not possible. More extensive research concerning the use
of a PID controller for vibration damping of the two-mass system is presented in [10].
The author considers systems with different resonance ratios. Based on the research, the
author concludes that there is a fundamental performance limitation in the case of a PI/PID
controller. The systems with low and high resonance ratios are hard to control, as the
response of the system is poorly damped or sluggish. The closed-loop bandwidth is limited
by the value of anti-resonant frequency. The derivative feedback can be used to improve the
damping ability of the system. The cut-off frequency of the low-pass filter in the derivative
part has to be set according to the resonance frequency. The D part can partially improve
the performance of the system; however, its use is limited due to the measurement noises.

In order to improve the performance of the control structure, other concepts have been
proposed. The torsional vibrations can be successfully damped by inserting additional
feedback from selected state variables to the system. In [11], nine additional feedbacks are
analyzed. They are divided into three groups with identical damping abilities. Insertion of
one additional feedback allows to successfully suppress vibrations, however the settling
time of the load speed cannot be set freely. In order to locate the closed-loop system
poles in a desired position, there is a need to use two additional feedbacks from selected
variables [11]. A similar performance can be ensured using a state controller. The location
of the system closed-loop poles influence the characteristics of the drive, so it is a significant
point during the design procedure [12,13]. In [14,15], the forced dynamic control structure
is proposed. It allows to locate the system closed-loop poles in a desired position and
additionally eliminate (rather in theory) the influence of the load torque on the load speed.
This damps the oscillations caused by a changeable load torque. In the literature, there is a
significant number of papers describing the control structure with disturbance observers.
This approach is based on the estimated disturbance (shaft torque) and feeds it back to the
control structure. This allows to effectively damp oscillations [16–18].

For changeable parameters of the plant, more advanced control algorithms can be used,
such as: adaptive control [3,19–21], sliding-mode control [22], predictive control [23,24]
and others. The adaptive control can be generally divided into two main groups. The first
one includes the so-called indirect methods. These control structures require additional
identification blocks which calculate values of the changeable parameters of the plant. Then,
based on these values, the new coefficients of the controller are calculated and updated.
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As an identification block, different methods can be applied. In [19], the Kalman filter is
used to compute the changeable values of the time constant of the load machine. Based
on this, the gains of the control structure with additional feedbacks are retuned. In the
second framework, direct adaptive systems are included. Contrary to indirect methods,
the identification block is not evident here. The controller parameters are retuned based on
the output of the plant and the input of the system. In [3], two adaptive control structures
with a fuzzy and sliding-fuzzy controller are analyzed. It is shown that the sliding version
is more robust to parameter changes than the classical PI controller. The application of the
Petri-nets can reduce the complexity of the fuzzy controller, as shown in [20]. In [21], the
neural controller is proposed. The presented research proves it effectiveness, despite the
simple structure of the controller. The sliding-mode control is known for its robustness
against the changes of the plant parameters [22]. The next advanced control structure is
based on model predictive control (MPC) [23,24]. This methodology has attracted much
attention from the control community for the last few decades. On the basis of the model
of the plant, the future behavior of the object is predicted. The optimization procedure
allows to select the optimal control strategy in the time window. Applying the MPC allows
to obtain optimal transients (according to the specified cost function) and at the same time,
implement limitations of the control signal and the internal states of the plant. Additionally,
examples of other, control methodologies can be found in the literature [25,26].

These control structures need information of system states. Since in industrial applica-
tions, only signals of electromagnetic torque and motor speed are available, there is a need
to apply special estimation techniques [19,27–29], for example, the Luenberger observer,
the Kalman filter and neural networks. However, these estimators are based (in the case of
a two-mass system) on motor speed and current signals. Thus, the quality of measurement
signals is still important.

Nowadays, with technology development, electrical drives have found many applica-
tions in various types of vehicles (cars, e-bikes, self-balancing scooters, traction systems,
etc.) [30,31]. Typical issues evident in classical electrical drives (control methods, state
variables’ estimation, hardware solutions) are significantly extended, including battery
technology, mechanical connections, power consumption management, GPS location, slip
control, etc. In [32], the sources of vibrations in a car and their impact on other components
are analyzed. A generalized suppression strategy is proposed and tested during idle and
cruising modes. The obtained results show good damping ability of the proposed method,
with a small impact on the vehicle speed. The authors report that the strategy is also
effective for different parameters of the car. Multi-sensor fusion based on a speed estimator
is proposed in [33]. The combination of the wheel speed and GPS-BD module is considered.
The authors claim that the proposed method has high accuracy and robustness. The hybrid
control based on the acceleration slip regulation method is proposed in [34]. The four-wheel
independent actuated electrical vehicles are considered here. The proposed method is
based on the combination of slip-ratio and maximum-torque strategies. An adaptive torque
search method is employed to improve performance at low speeds. For higher speeds,
the sliding mode is implemented in order to regulate the slip ratio. An effective control
technique is designed using the Lyapunov theory. Hardware-in-loop tests have shown that
the proposed strategy possesses good performance under various driving conditions.

Artificial neural networks are algorithms that can be adapted to a specific task in an
engineering application during the training process (adaptation of internal coefficients).
The mentioned action introduces some flexibility in technical applications. On the basis of
an appropriate dataset describing the relationships between the inputs and the outputs
of the model, properties of a given neural network can be assigned [35]. This can lead to
tunable circuits used for control, observation of state variables, signal prediction, measure-
ment of noise removal or data analysis. This justifies the increasing number of applications
of neural networks in various fields of science and industrial solutions. Obviously, among
the applications of neural networks, the issues related to electrical drives are also often
described in scientific publications [36–38]. The characteristic criterion according to which
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the analyzed implementations of neural networks can be divided is the calculation mode
of the adaptation algorithm. The coefficients can be calculated on the basis of a previ-
ously collected dataset. Otherwise, the adaptation can be performed online. This means
introducing corrections for the parameters of the neural network during operation of the
entire system. The second approach seems more favorable. In this case, complex design
problems are omitted (correct representations of the problem through training data are
reduced, selection of neural network topology and training parameters (e.g., number of
epochs), etc.). Due to the specificity of applications, the method of data processing in the
neural network is also very important. Two fundamental groups of neural models differ
from each other by the direction of data transmission within the structure. The first one
takes into account only the signals from the previous network layer in the calculation of the
output values of subsequent neurons. The second concept is to introduce feedback inside
the network. Therefore, an additional component of the model is elements holding the
previously processed values. This provides additional time-dependent information during
calculations of output values. This is the reason why applications of recurrent neural
networks are often used to analyze dynamic signals. There are different concepts about
the inserted feedbacks. However, two types of recurrent neural networks dominate [39].
The first of them are called the Jordan neural networks, where a characteristic element is
the introduction of a global coupling from the output layer to the input [40]. The second
type of these models—the Elman network—usually contains one hidden layer in which the
connection from the neuron outputs to the inputs of subsequent nodes is attached [41]. In
this application, the Elman recurrent neural network is used as the basic structure applied
in the speed controller of the electrical drive with compound mechanical part.

The control performance of the adaptive control structure depends on the measure-
ment information. Different factors influence the quality of the sensor, for example res-
olution, linearity, response time, temperature range, sensitivity to additional noises and
mechanical vibrations. Over time, the degradation of sensors can also be expected, from
small to total deterioration. Those problems degrade the control method characteristics
and can lead to instability of the whole control structure. In order to improve the quality of
the measurement (or estimated) signals, a different approach can be used. In this paper,
the ADALINE models [42–44] are applied. This adaptive structure allows to accomplish
the above-mentioned tasks. The data space is linearly separated in the ADALINE model,
and the calculations include weighted summation of the input values.

In this paper, the issues related to adaptive control for industrial drives with elasticity
and changeable parameters are presented. At the beginning of the study, the inner loop
(torque control loop) is assumed to be optimized and ensures fast torque responses. The
adaptive controller is applied in an outer (speed) loop. The controller is based on RNN
(recurrent neural network) and it is inspired by the Elman model. In order to select values
of the control, the PSO (particle swarm optimizer) coefficient is applied. Additionally, the
ADALINE (adaptive linear neuron) model is used in the system in order to reduce the
noises evident in the control structure. Different research scenarios are considered. The
systems with different (changeable) inertia of the load machine, elasticity of the flexible
connection as well as imperfections in the torque control loop are considered. As a result,
the on-line adaptive RNN controller has shown its good damping ability of torsional
vibrations. The theoretical considerations are confirmed by a number of simulation as well
as experimental studies.

The paper consists of seven main parts. The first section presents the scientific problem
and motivation behind the work. Then, the mathematical model of the plant is briefly
described. Next, the structure of the adaptive controller and the adaptation law are
introduced. In the next section, the ADALINE model and its application as a signal filter
based on this neuron are shown. Design issues related to the adaptive neural controller
are also considered in the next section of the paper. For this purpose, the PSO algorithm
is applied. The simulation and experimental studies show the work of the speed control
structure with the recurrent network, and the impact of the additional neural element on
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drive performance as well as the effectiveness of the proposed approach are also analyzed.
The paper is concluded with some summarizing remarks.

2. Mathematical Model of the Control Structure

The main part of the plant, analyzed in this article, can be defined as a two-mass
system. It consists of two masses connected by an integrating element. In relation to the
real object, the phenomena represented by such a system are observed in the mechanical
part of the electrical drive with an elastic joint. The above-described construction of the
connection between machines can lead to an additional component (oscillations) in the
state variables. Assuming the ‘s’ symbol as the Laplace operator, the control structure
presented in Figure 1 can be described by the following system of equations [11–15]:

T1sω1 = me −ms (1)

T2sω2 = ms −ml (2)

Tcsms = ω1 −ω2 (3)

me = Ge

[
urnn

(
ωre f −ω1

)
−ms f

]
(4)

where: T1, T2 and Tc are the mechanical time constant of the motor, mechanical time
constant of the load and stiffness time constant, respectively. The following symbols are
used for description of output of neural path of controller (urnn), electromagnetic torque
(me), torsional torque (ms), load torque (ml), motor speed (ω1), load speed (ω2) and reference
speed (ωref).

Energies 2021, 14, x FOR PEER REVIEW 6 of 27 
 

 

 
Figure 1. The schematic diagram presenting the overall concept of the control structure. 

The reference speed (ωref) is the external signal that forces internal state variables and 
output speeds. For the proper (precise influence on the dynamic properties of the system) 
and stable work (without forcing dynamics higher than limits established through time 
constants of the plant) of the controller, an additional element at the input of the control 
structure was applied. It is defined by the following equation [3]: 

2
00

2

2
0

2
)(

ωωξ
ω

++
=

ss
sG

r
in  (5)

where ω0 is the resonant frequency and the damping coefficient is noted as ξr. 
A typical control structure most often consists of a cascade connection of two loops: 

the internal loop is used for electromagnetic torque control and the external loop is re-
sponsible for speed control. In the inner loop, the following elements can be distinguished: 
torque (current) controller, power converter and winding and current sensors. Usually, a 
PI-type controller is applied here. However, it should be stated that this controller is not 
robust. Changes of the system parameter(s) worsen the torque response, so a more ad-
vanced controller could be used, e.g., sliding-mode, fuzzy or predictive. On the other 
hand, the imperfect torque control can be treated as an additional unmodeled dynamic 
(disturbance) for an adaptive speed controller. 

The representation of the current controller, power electronic devices and current 
sensors is possible by the expression shown below: 

( )
1

1
+

=
sT

sG
me

e  (6)

Figure 1. The schematic diagram presenting the overall concept of the control structure.



Energies 2021, 14, 3389 6 of 26

The two-mass drive mechanical model is only a simplification of the real-life sys-
tem [45]. The additional factors, such as the nonlinear characteristic of the mechanical
connection (including mechanical hysteresis), the non-linear friction located on both sides,
the imperfections in electromagnetically generated torque (for example, the torque ripples)
and others, influence the control properties. All of these factors decrease the effectiveness
of classical estimation techniques, which motivates the search for different techniques.

The reference speed (ωref) is the external signal that forces internal state variables and
output speeds. For the proper (precise influence on the dynamic properties of the system)
and stable work (without forcing dynamics higher than limits established through time
constants of the plant) of the controller, an additional element at the input of the control
structure was applied. It is defined by the following equation [3]:

Gin(s) =
ω2

0
s2 + 2ξrω0s + ω2

0
(5)

where ω0 is the resonant frequency and the damping coefficient is noted as ξr.
A typical control structure most often consists of a cascade connection of two loops: the

internal loop is used for electromagnetic torque control and the external loop is responsible
for speed control. In the inner loop, the following elements can be distinguished: torque
(current) controller, power converter and winding and current sensors. Usually, a PI-type
controller is applied here. However, it should be stated that this controller is not robust.
Changes of the system parameter(s) worsen the torque response, so a more advanced
controller could be used, e.g., sliding-mode, fuzzy or predictive. On the other hand, the
imperfect torque control can be treated as an additional unmodeled dynamic (disturbance)
for an adaptive speed controller.

The representation of the current controller, power electronic devices and current
sensors is possible by the expression shown below:

Ge(s) =
1

Tmes + 1
(6)

In this application, for most of the analyzed issues, the ideal electromagnetic torque
control loop is assumed (the total time constant for current processing is Tme = 0 s). This
means that delays in the mentioned part of the control structure are not taken into account.
This assumption is possible (obviously for a limited range of forced dynamics) in modern
electrical drives (fast processors used for data analysis and calculations, dynamic control
of power systems, etc.).

The control signal, u, is defined as a combination of the neural part, urnn, and additional
feedback from the shaft torque (attaching an additional signal related to the object enables
more accurate damping of torsional vibrations [11]):

u = urnn + ms f (7)

where msf is the filtered value of the shaft torque, ms.
The input of the neural controller is described by the following formula:

e = ωre f −ω1 (8)

where ω1 is the value of the motor speed.
The signal msf is calculated using a special connection of neural models. Details of this

part of the control structure are presented in the following sections.
The primary element of the adaptive controller is based on a recurrent neural network.

In this application, the Elman model was implemented [46,47]. The output value of this
model (yrnn) is used in (7):

u = urnn + ms f = ms f + ku

∫
yrnn (9)
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where ku is the constant output gain.
The recurrent neural network realizes parallel data processing. A characteristic part of

the calculations is the multiplication of input signals, for several layers and weights. In the
considered neural controller, the following parameters describing the structure of the neural
network were assumed (according to the notation used in Figure 1): two inputs (n = 2),
five hidden nodes (m = 5) and one output (z = 1). Therefore, a mathematical equation for
calculation of the output signal of a recurrent neural network is presented below:

yrnn(k) = hz

(
m

∑
h=1

oh ϕh(wih, ϕh(k− 1), ch, inh)

)
(10)

where W[nxm] is the matrix between the inputs and the hidden layer, with elements wih,
O[mxz] is the matrix between the hidden layer and the outputs with elements oh, C[mx1]
is the matrix of weights for the context layer with parameters ch, h is the actual analyzed
hidden node, i is the actual analyzed input and k is the sample number.

In the expression above, ϕh is the output of the h-th hidden neuron:

ϕh = f (inh) (11)

The general definitions of the activation functions are as follows:

f (a) =
eβa − e−βa

eβa + e−βa (12)

and
h(a) = a (13)

where β is the scaling factor (β > 0, most often from the range (0,1)), and a is the argument
of the function.

In this model of the recurrent network, the hidden nodes contain an additional input
signal. It is the output value from the previous iteration ϕ(k − 1), which creates a virtual
layer in the structure. Therefore, the value of inh (Equation (10)) is calculated using the
following formula:

inh(k) =
n

∑
i=1

wih f (xi(k)) + ϕh(k− 1)ch (14)

The input and output weights and scaling parameters for the context layer are adapted
on-line (using matrix notation):

W(k + 1) = W(k− 1) + ∆W(k) (15)

O(k + 1) = O(k− 1) + ∆O(k) (16)

C(k + 1) = C(k− 1) + ∆C(k) (17)

In the adaptation process, the gradient method was used, therefore the cost function
was defined as follows:

E =
1
2

(
yre f − y

)2
(18)

where yref is the reference signal for the control structure and y is the output value.
Then, Equations (15)–(17) can be redefined as:

∆W(k) = − ∂E(k)
∂W(k)

(19)

∆C(k) = − ∂E(k)
∂C(k)

(20)
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∆O(k) = −µ
∂E(k)
∂O(k)

(21)

In Equation (21), µ is the learning coefficient.
Now, the partial derivatives have to be calculated using the chain rule:

∆W(k) = − ∂E(k)
∂W(k)

= − ∂E(k)
∂in(k)

∂in(k)
∂W(k)

= −δ(k) f (xi(k)) (22)

∆C(k) = − ∂E(k)
∂C(k)

= − ∂E(k)
∂in(k)

∂in(k)
∂C(k)

= −δ(k)ϕ(k− 1) (23)

∆O(k) = −µ
∂E(k)
∂O(k)

= −µ
∂E(k)
∂y(k)

∂y(k)
∂yrnn(k)

∂yrnn(k)
∂O(k)

(24)

In the above calculations, Equations (14) and (18) are used. Moreover, δ is defined by
the expression:

δ(k) =
∂E(k)
∂y(k)

∂y(k)
∂yrnn(k)

∂yrnn(k)
∂ϕ(k)

∂ϕ(k)
∂in(k)

(25)

The general structure of the adaptive controller includes one output and two inputs.
Often, for those variables, additional scaling coefficients are provided, and one of them was
presented in Formula (9). The following gains are: ke for control error and kde for derivative
of speed error. The influence of these coefficients on the control precision and the proposed
method of value determination is analyzed in Section 4 of this paper.

3. The ADALINE Model
3.1. Structure and Parameters’ Adaptation

The adaptive element analyzed in this section is the basis for the adaptive filter
included in the control scheme (Figure 1). The extended considerations of ADALINE have
been proposed in [48]. The operation of a single unit (with a linear function and threshold)
as well as the connection into an extended network are presented. The overall concept
of calculations is similar to the typical processing of a classical neuron. The input values
are multiplied by the weights (here, bias was omitted), and the argument for the transfer
function is the sum of all signals (in this case, the linear function, f, was used):

ya(k) = f (γ) (26)

γ(k) =
n

∑
i=1

xai(k)wai(k) (27)

where ya is the output of the ADALINE model, xa is the input of the node, wa is the weight
of input i and k is the number of iterations.

In this application, the adaptation of weights has been realized on-line:

Wa(k + 1) = Wa(k) + ∆Wa(k) (28)

Typically, the optimization of the weight matrix, Wa, is deduced from the analysis of
the influence of the network coefficients on the cost function:

Ea =
1
2

(
yre f

a − ya

)2
(29)

In the equation above, ya
ref is the reference signal for the node.

The training procedure should assume changes of weights that lead to the minimiza-
tion of the error, Ea, in the subsequent steps of processing:

Ea(Wa(k + 1)) < Ea(Wa(k)) (30)



Energies 2021, 14, 3389 9 of 26

and using the expression (28):

Ea(Wa(k) + ∆Wa(k)) < Ea(Wa(k)) (31)

Often, the state expansion in Taylor series is applied for the analysis of the cost
function. After modifications, Equation (31) can be rewritten as:

Ea(Wa(k) + g(k)∆Wa(k)) < Ea(Wa(k)) (32)

With some approximation, one can write the equation:

Ea(Wa(k)) + g(k)∆Wa(k) < Ea(Wa(k)) (33)

The gradient determination can be carried out using the following calculations:

g =
∂Ea

∂Wa
=
(

yre f
a − ya

) ∂

∂Wa
(−γ) = −eaXa (34)

Equation (33) is achieved if:

g(k)∆Wa(k) < 0 (35)

Therefore:
g(k) = −∆Wa(k) (36)

Combining the above considerations, the basic equation defining the update of weights
in the ADALINE model is obtained as:

Wa(k + 1) = Wa(k)− αg(k) = Wa(k) + αea(k)Xa(k) (37)

In publications, normalization of the input vector is also suggested and used in real
solutions [49,50]:

Wa(k + 1) =

{
Wa(k) + αea(k)

Xa(k)
XT

a (k)Xa(k)
, f or XT

a (k)Xa(k) 6= 0

Wa(k), f or XT
a (k)Xa(k) = 0

(38)

Subsequent calculations show the behavior of the algorithm (38) in the subsequent
stages of training. The output signal, (26) and (27), can be described using matrix notations:

ya(k) = WT
a (k)Xa(k) (39)

The reference value, ya
ref, is achieved at the output of ADALINE for optimal weights, Wao:

yre f
a (k) = WT

aoXa(k) (40)

The precise definition of the error (34) can be represented as the following equation:

ea(k) = yre f
a (k)− ya(k) = WT

aoXa(k)−WT
a (k)Xa(k) = ΞT

W(k)Xa(k) (41)

The weight error in the next iteration is expressed as follows:

ΞW(k + 1) = Wao −Wa(k + 1) = Wao −
(

Wa(k) + αea
Xa(k)

XT
a (k)Xa(k)

)
(42)

Combining (41) and (42):

ΞW(k + 1) = Wao −
(

Wa(k) + α
(

WT
aoXa(k)−WT

a (k)Xa(k)
) Xa(k)

XT
a (k)Xa(k)

)
(43)
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The equation presenting the changes of the error weight is formed:

ΞW(k + 1) = (Wao −Wa(k))(1− α) (44)

Now, the discrete-time Lyapunov function, for stability analysis, is defined [51]:

L(k) = Ξ2
W(k) (45)

For the proper work of the ADALINE training, the following conditions should
be maintained:

L(ΞW(k + 1)) < L(ΞW(k)) (46)

Using the previous results in this section, the above formula has been written as:

((Wao −Wa(k))(1− α))2 < (Wao −Wa(k))
2 (47)

Lower values of weight error in the following steps of training are obtained for:

0 < α < 2 (48)

The calculations presented above and the conclusion in the final inequality show the
range of accepted values that can be applied for the α parameter. However, a certain level
implemented in practical solutions can force the system to operate in different dynamics. A
small number (α) in Equation (37) enables a more precise search for the optimal value of the
weight matrix. However, it takes longer to search for the appropriate values. On the other
hand, a high value of the training coefficient enables a quick jump towards the optimum.
However, the precision of the calculations may not be very high. In engineering applica-
tions, it seems advantageous to introduce a variable value (high for large error—faster
closing to minimum of the cost function, low for small error—more accurate calculations)
for the coefficient α [21].

3.2. Concept of Neural Filtering

There are two general structures for neural filtering that are mainly considered in the
papers. The first of them needs correct calculation information about the noise level or the
reference signal. The learning procedure leads to the estimation of inaccuracies [52,53]. The
second idea of adaptive neural filtering switches the reference signal to a historical sample
of the disturbed waveform. In such a situation, the neural model is forced to calculate
an improved transient. This strategy is often also called signal enhancement. However,
both methods make it possible to obtain higher signal quality [53–55]. Low computational
power necessary for the algorithm calculation should also be noted.

In this article, on-line tuning (presented in the previous section of the article) of the
ADALINE model was applied for error minimization (ea). The difference between the
reference, ya

ref, and the output, ya, signals was reduced. In this application, ADALINE with
four inputs was used (Figure 2). The input state variable was the measured shaft torque,
ya

ref = ms(k − 1). Subsequent inputs contain values from historical samples of previous
input (unit delay elements were applied). The adaptive model should calculate the shaft
torque, msf, with a lower level of noise. The training coefficient (α) was experimentally
selected. Initial values of weights can be selected as random numbers or zeros.

This application is related to the electrical drive. The control structure, presented in
Figure 1, assumes the connection of an additional feedback from the shaft torque. In many
solutions, it is not measured directly. This signal is calculated using suitable observers
or simple simulators based on equations. It should be noted that the basic information
in the determination of the mentioned state variable is the current signal. It is often a
disturbed waveform. The following calculations (using gains or derivative operations) can
additionally amplify the disturbances. Moreover, the low-cost construction of the drive is
expected. Thus, the implemented sensors may be characterized by a limited accuracy of



Energies 2021, 14, 3389 11 of 26

processing. Additionally, it may not be possible to obtain a small calculation step using
cheap programmable devices.
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Figure 2. Neural filter based on the ADALINE model.

In order to present the properties of the separate part of the system from Figure 1 (the
neural filter of shaft torque), simulation tests were carried out. The frequency of calculations
was set to fs = 1000 Hz. For this purpose, a disturbance was introduced by adding the value
from the random number generator (pseudorandom numbers from normal distribution) to
the torque signal. Obviously, in the experimental tests, the ms would be msn. Exemplary
results are presented in Figure 3. The learning coefficient was equal to 0.9. The original
signal (black marker) and a disturbed transient are presented (red marker). Then, as the
result, the output of the ADALINE filter is shown (green marker). The figures (for the same
test) are presented twice. In the first case, the long-term drive reversions are presented
(Figure 3a). The second graph shows an enlarged fragment of the processed state variable.
The aim was to show the stable operation of the adaptive filter (the first case) and transients’
details (the second case). It is easy to notice a significant improvement in signal quality
(Figure 3b). The convergence of the algorithm can also be observed. Another advantage of
this type of filtering is the lack of delay in the processed signal.
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4. The Particle Swarm Optimizer Implemented for ke and ku Selection

The adaptive controller, based on a recurrent neural network, contains a reconfigurable
part (weights updated according to the training rule). However, the overall structure
includes the constant coefficients that need to be defined during the design stage. It is
related to the gains applied for the input signals ke (error) and kde (error derivative) and
the control value ku. The mentioned parameters are significant for the proper work of
the control system. The validity of the assumptions presented above is verified in the
results shown in Figures 4 and 5. If the ke is small (ke = 1), the information about the
speed control error is insufficient, and as a result, the correct operation of the controller
is difficult to obtain. In the case of an overestimated value of this coefficient (ke = 50), the
controller may react with too-rapid changes of the control signal. Then, oscillations appear
under the load switching (Figure 4). There is a suitable (intermediate) gain value for the
signal at this controller input. Similar dependencies can be observed in the transients of
machine speed and load saved for other values of the ku parameter. It can force high-
frequency oscillations of the state variables (ku = 50), but also a slow response of the
plant (ku = 10). Correct selection of the control signal amplification ensures an appropriate
reaction (according to the control signal) in the transient states of the drive operation.
Analytical derivation of the formulas describing the fixed parameters of controllers based
on artificial intelligence algorithms (neural networks or fuzzy logic) is difficult, and often
these values are determined experimentally. One of the solutions for this problem is
application of a nature-inspired algorithm. In this case, the particle swarm optimization
method was used. Moreover, one of the assumptions, during the implementation of the
main controller presented in Figure 1, was to reduce the parameters needed for selection at
this stage. The analyzed results were performed for kde = 1. This means that it is possible to
obtain an effective controller without insertion of this parameter. In further optimization,
only ke and ku are considered.
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The background of the calculations performed in the PSO is based on the group
behavior of organisms. It is compared, in an article presenting the principles of the
algorithm, to a flock of birds or the movement of a shoal of fish [56]. The group is
considered as a set of potential solutions, among which appropriate values are searched,
to find the optimal solution. The search for food is represented by the continuous update
of individual parameters. For each element of the set, the characteristic parameters are
assigned. These coefficients describe the position among other particles, and also affect the
subsequent stages of calculations [57]. To specify, the most important factors describing the
elements of the solution set are presented below.

The coefficients describing the accuracy for the next potential solution (for the k-th
particle) are as follows: εk

p is the value closest to the optimal level, and εk
g is the state of

the particle related to the global minimum of the cost function, defined as follows:

fcPSO = a1 fc1 + a2 fc2 (49)

where:

fc1 = 0.5
n

∑
p=1

e2
p (50)

fc2 = 0.5
n

∑
p=1

∆u2
p (51)

∆u =
d
dt

u (52)
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ep = ωre f −ω1 (53)

n is the total number of samples, p is the analyzed sample, u is the control signal and a1
and a2 are design parameters.

The above-presented construction of the cost function contains (apart from the error
of speed control, ω1, calculated on the basis of the signal from the motor) an additional
component, whose task is to reduce oscillations in the control system. Besides, in this way,
the algorithm prevents reaching extreme values of the controller parameters.

The following coefficient is the velocity of the particle νk in the i-th iteration, and is
defined according to the formula:

vk(i + 1) = vk(i) + c1r1

(
ε

p
k − xk(i)

)
+ c2r2

(
ε

g
k − xk(i)

)
(54)

where c1 and c2 are constant parameters (acceleration), typically selected in the range:

c1 ∈ 〈0, 4〉 and c2 ∈ 〈0, 4〉 (55)

Moreover, in the formula describing the velocity, additional parameters (randomly
selected) are used:

r1 = rand, r2 = rand and r1 ∈ 〈0, 1〉, r2 ∈ 〈0, 1〉 (56)

The last coefficient for the k-th particle is position:

xk(i + 1) = xk(i) + vk(i + 1) (57)

In this implementation of the PSO, the modified version of Equation (54) was applied.
The inertia weight, wpso, was inserted [58]:

vk(i + 1) = wpsovk(i) + cv
1r1

(
ε

p
k − xk(i)

)
+ cv

2r2

(
ε

g
k − xk(i)

)
(58)

Additionally, time-varying coefficients of the velocity equation were assumed:

wpso(i + 1) = wpsomax −
(

wpsomax − wpsomin

imax

)
i (59)

where wpsomax and wpsomin are the upper and lower bounds of the wpso, i is the actual step
of processing and imax is the maximal number of iterations.

The acceleration parameters c1 and c2 are recalculated for each iteration according to
the expressions [59]:

cv
1(i + 1) =

(
c1 f inal − c1init

) i
imax

+ c1init (60)

cv
2(i + 1) =

(
c2 f inal − c2init

) i
imax

+ c2init (61)

where c1init is the initial value of c1, c1final is the final value of c1, c2init is the initial value of
c2 and c2final is the final value of c2.

The impact of changes in the νk above, analyzed by the optimization process, are
presented in [60].

The PSO algorithm performs data processing based on the mathematical relationships
shown in the previous paragraph. The PSO algorithm is implemented in subsequent
iterations. The basic computations are simple, they do not require the derivative of the
objective functions with respect to the optimized parameters. At the initial stage, the
data processing conditions are declared: the number of elements of the set, the maximum
number of iterations, the limitations of the assigned parameters, the range of parameters
described with Equations (59)–(61), etc. The initial values of the solution set are randomized.
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In order to initially evaluate the whole set, the error is calculated for each parameter
(particles). Then, the repeating part of the algorithm is started. The coefficients used in the
speed calculation are determined (wpso, c1 and c2). The main part of data processing, in the
search for the optimum, is determining the speed and position for subsequent particles.
After checking the quality of the obtained results, the criteria for stopping the calculations
are analyzed. If the conditions are not met, the following iteration is realized. The following
stages of calculation are presented in the diagram in Figure 6.
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Figure 6. The scheme presenting the overall concept of the PSO optimization.

As mentioned earlier, in this article, the purpose of the PSO algorithm is to determine
the parameters of the adaptive neural controller that uses the recurrent model. In this
application, for the acceleration factors, the following range was assumed: c1init = 2.5,
c1final = 0.5 and c2init = 0.5, c2fina l = 2.5. The value of the wpso parameter was decreased from
0.9 to 0.1. For two calculated parameters (ke and ku), 20 individuals of the processed set
of solutions were appointed. Data modifications were carried out over 30 cycles. The
initial value of the objective function is very large (Figure 7a). This state corresponds to
the drawn initial values (ke = 0.5688, ku = 2.5508). Transients of the ω2 speed are presented
in Figure 7b. The mentioned controller parameters do not ensure stable operation of the
control system (red marker). In the following calculation steps, the error values decrease
(Figure 7a). As a result, the following values of gains for the controller were achieved:
ke = 4.1058, ku = 23.6211. Optimized parameters lead to precise control of the drive. The
obtained values were used in the tests of the control structure.
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5. Simulations of the Control Structure

This stage of work focused on the numerical analysis of the control structure. Firstly, a
simulation model was developed for the system. The following values of time constants
were assumed for the object: T1 = T2 = 203 ms and Tc = 0.0012 s. The sampling time was set
to ts = 0.0001 s. Several simulations take 30 s. The reference speed is not constant. Initially,
this signal starts from 0 to 25% of the nominal value. Then, this transient was changed from
the set value to −0.25. Subsequent sequences force the drive to the following reversals. All
state variables were represented in the unit system. The drive is started with no load. At
t = 11.4 nominal, the load was turned on.

The previous paragraph presents the general assumptions of the simulation tests.
The state variables’ responses are shown in Figure 8. The aim of the first studies was
to demonstrate the correct operation of the control system. Nominal values of the time
constant were assumed. At the initial phase of the drive operation, control inaccuracy
is visible (Figure 8a,b). It is related to the random initial values of the neural network
coefficients. The neural elements of the control structure are adapted to carry out the
relevant tasks (controller and filter). However, after a short period of time (about t = 1 s),
the adaptive algorithm tunes the coefficients correctly, and as a result, the speeds (ω1 and
ω2) of the drive follow the reference signal. It does not affect the stability of the system.
The reaction of the system to load switching is very fast, and the speed returns to the set
level after a short time. Obviously, it is related to the step of the current (electromagnetic
torque, me). At the transient state, the me variable has higher values than the shaft torque
(Figure 8c). Thus, proper operation of the drive can be achieved.
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Figures 9 and 10 show operation of the electrical drive under disturbed time constants
of the mechanical part. The parameters of the load (T2) and shaft (Tc) have been changed.
Identical parameters of the regulator were introduced. Moreover, once drawn, weight
values were loaded before the start of each calculation. In this way, appropriate values
that make it possible to compare the performance of the speed controller under different
operating conditions are provided. In these figures, the plots of the speed tracking present
the high quality of the control. Several transients are close to the reference signal. For
changes of the time constant, T2, different values of the electromagnetic torque are noticed
in transient states. It is related to changes in the moment of inertia. It can be considered that
an object with a larger time constant is heavier, so a higher current is required as the speed
value changes. The simulated disturbances, introduced as changes of the shaft constant, in
a real case may correspond to tests performed for couplings with different properties that
result from the quality of the material or the diameter of the connection.
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The two-mass system, in this research, is represented as the mechanical part of the
electrical drive. A flexible shaft creates a non-ideal connection that disturbs the waveforms
of the state variables. This construction can cause oscillations that make precise speed
control difficult. However, according to the mentioned assumptions, the current control
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loop is a delay for the outer loop with the RNN controller. Moreover, a two-mass system
can be formed through an electrical drive with different types of machines. Considering the
analyzed control structure, some versatility in the application and design process can be
inferred. Therefore, the last simulation deals with the influence of Tme on the final results
(Figure 11). It should be highlighted that it is a summary time constant, including current
measurement, controller operation and power electronic devices. In previous tests, an ideal
torque control loop was assumed (Tme = 0). The control system works very well in the
studied range of Tme values. This is an additional advantage of the RNN controller. It also
leads to the conclusion that the design process can be simplified.
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6. Experiment

The proposed adaptive control structure has been examined in the laboratory ring.
The main part of the experimental set-up consists of two converter-fed DC machines (500 W
each) coupled by a flexible connection. Both electrical motors are controlled by a control
card (dSpace 1103) via two separate power converters. The whole control algorithm is
implemented with the help of this control card. In the realized control structure, two
main control loops are visible, namely the torque and speed. The inner driving torque
loop encompasses the following elements: PI torque controller, transistor H-bridge (power
converter), armature winding and current sensor (LEM type). The current signal supplies
a 16-bit A/D converter of the control card. The control signal of the reference current is
transformed to a PWM signal and is sent to transistors of the H-bridge (with switching
frequency of 10 kHz). The parameters of the current controller are set in order to obtain
a fast torque response. In this application, the torque inner loop can be approximated by
an equivalent first-order term with time constant equal to 1 ms. The outer speed control
loop consists of a speed controller, optimized inner control loop, mechanical part of the
drive and the incremental encoder fixed to a driving motor. The encoder’s signal is sent
to the control card. In the experimental set-up, there is also a second encoder mounted to
the load machine. However, it is not used for the control purpose but only to monitor the
position of the load. The main data of motors are: nominal power PN—500 W, nominal
speed nN—1450 rev/min, nominal current IN—3.15 A, nominal voltage UN—220 V and
moment of inertia JN—0.0044 kg m2. In Figure 12, the sample layout photos are presented.
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The conducted research took into account the assumptions typical for this stage of
research related to the electric drive control system, which means issues related to the
selection of a programmable device and the method of algorithm implementation. As it
was mentioned above, the dSpace 1103 card was used in the laboratory. It is a powerful
tool with enough computational power needed for control algorithm implementation.
The neural network with on-line weight adaptation was initially implemented in a high-
level graphical programming language. The above-described assumptions are commonly
known in academic or research centers’ methods. Firstly, the design process is focused
on the overall idea, then technical problems are performed. However, two development
scenarios are considered in the following work. The first of them deals with the low-
cost implementation of the control algorithm. On the other hand, due to the parallel data
processing (in the main controller and adaptive filters), the field programmable gates arrays
can be used. To improve the efficiency of the code (higher frequency of calculations), the
analyzed speed controller can be implemented using the low-level programming technique.
The control software (settings of reference values, graphical data representation, etc.) can
be prepared, as a standalone application, using Python with graphical libraries.

A number of experiments have been carried out to test the performance of the analyzed
control structure with an adaptive controller. The parameters of the input filters are as
follows: ωn = 20 s−1 and ξr = 1. The drive is working under the following cycle: the
reference command of the motor speed is changing from −0.25 to 0.25, with frequency of
0.2 Hz. The speed reference, taken as 25% of the nominal level, makes it possible to prevent
the control system from operating within current limits. In this way, the operation of the
control system and the properties of the controller can be clearly observed without the
additional influence of disturbing elements. In control theory, the limitation of the control
signal is a separate issue. Additionally, this assumption is used for comparative reasons
(with other types of controllers). This is also beneficial for the safe operation of the drive
during the initial tests. The shape of the reference signal deals with repetitive industrial
processes (e.g., work of a robot used in a production line). Moreover, this trajectory is
proper for tests of adaptive systems. Through repeated actions, it is possible to observe
the reduction of the control error. Additionally, the longer working time presented in the
speed transients can be considered as a practical verification of stability.

In the first case, the system is working without external load. Transients of the
working system are presented in the following order: motor and load speeds (Figure 13a)
and electromagnetic and shaft torque (Figure 13b). Next, the system with a changeable load
torque is tested. The disturbance is switched on and off after 1 and 2 s of negative reversal.
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As can be concluded from the transients presented in Figure 13, the drive system is
working correctly. Both speeds follow the reference command precisely without visible
errors (Figure 13a,c). The changing of the reference signal creates the transient state, yet
during this time, errors in both speeds are not noticeable. The transients of both torques
possess noises, yet they are smaller for the shaft torque. The switch on and off of the
load torque creates small, quickly damped oscillation in the load speed, yet the motor
speed remains almost constant (Figure 13c). Those small oscillations are also visible in
electromagnetic and shaft torque transients (Figure 13d).

The proposed system can be implemented into two ways: without and with additional
feedback from the shaft torque. The above consideration can be significant in real industrial
applications. Introducing additional information from feedback improves the damping
of torsional vibrations. Therefore, higher precision of work can be achieved. However,
next, sensors are needed, which leads to higher costs and increased susceptibility to faults.
Concluding the above, it can be a compromise that depends on the specific facility and
system requirements.

In order to show the advantage of the second approach, the following experimental
tests were performed. Firstly, the system without this feedback is implemented, then it
is added to the control structure. The drive is working under the following cycle: the
reference signal of the speed is set to 0.1, with a frequency of 0.2 Hz. No external load
torque is applied to the system this time. The obtained transients for the structure without
and with additional feedback are shown in Figure 14.
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Figure 14. Transients of state variables in the control structure with an adaptive neural controller applied for the two-mass
system—motor speed (a,b), fragment of speeds (c,d) and shaft torque and electromagnetic torque (e,f) for the control
structure without (a,c,e) and with (b,d,f) additional feedback from the shaft torque.

Both tested systems work correctly. The speeds follow signals with small errors
(Figure 14a,b). The difference between both systems is visible at the enlarged plots of
the speeds (Figure 14c,d). The control structure with additional feedbacks from the shaft
torque allows to suppress oscillations of the load speeds much more effectively. These
oscillations have about a 50% smaller magnitude than in the control structure without
additional feedbacks. The transients of electromagnetic and shaft torque are presented in
Figure 14e,f. Due to the high level of noises, there are no visible differences between these
control structures.
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Then, the effectiveness of the time-processing system was tested in an experimental
study. The system works in an identical cycle as that used previously. The obtained
transients are shown in Figure 15.
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In the control system working under reverse condition, both speeds follow the ref-
erence command without noticeable errors. The torques of the system are presented in
Figure 15b and its enlargement in Figure 15c. It is clearly seen from the last figure that the
filtered shaft torque possesses a lower noise level. Due to the adaptation algorithm applied
for the simplified neural model, a reduction of disturbances can be achieved without a
complex algorithm or a complicated design process. Additional output delays are not
observed. However, besides the overall level of noise, the elimination of the short-peak
points (Figure 15c, about t = 16.1 s) is also very important for the control structure. In the
closed control loop, it can be amplified. Then, it can be reflected in the snatch of the shaft
between the motors. It can be a source of the faults in the mechanical part of the drive.

7. Conclusions

In this paper, we presented issues related to the application of the adaptive neural
controller for the drive system with an elastic shaft. The neural system is based on the
recurrent architecture and it was tuned on-line in order to minimize the control error. In
order to ensure the better damping ability, we included the additional feedbacks from the
shaft torque to the control structure. The noises existing in the signal of the shaft torque
were suppressed by the ADALINE system. The features of the considered drive system
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were illustrated by the simulation and experimental results. Based on the theoretical
considerations as well as the simulation and experimental tests, we can formulate the
following concluding remarks, as presented below.

• In order to suppress torsional vibrations of the two-mass system with changeable
parameters (or unknown), there is a need to apply an advanced adaptive control
structure. The proposed recurrent neural controller allowed to effectively dampen the
torsional vibration, and also, in the drive, possessed additional non-inebrieties such
as friction or a nonlinear mechanical shaft (evident in real drives).

• The properties of the control structure depend on input (ke, kde) and output (ku)
coefficients. The correct selection of those values is not a trivial task and depends
on particular parameters (or their range) of the plant, cycle of work and additional
nonlinearities. The proper work of the control structure can be achieved by suitable
selection of two of the above-mentioned parameters. In this work, the coefficients
ke and ku were selected with the help of the particle swarm optimization method.
This algorithm allows to obtain the optimal value to specify the cost function, which
resulted in optimal damping ability of the considered control structure.

• The damping ability of the adaptive recurrent controller can be increased by additional
feedback from the shaft torque. However, in practical application, this signal can
possess a relatively high noise level. In order to minimize the noise levels in the shaft
torque signal, the ADALINE system was proposed. It allows to filter the shaft torque
signal, which results in correct operation of the drive.

• The proposed control structure allowed to dampen the torsional vibration in the case
of changeable parameters of the plant, such as time constant of load machine, stiffness
time constant or different values of delay in the torque control loop. For all mentioned
scenarios, speed oscillations were suppressed.
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Abbreviations
The main nomenclature assumed for presentation of theory and results are presented.

Abbreviations:
RNN Recurrent neural network
PSO Particle swarm optimizer
ADALINE Adaptive linear neuron
ASD Adjustable speed drive
FOC Field-oriented control
MPC Model predictive control
Parameters:
T1 mechanical time constant of the motor
T2 mechanical time constant of the load
Tc stiffness time constant
ω0 resonant frequency
ξr damping coefficient
Tme total time constant for current processing
W matrix between the inputs and the hidden layer
O matrix between the hidden layer and the outputs
C matrix of weights in the context layer



Energies 2021, 14, 3389 24 of 26

α training constant
ke input gain of the RNN (error input)
kde input gain of the RNN (input with derivative of error)
ku output gain of the RNN
ts sampling time
State variables:
me electromagnetic torque
ms torsional torque
msf filtered value of the shaft torque
mL load torque
ω1 motor speed
ω2 load speed
ωref reference speed
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