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Abstract: This paper presents impulse tests results on a zinc oxide (ZnO) surge arrester connected
to four ground electrodes, with its resistance values ranging from 17 Ω to 104 Ω. It has been noted
that when in series with various ground resistance values, the voltage–current characteristics of
the zinc oxide (ZnO) surge arrester are far from the one tested using a common grounding, which
is a standard measurement method described in IEC 60060-1. This paper clarifies the relationship
between the surge arrester with various ground electrodes and its performance when tested with a
common practice, based on IEC 60060-1. The tests carried out on a 15 kV ZnO surge arrester, under
high-impulse conditions by field measurements, provide important information on the characteristics
and ability of the surge arrester to adequately function in various ground electrodes.

Keywords: surge arrester; ground electrodes; v-i characteristics; ground resistance values

1. Introduction

Protective devices, such as insulators, surge arresters, and reclosers, are used to protect
equipment from any abnormal high-voltage surges. These overvoltages can cause flashover
and serious damage to equipment. It is therefore essential to prevent any damage to the
equipment by maintaining the insulation strength of the protected equipment. Some stan-
dards [1,2] present the guidelines for insulation coordination and the installation of surge
arresters from various origins of faults. Many standards also provide information, such
as guidelines on the withstand tests to be performed on surge arresters in the laboratory,
so that recommendations for the selection and application of surge arresters [3,4] can be
made. A number of published works have also contributed towards the testing on the
surge arrester in the laboratory environment, to characterize the surge arrester under vari-
ous conditions; namely, salt-fog tests [5,6], trapped dc charges [7] and the characteristics
of the internal-gap lightning protection device (ILPD) under lightning impulse on the
ZnO varistor [8].

Various types of voltages, namely, direct, alternating, variable frequency, mixed
(AC+DC), and single and multi-pulse voltages [5–9] have also been used. The effects of the
surge arresters under these voltages have also been investigated [5–9]. However, so far, very
few published studies can be found in the literature on field-testing on the surge arrester,
in correlating ground electrodes to the behavior of surge arrester. Christodoulou et al. [10]
reported that a low ground resistance value improves the line performance during lightning,
which gives a low failure rate on a backflashover. However, they [10] observed that a very
low ground resistance value can cause high magnitudes of current that flows through the
arrester before being discharged to the ground, which may result in damage on the arrester.

Hidaka et al. [11], on the other hand, found that the lightning surge can be reduced
with a ground resistance value of 40 Ω, along with an installation of a ground wire, without
reducing the lightning protection level. For the case of a non-ground wire, a ground
resistance value of 30 Ω is suggested and found to be adequate for the lightning protection
level. These studies [10,11], performed by the computational method, provide sturdy
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evidence that it is important to study the relationship of the ground resistance value on
the characteristics of the surge arrester, where Christodoulou et al. [10] found that a low
ground resistance value can be plausible for the arrester to get damaged, while Hidaka [11]
found that a higher ground resistance value can be considered for the installation of ground
wires, indicating that the surge arrester can be installed with higher a ground resistance
value than the recommended value, which can reduce the costs of the ground electrode’s
installation. However, the studies [10,11] are carried out by the computational method,
which is generally known to have limitations in to analyzing the effect of the impulse of
polarity of the voltages and grounding systems on the performance of the surge arrester in
real application.

Mancao et al. [12] conducted a simulation work to investigate a metal oxide varistor
(MOV) on the systems, with the values of ground footing resistance changed to 0.5 Ω,
1 Ω, 2 Ω and 5 Ω. They found that the voltage values were above the normality; above
1.2 per unit for all footing resistance values, which showed that lowering the resistance
value might not reduce the overvoltages during the single line to ground faults. However,
the simulation carried out on the MOV under other factors, namely, neutral wire size,
feeder length, and overvoltages of above 1.2 were seen in most cases, which resulted to
1.35 per unit of overvoltage factor to be used. Thus, an inconclusive relationship is seen
on the performance of the surge arrester with various ground footing resistance, and is
proposed in their study [12].

Since most studies on surge arresters relating to the ground electrodes are found
lacking in the field test data, this paper is directed to address this short fall. In this paper,
the ability and behavior of surge arresters to respond under various grounding systems are
investigated by field tests by firstly performing impulse tests on the linear test load with
a common ground. With the same test arrangement, the linear test load is replaced with
the surge arrester prior to testing the surge arrester, with a common ground, as typically
arranged and tested in the laboratory, and as mentioned in the IEC standard 60060-1 [13].
Subsequently, impulse tests are carried out on the ground electrodes of various conditions,
with and without the surge arrester, while the remote earth is connected to the ground
terminal of the impulse generator. The characteristics of the ground electrodes, with and
without the surge arrester, are then analyzed at increasing voltage/current magnitudes. The
results revealed that the performance of the surge arrester with various ground electrodes
is dissimilar to the results when the surge arrester is tested with common ground electrodes.
It is anticipated that this study will contribute towards the pre-requisites of allowing the
surge arrester to properly function at field sites. An improvement in the design of the surge
arrester can also be tapped into in the future, considering its usage for various ground
resistance values. One instance is in the event of the difficulty in achieving the required
ground resistance values that may be costlier to improve, in comparison to having the
specific surge arrester that can properly function in high resistance values.

2. Experimental Arrangement
2.1. Ground Electrodes

In this paper, the first part of the experiment is performing the tests on a linear test load
and surge arrester with a common ground. In this experiment, the ground electrode consists
of a rectangular grid, with dimensions of 20 m × 30 m, as the common ground electrodes.
The grid has 9 rod electrodes, buried at 1.8 m depth into the ground, interconnected with a
copper tape of 6 mm thickness, with a width of 20 mm. All of these electrodes are buried at
500 mm below the ground’s surface. On the 20 m length, the copper tapes are placed 5 m
from each other, whilst on the 30 m length, the copper tapes are placed 15 m away from
each other.

In the second part of the experiment, several configurations of grounding systems
are used, including single-rod, 2-rod, 3-rod, and ring electrodes, similar to that presented
in [14,15]. A single-rod electrode, of 16 mm diameter, with a length of 1.5 m, is fully buried
into the ground. The same size of rod electrode is used for all other configurations, whereby
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for the 2-rod, 3-rod and ring electrodes, the electrode is joint to another electrode with a
copper tape with a width of 300 mm and a thickness of 2 mm. The distance of separation
is 3 m apart for paralleled 2 and 3 ground rod electrodes. For the ring electrodes, 10 rod
electrodes are arranged in a ring configuration, with a diameter of 10 m, connected from
one rod to another electrode with copper mesh. These copper meshes are connected above
the ground’s surface, for easy removal post-experiment. For these tests, the remote earth or
return ground electrode is used to divert high magnitudes of current during testing. The
remote earth used in this study is similar to the common ground used in the first part of the
experiment. Fall-of-potential (FOP) is deployed to measure the values of ground resistance,
RDC, for all grounding systems, and found, respectively, to be 104.4 Ω, 44.8 Ω, 28.5 Ω,
17.2 Ω and 8 Ω for single, 2-rod, 3-rod, ring electrodes and remote ground electrodes.
Table 1 provides the drawing of these electrodes with its corresponding RDC values.

Table 1. Drawings of ground electrodes and its corresponding RDC values.
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Table 1. Cont.
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Remote earth, a grid, RDC = 8 Ω

2.2. Testing Arrangement

In this study, a ceramic linear resistor 500 Ω is first placed above or in series with the
common ground electrodes, and consists of a grid, as shown in Figure 1. The tests on a
linear resistive load are needed to ensure the results are reliable and acceptably accurate.
Initial oscillations, voltage drop, and any abnormalities in the test results observed in other
test loads later on, will be set as a comparison tool to the test results of this linear test load.
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Next, a commercial metal oxide surge arrester, rated 15 kV, is used with the common
grounding systems. This test arrangement is a typical one in measuring the residual voltage
and voltage–current characteristics as presented in [7,13]. This test is essentially carried
out to check the validity of the test’s set up and the reliability of the test measurements.
For the second part of the tests, the surge arrester is placed above or in series with several
configurations of ground electrodes, hence the variation in RDC, to analyze the effects
of grounding systems on the performance of the surge arrester. The first step of the
experiments involved testing the ground electrodes only, without the surge arrester in
series to it. Test circuit shown in Figure 2 is used to test the grounding systems, without
the presence of the surge arrester. Consequently, the test arrangement in Figure 3 is then
adopted to test the surge arrester in series with various ground electrodes. For all of the
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three test arrangements, voltage and current measurements are measured, respectively,
with a resistive voltage divider, which is scaled down so that it can be captured with a
digital storage oscilloscope (DSO) that can measure up to 300 kV. This divider consists of
wire-wound resistors for both its high and low voltage arms, giving a ratio of 3890:1. These
wire-would resistors are installed in the insulating casing and filled with insulating oil. A
current transformer (CT), with a sensitivity of 0.01 V/A, can measure up to 10 kA. This
current transformer is based on the induced magnetic field in the coil, and the mesh copper
goes in the middle of the CT, with no contact with the coil. The commercial CT used in
this work has a high frequency 3 dB range of 4 MHz. Two DSOs are used to capture for
both voltage and current readings. The DSOs have the same specifications, adjusted to the
same time scale and same sampling rate, so that synchronization between the voltage and
current traces is achieved, where both traces are transferred to Excel and plotted on the
same graphs later on. The results are presented and discussed in Section 3.
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3. Test Results

The results are analyzed based on the voltage and current traces, whilst the character-
istics of voltage–current (V-I) are plotted. Voltage–time characteristics are also analyzed in
comparison to the test results achieved with the surge arrester, with common ground with
the test arrangement as in IEC 60060-1 [13].

3.1. Linear Resistive Load with a Common Ground Electrode

Impulse tests are performed on a 500 Ω linear test load, with increasing voltage/current
magnitudes. Figure 4 shows the voltage and current waveforms at a charging voltage of
100 kV. Similar waveshapes are observed at different voltage/current magnitudes. It is
observed from the figure that the voltage and current rise and discharged times occurred
at the same time, indicating the linear resistive load. Furthermore, longer discharge times
are seen for voltage and current waveshapes, within the 1500 µs to 2000 µs range, due
to a linear test load, which normally takes a longer discharge time. Similarly, in the
literature [16], when the linear resistive load is simulated with PSPICE simulation, longer
discharge times for the voltage and current waveshapes are seen, in comparison to the test
load of non-linear. In this study, the discharged times are also found to be dependent on
the voltage/current magnitudes, where faster discharged times at higher voltage/current
magnitudes are observed, compared to those at lower magnitudes, as shown in Figure 5.
This shows that, despite the test load being a linear resistive load, which likely has the
same characteristics at various voltage levels, the discharge times are found to occur at
a faster time at a higher voltage/current. This observation could be caused by a higher
thermal heating process in the linear resistor at higher voltage/current magnitudes, which
provides more conduction in the resistor at higher magnitudes of current.

From the voltage and current waveshapes, the resistance values are obtained for all
of the voltage/current levels, by dividing the peak voltage with the peak current. The
resistance versus peak current is then plotted (see Figure 6). It is observed from the figure
that the value of a linear resistor, under a high impulse condition, is approximately 430 Ω,
which is 14% lower than that measured at low magnitudes of voltage and current, and the
value mentioned in the data sheet by the manufacturer. A lower value of a linear resistor
under high-impulse conditions is also seen in previously published work before [17]. This
again may be caused by the heating process in the linear resistor, which may have increased
the conduction, hence reduced the resistance value.
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3.2. Surge Arrester with a Common Ground Electrode

Figure 7 shows the typical voltage and current wave shapes at a charging voltage of
30 kV, indicating a low conduction regime of the surge arrester. At a charging voltage of
50 kV and higher, it is observed that the magnitudes of the current become apparently high
due to the residual voltage that has been reached in the surge arrester, as shown in Figure 8.
The time to the peak current or the front rise times are seen to have occurred faster at all
of the current levels, as reflected in Figure 9, and it can also be seen that these front rise
times are dependent on the current magnitudes. The variation in these front rise times with
increasing current magnitudes is plotted in Figure 10, and it is found that the higher the
current magnitudes, the faster the discharge times of current are, where the front rise time
decreases from around 20 µs at 2.5 kA to 10 µs at 138.2 kA. These trends are also seen in
many publications [7–9], where the higher the conduction regime, the faster the front rise
and decay times are. This was suggested in [7], as due to a breakdown of the intergranular
layers, there were more current paths and conduction through the ZnO surge arrester at
high magnitudes of current. On the other hand, a slower front rise time at low current
magnitudes may be caused by high impedance of the surge arrester, as mentioned in [7,18].
This is also evident from the discharge time of the current, which it is noted from Figure 10;
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it can also be noted that there is a slower discharge time at low magnitudes of current and
a faster discharge time as the current magnitudes are increased.

It is observed that at all of the voltage/current levels, the current trace discharged at a
faster time than the voltage. This could be due to the non-linearity of the surge arrester,
in combination with the inductive effect. This observation is similar to that presented
in [7–9,17]. Metwally [17] noticed that, at all of the stages of the impulse generator, the
current traces discharged at faster times than the voltage traces, where these voltage
measurements were obtained with a resistive/capacitive probe, capacitive divider and
D-dot probe. Since a similar observation was observed in this present study as a previ-
ously published study [7–9,17], in which the voltage traces were discharged at later times
than the current traces, it can be concluded that the measurement used in this paper is
reasonably acceptable.
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Another notable observation in these measurements is that the voltage traces at all of
the voltage levels have initial oscillations. These initial oscillations have been suggested in
several studies [7,17] due to a few factors, among which are a combination of inductive ef-
fects in the test circuit and capacitive effects of the surge arrester [7], the rate of front current
rise times, where higher oscillations are seen for steeper fronted current waves [19]. Several
methods have also been proposed in the literature in reducing these initial oscillations in
the measurement of the surge arrester, such as using a D-dot probe [7,17], in comparison to
other to other commercial voltage dividers. Furthermore, the test arrangement adopted
in this study involved experimental work at a field site, with the surge arrester placed a
distance away from the divider and the other equipment. Therefore, it can be expected that
self and mutual inductance would be present in the test circuit, which, with a combination
of the capacitive component of the surge arrester, could contribute to these initial oscilla-
tions. However, these initial oscillations and ways to eliminate these effects are beyond
the scope of this paper. The same test equipment is used throughout the test in order to
provide a direct comparison and consistency in the measurement for the test on the surge
arrester with various ground electrodes.
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From the voltage and current wave shapes, the voltage–current curve is plotted in
Figure 11. For the current magnitudes below 5 kA, small variations in the current magni-
tudes are seen, as the magnitudes of the charging voltages are increased. As the voltage
magnitudes are gradually increased, much higher current magnitudes are obtained, indi-
cating a low impedance of the surge arrester and more current paths at a high conduction
regime, allowing a large current to flow through it. It can be seen that for a change in
current from 440 A to 136 kA, the voltage increase at the terminal of the surge arrester is
small, only 25%, which shows that a large amount of energy is dissipated effectively to the
ground through the surge arrester.
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3.3. Ground Electrodes

The experimental results on ground electrode tests of the same configurations used in
this study have been presented in a separate paper [14,15]. Figure 12 shows the voltage
and current wave shapes of a single rod, at a charging voltage of 30 kV. For other ground
electrodes and at different levels of voltage/current, similar voltage and current wave
shapes are seen. It is found that the voltage rise times are similar to the current rise times.
Noticeably, the discharge times for the voltage occurred at the same time as the current
traces. This is different than what is seen for the surge arrester, presented in Figure 8,
whereby the current traces discharged at faster times than the voltage traces. In this
paper, it is also observed that there is no initial oscillation on the voltage trace, which is
different than that presented in Figure 8 for the surge arrester. The front rise times and
discharge times occurred at the same time for the voltage and current traces, and no initial
oscillations are found in the voltage trace, possibly caused by the resistive behavior of the
ground electrode.

The test results also show that the front rise times are independent of the current
magnitudes and the ground electrodes, with approximately 10 µs, as shown in Figure 13.
Inconsistencies in the front rise times are also observed, which could be caused by a non-
uniform rate of soil conduction. This is different than that of the surge arrester, whereby
the front rise time decreases with the increasing current magnitudes, as presented earlier
in Figure 7, which is possibly as a result of more consistencies in the ZnO material, in
terms of conduction, in comparison to the soil. On the other hand, for the discharge
times it is observed that faster discharge times are seen at higher magnitudes of current
(see Figure 14). As described in much published work [14–16,20], an ionization process
could occur in soil when the grounding systems are subjected to fast transients and high
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magnitudes of current, which result in non-linearity in the ground electrodes. Due to
a larger formation of an ionization zone that surrounds the ground electrodes at high
current magnitudes, better conduction is expected in the soil at high magnitudes of current,
which gives a faster discharge time at high magnitudes of current than at low current
magnitudes. Furthermore, Figure 14 shows that the discharge time is the slowest for
the ground electrode with a high RDC (one-rod), and the ring electrode has the fastest
discharge time. This is caused by a better conduction of the ground electrodes with a low
RDC, allowing larger current magnitudes to be discharged at a faster time.
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In most publications [14–16], impulse resistance versus current magnitudes are plotted
to show the degree of non-linearity of soil under various conditions. However, in this paper,
voltage–current characteristics for various ground electrodes are presented in Figure 15 to
allow a comparison to be conducted between the ground electrodes and the surge arrester
later on. It is seen that the voltage–current curves are increasing slowly, dissimilar to
that presented for the surge arrester connected to a common ground in Figure 11, with
an apparent increase in the current magnitudes. Another notable observation is that the
voltage–current curves are the highest for the single rod, with the highest RDC, indicating
a dangerous condition to the system and other equipment since less energy has been
discharged to the ground. The slope of the voltage–current curve is the lowest for the ring
electrode, and the slopes become more notable for the ground electrode with a high RDC. It
is observed that the slope is 29.7, 21.3, 16.5 and 7.4, respectively, for the single rod, 2-rod,
3-rod and ring electrode. These results are further analyzed in the next section of the paper
for the performance of the surge arrester with these ground electrodes.
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3.4. Linear Resistive Load with 2-rod Electrodes

The studies performed in this work are to determine the characteristics of a surge
arrester with various ground electrodes. In order to find out the effectiveness of the
experimental set up and test measurements, the tests are first performed on a linear
electrode with one of the ground electrodes. In this case, the 2-rod electrodes with the
RDC value of 44.8 Ω were used. The rectangular grid that is used as a common ground
in Section 2.1, with the RDC value of 8 Ω, is used in this test. Figure 16 shows the voltage
and current waveshapes of a linear resistive load, placed on the 2-rod electrodes, at a
charging voltage of 100 kV. Similar waveshapes are seen in Figure 4 when the impulse
tests are carried out on a test load with linear behavior, and a common ground is observed,
whereby the front rise and discharge times of the voltage and current waveshapes occurred
at the same time. Figure 17 shows the variation in the discharge times with the increasing
current, which are found to reduce from approximately 2600 µs at 80 A to 1600 µs at 240 A
of the peak current magnitudes. These discharge times are found to be slightly higher than
those shown in Figure 10, when a common ground electrode is used for the testing on a
linear test load. The slower discharge times for the linear test load with 2-rod electrodes, in
comparison to when testing the linear test load with a common ground, could be due to a
higher resistance value of the 2-rod electrode, of 44.8 Ω, in comparison to the common grid,
of only 8 Ω. Due to a longer cable used in the test arrangement where the 2-rod electrodes
are separated from the common ground electrode, this could also be the reason for a longer
discharge time.
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The resistance value of the linear test load for the various peak current magnitudes is
also measured, taken as the voltage at the peak divided by the current value at the peak.
It is found to be an average of approximately 420 Ω (see Figure 18), which is close to the
resistance value presented earlier, in Figure 6, when the impulse tests are performed on the
same linear test load, however with a common ground. A close result between the linear
resistive load tested with a common ground and the 2-rod electrodes gives an indication
that the test set up and test measurement with separate grounds provides a reliable and
valid measurement to characterize the surge arrester with various ground electrodes.

3.5. Surge Arrester with Various Ground Electrodes

In this section, the test results on the surge arrester with increasing charging voltage
are presented and compared with those presented in the earlier sections. Figure 19 shows
the voltage and current waveshapes of the surge arrester connected to a single-rod electrode
at a charging voltage of 80 kV. Similar traces are seen for the surge arrester connected to the
2-rod and ring electrode, whereby the current waveshape discharged before the discharge
time of the voltage waveshape. This could be caused by the non-linear elements of the surge
arrester and the ground electrodes, and with the presence of inductance in the test circuit.
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Similar observations are seen when simulation work is done on linear and non-linear test
loads by PSPICE, where the current waveshapes are found to discharge at faster times than
the voltage waveshapes for the non-linear test load [16]. However, for the surge arrester
connected to the 3-rod electrode, it has transpired that the current trace discharged at the
same time as the voltage trace (see Figure 20). This shows that the surge arrester connected
to the 3-rod electrode has a rather more linear resistive behavior in comparison to the
characteristics of the surge arrester connected to the one-rod, two-rod and ring electrodes,
which may have more non-linear resistive behavior.

The front rise times of the current traces are found to occur at the same time as
the voltage for all of the current magnitudes and test results. These front rise times are
plotted with increasing currents in Figure 21, which can be seen to be almost constant with
the increasing current magnitudes for the surge arrester connected to all of the ground
electrodes, with an approximate average of 10 µs, which is similar to that presented earlier,
in Section 3.2, for the ground electrodes without the surge arrester.
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A further observation is that the initial oscillations, which are seen when the surge ar-
rester is connected to a common ground, presented in Figures 7 and 8, are not observable in
these test results. In Section 3.1, the presence of the initial oscillations on the voltage wave-
shape could be caused by the combination of the effect of inductance from the test circuit
and the capacitive component of the surge arrester. However, in these tests, the test loads
now consist of the surge arrester and the ground electrodes. Several studies [7] have shown
that the equivalent circuits of the surge arrester can be represented by a pre-dominantly
non-linear resistive element at a high conduction current. A similar representation of an
equivalent circuit has also been proposed for ground electrodes in previously published
work [16]. Thus, a combination of both non-linear elements for both test loads could have
contributed to the non-noticeable initial oscillations. It is, however, out of the scope of the
present paper to simulate for these equivalent circuits of the combination of surge arrester
and test loads at this stage. It is an area worth exploring separately in the future.

The voltage–current curves are also plotted in Figure 22 for the surge arrester con-
nected to different ground electrodes, along with the surge arrester with common ground.
Similar to the voltage–current curves in Figure 18, the applied voltage is dependent on
the RDC of the ground electrode, and it is found that the one-rod electrode (the highest
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RDC) has the highest voltage. It is found that the voltage for the ring is higher than the
three-rod electrode, despite the RDC for the three-rod being higher than the ring electrode.
The slopes of these voltage–current curves are found to be the highest for the ground with
RDC, which are 32.7, 26.4, 17.6 and 8.9, respectively, for the one-rod, two-rod, three-rod and
ring electrode. It is observed that the voltage–current curves for the surge arrester with the
three-rod electrode touched the curve of the surge arrester with the common ground at
approximately 1.5 kA. This indicates that the surge arrester is at its expected performance
at this current level. However, for the surge arrester to other ground electrodes, a similar
voltage–current characteristic is only seen at lower current magnitudes, approximately
300 A for the ring electrode and 100 A for both the single and the two-rod electrodes. This
shows that only at a low conduction regime did the surge arrester connect to the various
ground electrodes, which functioned similarly to that with common ground electrode. It
can also be noticed that the voltage–current curve for the surge arrester connected to the
3-rod electrode is found to be similar to the ground electrode without the surge arrester,
seen in Figure 20.
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3.6. Comparison between Ground Electrodes with and without Surge Arrester

The tests on the ground electrodes, with and without the surge arrester, revealed
that a higher voltage and a larger slope are seen for the ground electrodes with the surge
arrester, except for the three-rod electrodes, with the voltage magnitudes at the terminal
being close for the ground electrodes with and without the surge arrester (see Figure 23). A
higher voltage for the ground with the surge arrester could be an indication that the surge
arrester becomes ineffective when placed on the ground electrodes with a high RDC, since
most of the energy is at the voltage terminal and is not effectively absorbed by the surge
arrester, subsequently dissipated to the ground. This can be a dangerous condition to the
systems and other equipment. For the front rise time, close values are obtained for both
of the following conditions: ground electrodes with and without a surge arrester, which
is around 10 µs. The possible reason for a higher voltage for the ring electrode, than the
three-rod electrode, is that the copper mesh connected from one rod to another is present
above the ground’s surface rather than installed into the ground. A similar connection is
adopted for the two- and three-rod ground rod electrodes; however, less copper mesh is
used in comparison to the installation of the ring electrode. It is also found that for the
voltage and current traces of the three-rod ground electrode, the discharge times of the
voltage occurred at the same time as the voltage, showing the linear resistive behavior, in
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comparison to other ground electrodes. This could also be the reason for having the same
voltage–current curve for the three-rod electrode and the surge arrester connected to the
three-rod electrode.
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A similar characteristic that is noted from the tests on the ground electrode with the
surge arrester is that the discharge time of the current occurred at a faster time than the
discharge time of the voltage. This is thought to be caused by the non-linear elements from
the surge arrester and the ground electrodes, and the presence of the inductance in the
test circuit. No specific measurement is performed on the discharge time of the current for
the surge arrester with various ground electrodes in this paper; however, it is observed
that the discharge time for the current was approximately 400 µs, which is lower than
that presented for the ground electrode without the surge arrester, as presented earlier in
Figure 14. As the voltage/current magnitudes were increased, and in the ground electrodes
with a lower RDC, faster discharge times were noted. In conclusion, the discharge times of
that with the surge arrester are achieved faster, though little difference is seen in terms of
its reduced voltage.

4. Discussion

A set of the following five impulse tests are carried out in this study: (i) a linear
test load with a common ground electrode, (ii) a surge arrester with a common ground
electrode, (iii) various ground electrodes, (iv) a linear resistor with a two-rod electrode,
and (v) a surge arrester with various ground electrodes. The experimental test results of a
linear test load with a common ground electrode in (i) are found to be similar to that of (iv),
indicating that the test set up and measurement adopted to study the characteristics of the
surge arrester with various ground electrodes.

Experiments on a surge arrester with a common ground electrode, as mentioned in IEC
60060-1, are presented. The initial oscillations on the voltage traces are quite obvious, and
these oscillations occurred at all of the voltage/current levels. The front rise and discharge
times of the current traces are found to decrease as the voltage/current magnitudes are
increased, possibly caused by more current paths at a high conduction region of the surge
arrester. The voltage–current curve indicated that the voltage increases slowly, with an
apparent increase in the peak current, indicating good conduction of the surge arrester at
high current magnitudes, and most of the energy is dissipated to the ground.

Tests on ground electrodes with various RDC are also performed and the results
showed that there are no initial oscillations on the voltage trace. The current front rise
and discharge times occur at the same time as the voltage trace and are independent of
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the ground electrodes. On the other hand, the discharge time is dependent on the RDC
of the ground electrodes, whereby the single rod with the highest RDC has the highest
discharge time, and the ring electrode with the lowest RDC has the lowest discharge
time. Furthermore, the discharge time is found to reduce as the current magnitudes are
increased. The voltage–current curves of the ground electrodes without the surge arrester
with various RDC values are presented, and found that a single rod (the highest RDC)
has the highest voltage, followed by the two, three-rod ground rod electrodes and ring
electrodes, indicating a dangerous condition for the ground electrode with a high RDC.

The voltage–current curves are found to have higher slopes with higher voltage
magnitudes when the ground electrodes are connected to the surge arrester. This could
be attributed to the malfunction of the surge arrester when the ground electrodes are of
high RDC. The surge arrester connected with the three-rod ground electrode was found to
have similar conduction for the current at 300 A to that of the surge arrester connected to
common ground. Again, there are no initial oscillations on the voltage trace seen during
these tests. The current traces are found to discharge at faster times than the voltage traces,
indicating the non-linearity of the surge arrester and the ground systems.

All of these results present that it is necessary to consider the ground electrode and
its RDC in the installation of the surge arrester. The results also portray that the ground
electrode of 17 Ω is still inadequate to reduce the voltage at the systems terminal and allow
the energy to be dissipated to the ground. The study suggests that further analysis needs
to be undertaken in order to determine the suitability of the ground electrode as well as the
connection of the copper mesh buried into the ground, and relating it to the RDC values of
ground electrodes to be used along with the surge arrester.
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