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Abstract: Pile heat exchangers offer a cost effective route to implementation of ground-source heat
pump systems for many large commercial buildings compared with traditional boreholes. Such
projects typically use thermal response tests to determine the key input parameters for system design,
namely soil thermal conductivity and heat exchanger thermal resistance. However, this brings
challenges for pile heat exchanger based systems, where in situ thermal response tests are known to
be less reliable due to the large thermal capacity of the pile. This paper presents a new “black box”
resistance capacitive model for applications to pile thermal response tests. The approach is tested
against case study data and shown to perform well. Additional test duration savings are shown to
be possible if a novel combination of borehole and pile thermal response tests is applied together to
determine design parameters.

Keywords: thermal response testing; pile heat exchanger; energy piles; ground-source heat pump systems

1. Introduction

Ground-Source Heat Pump (GSHP) systems can decrease the emission of greenhouse
gases resulting from heating, cooling and hot water provision. Energy geostructures, which
combine structural and thermal function, are an opportunity to reduce the installation
costs of ground heat exchangers (GHE), which are the in-ground component of the GSHP
system. Energy geostructures have been installed for several decades [1]. This includes
the equipping of foundation piles [2,3], embedded retaining walls [4], or tunnels [5] with
plastic heat transfer pipes so they can act as a GHE. Of the types of energy geostructure,
pile heat exchangers (PHE), e.g., Figure 1, are the most common. This is partly because
most are likely to be associated with an overlying building and hence have ready users
of the heat they can supply, but also because their typically cylindrical shape makes them
superficially similar in geometry to the more common borehole heat exchanger (BHE).
Thermal analysis methods for BHE are well developed and hence are typically drawn on
for application to PHE.

However, the radius of a PHE, which can exceed 50 cm, is much greater than the
radius of a borehole heat exchanger (BHE) (typically 8 to 10 cm). PHE are also usually
much shorter than BHE (typically 10 to 20 m against 100 m to 200 m). Therefore many
approaches to the analysis of BHE, which assume the presence of a very long and thin
heat source, may not be applicable to PHE. Consequently, more appropriate methods
for thermal modeling such as fully discretized models (e.g., finite element analysis) to
investigate the pipe arrangements and thermal performance [6,7] or semi-analytical models
for thermal dynamic simulation of the whole energy system with hourly time steps [8] are
often applied.
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Figure 1. Example of a pile heat exchanger following pile trimming and prior to connection to the
building base slab and the ground-source heat pump system. In this particular case the heat transfer
pipes are centrally located and still retain their protective sleeves, which were used to avoid their
damage during trimming.

Outside of research, analysis methods for PHE are typically used for two main pur-
poses. First, forward simulation is required for long-term design. In this scenario long
duration (decades) analyses, often with hourly fluctuating thermal demand are required,
and the PHE is often located beneath the overlying building. The thermal properties and
the temperature limits are input, and the output is the available thermal power. In the
second case, reverse simulation is carried out for thermal response test (TRT) interpretation.
In this scenario, short duration (days to weeks) analysis is carried out for in situ character-
ization and the power applied and temperatures measured are input, while the thermal
properties are the output. Typically, the PHE is open to the air because the overlying
building is yet to be constructed.

During a TRT, a heat-carrying liquid (usually water) circulates in the pipes of the
ground heat exchanger with a constant flow volume Qv [m3·s−1] while an electric heater
supplies a constant power P [W] to the fluid. The entry Tin and exit Tout temperatures of the
pile are recorded for the duration of the TRT [9]. The “classical” interpretation of a TRT is
based on a purely resistive thermal model developed for BHE [9], i.e., a model overlooking
the thermal inertia of the GHE. It assumes that the evolution of the temperature of the
heat-carrying liquid Tf is described by the sum of the resistive component and transient
infinite line source (ILS) step response, which takes the borehole to be a line emitting power
with a constant rate:

Tf =
Tin + Tout

2
= T0 + pRb +

p
4πλm

E1

(
1

4t∗

)
(1)

In Equation (1), T0 is the undisturbed ground temperature, p is the linear power
(W·m−1) defined as the ratio between the power P and the depth of the exchanger H, Rb
is the borehole thermal resistance, λm is the effective thermal conductivity of the ground,
E1(x) =

∫ ∞
x

e−u

u du, t* is the normalized time or Fourier number:

t∗ =
λm(

ρCp
)

mrb
2 t (2)

(ρCp)m is the volumetric calorific capacity of the ground [J·K−1·m−3] and rb is the bore-
hole radius. (ρCp)m is estimated according to the lithology, for example by using the stan-
dard SIA-384/6 [10]. The “classical” interpretation of the TRT allows one to back-calculate:

1. The non-disturbed initial temperature of the ground T0 (◦C);
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2. The thermal conductivity of the ground λm [W·K−1·m−1];
3. The thermal resistance of the borehole Rb [K·m·W−1].

The first item is obtained based on an inspection of the initial fluid temperature before
heating has commenced, while for 2 and 3 above, an approximation of Equation (1) is
generally used, with γ the Euler constant (γ ≈ 0.5773):

Tf ≈ T0 + pRb +
p

4πλm
[ln(4t∗)− γ] (3)

Equation (3) is valid as soon as a stationary thermal regime in the borehole is reached,
i.e., t* > tmin*, which leads to the exclusion of the temperatures measured before tmin of the
interpretation. λm and Rb can be identified graphically from the slope and intercept of the
curve Tf = f (ln(t∗)). An alternative is to minimize the root mean square error (RMSE)
ε({X}) (◦C) between the measured temperature Tfl and that calculated by the model Tfl,mod:

ε({X}) =
[

1
tmax − tmin

∫ tmax

tmin

(
Tf ,exp(t)− Tf ,mod({X}, t)

)2
dt
] 1

2
(4)

where {X} contains the parameters to back-calculate.
Initially developed for BHE, the model described in Equations (1) and (3) do not

account for the thermal inertia of the backfilling material. Past work shows that this purely
resistive model (Figure 2a) is not suitable for pile heat exchangers of large diameters [11,12],
since once λm and Rb have been fitted, the temperature change at small time scales (e.g.,
1–10 h) is overestimated by several ◦C, leading to an underestimation of the transfer
capacity of the PHE. Moreover, the duration required to thermally load the backfill material
tmin* is barely compatible with the operational constraints of a construction site. Indeed,
considering the typical criteria tmin* = 5 [13] and assuming a soil with thermal properties
λm = 1.4 W·K−1·m−1 and (ρCp)m = 2.2 MJ·K−1·m−3, this leads to tmin = 14 h for rb = 8 cm
(typical for a BHE) while tmin reaches 196 h (c.a. 8 days) for rb = 30 cm (typical for a PHE).
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improving the forecast of the temperature changes at the early stage of the TRT. However, 
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Despite these limitations, many authors report application of TRT to PHE to determine
the piles and ground properties [11,12]. In these studies, the measured fluid temperature is
typically interpreted with the ILS approach, which leads to the exclusion of a significant part
of the temperature measurements before tmin* reaches 5. Alternative approaches have been
reported in [11,14–16]. Loveridge et al. [16] used pre-defined pile step responses, which lead
to values of λm and Rb similar to that determined by the ILS, while improving the forecast of
the temperature changes at the early stage of the TRT. However, the pile step responses had
to be chosen from a small number of representative numerically pre-calculated cases for
different PHE geometries. When used for TRT back-calculation, selection from these cases
is made before the analysis ([15,17]). It is also not possible to look for the characterization of
the heat transfer inside the PHE, since the nature of this is an assumption of the case chosen.
This means the approach is not appropriate in all cases and may contain errors related
to choice of the closest geometry. Zarrella et al. [14] used the computational Capacity
Resistance Model (CaRM) [18] to account for the grouting material inertia. CaRM takes a
resistive-capacitive approach and has been developed for specific geometries including for
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single-U, double-U and coaxial heat exchangers. It has the key limitations that the pipe
arrangements in the borehole are predefined (e.g., “pipes close to the borehole wall”) and
resistances describing the inner thermal transfer must be pre-calculated with a distinct
method, such as finite element code. Once the inner parameters have been tuned, CaRM
was in very good agreement with a TRT performed on a BHE of 140 mm diameter. Alberdi
et al. compared several analytical approaches, as well as a finite element model representing
an horizontal PHE cross section [16]. They showed that models that considered both the
short length of the PHE and took account of its internal capacity gave the best results when
compared with a benchmark 3D numerical simulation.

However, the main approaches, which account for the pile thermal capacity, have
limitations as described above, making them applicable only in certain circumstances, or
applied with greater error when generalized. Consequently, there remains a need for a
flexible model, which can be specific to a given pile geometry, accounting for concrete
thermal inertia and is easy to use and can be embedded in a numerical procedure of
back-calculation for TRT interpretation.

In this paper we present a simple model of a PHE with thermal inertia, which deals
with PHE of large diameters (rb� 10 cm) and is specific to a given pile geometry (Section 2).
The model is tested by back analysis of two experimental TRT data sets, where the PHE
parameters are back-calculated and compared with the classical ILS interpretation with
Equations (1) and (3) (Section 3). We show that the temperature rise at small time scales
(i.e., t ≈ 1 h) can be better accounted for with the new simple approach. Additionally, the
expected errors are comparable or less compared with standard borehole TRT interpretation.
However, the time to convergence of the new model output means that the soil thermal
conductivity cannot be determined from a short TRT on a pile. However, we go on to
demonstrate that a novel combination of BHE and PHE TRTs interpreted using the new
model can lead to a reduction in pile testing time. On this basis we estimate the minimum
TRT duration for PHE (Section 4) potentially saving time on practical operations.

2. Methods

Section 2.1 describes the field test data used in the study and Section 2.2 describes the
new resistive capacity model for PHE TRT interpretation. Analysis of the data using the
new model and the classical approach introduced in Section 1 is then set out in Section 3.

2.1. Experimental Data

Two TRT, summarized in Table 1, and respectively referred to as set B and set C, are
analyzed in this paper. Set B was undertaken on a pile of 22.5 cm radius at Richmond, Texas,
USA, mostly located in saturated sand [15,19]. Set C was a TRT undertaken on a pile of
30.0 cm radius located in London clay [12]. The inner details of the piles are given in Table 1
and illustrated in Figure 3. Note that for set B, the power was shut down at t = 103.4 h,
and restarted 4 h later until t = 140.2 h. The classical interpretation was carried out for
t = 103.4 h. For both TRT, the heat-carrier fluid was water, whose properties are assumed
to have a density ρfl = 1000 kg·m−3 and a heat capacity Cp,fl = 4180 kJ·kg−1·K−1. The
temperatures, flow-rate and power were monitored with a time step of 5 min for set B and
1 min for set C. Data of set C were averaged with a time step of 5 min for analysis purposes.

The thermal inertia of the concrete means that the evolution of the fluid temperature
goes away from purely linear behavior depending on the logarithm of time foreseen by the
ILS model, i.e., Equation (1) (cf. Figure 4). This is even more noticeable for set C, the pile of
greater diameter. The temperature measured in set B also exhibits slight periodic variations
of 24 h [c.a. 0.5 ◦C], suggesting the fluid temperature is influenced by the atmosphere. One
explanation may be that the pipes connecting the PHE to the TRT module may not have
been sufficiently insulated. Note that in what follows, (ρCp)m = 2.4 MJ·K−1·m−3 is assumed
for both soils based on typical values [10].
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2.2. Resistive-Capacitive Model for a Pile Heat Exchanger

A model has been developed to take into account the thermal inertia of the backfilling
material. The heat transfer inside the concrete relies on a linear capacitance C [J·K−1·m−1]
located between two resistances R2 and R3 [K·m·W−1] (Figure 2b). The transfer outside
the pile considers a hollow cylinder, and relies on the “classical” infinite cylindrical source
(ICS) model [20].

Table 1. Characteristics of the TRT.

Set B Set C

Depth of pile H [m] 18.3 31.0
Radius of pile rb [m] 0.225 0.300

Geothermal equipment Double-U
(tested as single-U) Double-U

External diameter of pipes [cm] 3.00 2.50
Thickness of pipes [cm] 0.29 0.23

Distance between two tubes
diametrically opposed pipes [m] 0.157 0.425

Initial temperature of the ground T0 [◦C] 24.97 14.23
Power applied P [kW] 2.27 1.69

Linear power pf = P/H [W·m−1] 123.7 54.6
Volume flow in the pile [m3·h−1] 2.46 1.15

Duration of the heating [h] 103.4 354.1
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The resistive-capacitive model (RC) in Figure 2b is qualified as semi-analytical since
the transfer inside the pile is treated numerically whilst the transfer in the ground is treated
analytically. The capacitance is simply estimated by:

C = π
(
ρCp

)
crb

2 (5)

(ρCp)c is the volumetric calorific capacity of the concrete [J·K−1·m−3], estimated as
2.11 MJ·K−1·m3, a value compatible with preceding studies [21,22]. A parameter x repre-
sents the position of the capacitive node (Figure 2b) within the borehole total resistance Rb:

x =
R2

Rb
; Rb = R2 + R3 (6)

The definition of the fluid mean temperature Tf remains unchanged:

Tf =
Tin + Tout

2
(7)

A power balance on the fluid leads to:

p f =
P
H

=

(
ρCp

)
f Qv(Tout − Tin)

H
=

Cp f
.

m(Tout − Tin)

H
(8)

where pf [W·m−1] is the ratio between the power P [W] applied by the TRT test module
and the pile depth H [m], Cp f and ρ f the fluid mass-specific heat capacity [J·K−1·kg−3]
and density [kg·m−3], respectively, Qv [m3·s−1] and

.
m [kg·s−1] the volume and mass

flow-rate, respectively.
While applied to the concrete:

p f =
Tf − TC

R2
(9)

(ρCp)f is the fluid capacity [J·K−1·m−3]. A power balance on the central node at
temperature TC leads to:

C dTC
dt

= p f − pb =
Tf − TC

R2
− TC − Tb

R3
(10)

In what follows, the equations are discretized with a time step ∆t. ∆t = 15 min has
been chosen to remain in line with the experimental measurements.

An analytical solution to the heat equation, the infinite cylindrical source (ICS)
G(t∗) [20], allows the calculation of the temperature at the borehole wall (i.e., at the
ground/pile interface):

G(t∗) =
1

π2

∫ ∞

0

e−β2t∗ − 1
J1

2(β) + Y1
2(β)

(J0(β)Y1(β)− J1(β)Y0(β))
dβ

β2 (11)

Under steady-state conditions (constant heat flux), the borehole wall temperature is
related to the step response G(t*):

Tb = T0 +
pb
λm

G(t∗) (12)

During a TRT, the thermal power provided by the test module is constant. However,
this power first heats up the concrete before being progressively transferred to the ground.
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Therefore the steady-state condition cannot be assumed straightaway. The superposition
principle is introduced to estimate Tb

n at time step n [23]:

Tb
n = T0 +


pb

1G1 if n = 1
1

λm

(
pb

1Gn +
n−1
∑

l=1

(
pb

l+1 − pb
l
)

Gn−l
)

if n > 1
(13)

In Equation (13), the superscripts refer to the time steps, e.g., Tb
n ≈ Tb(n∆t). pb is the

linear power received at the borehole wall:

pb
n =

TCn − Tp
n

R3
(14)

The Equations (13) and (14) combine as follows:(
1 +

G1

R3

)
TP

n = T0 +
pb
′ n

λm
+

TCnG1

R3
(15)

With:

pb
′ n =


0 if n = 1

pb
1(G2 − G1) if n = 2

pb
1Gn +

n−2
∑

l=1

(
pb

l+1 − pb
l
)

Gn−l − pb
n−1G1 if n > 2

(16)

The Equations (7)–(10) and (15) recombine in a matrix system as follows:


0 0 0 0 0
0 C2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 d
dt


Tf
Tc
Tp
Tin
Tout

+



1
R2

− 1
R2

0 0 0
− 1

R2
1

R2
+ 1

R3
− 1

R3
0 0

0 0 −G1

R3
G1

R3
+ λm 0

2λm 0 0 −λm −λm

0 0 0
.

mCp, f
H

.
mCp, f

H




Tf
Tc
Tp
Tin
Tout

=


p f
0

λmT0 + pb
′

0
p f (t)

 (17)

At each time step n, the vector of the temperatures at the following time step {T}n+1 is
determined by an implicit Euler scheme, i.e., with the following approximation:

d{T}
dt
≈
{

Tn+1}− {Tn}
∆t

(18)

With:
{T} =

{
Tf Tc Tp Tin Tout

}T (19)

leading to the following system solved in Matlab®:(
1

∆t
[C] + [Λn]

){
Tn+1

}
=

1
∆t

[C]{Tn}+
{
Pn+1

}
(20)

[C] is a capacitance matrix [J·m−1·K−1], [Λn] a conductance matrix [W·m−1·K−1] and{
Pn+1} a vector [W·m−1] defined as:

[Λn] =



1
R2

− 1
R2

0 0 0
− 1

R2
1

R2
+ 1

R3
− 1

R3
0 0

0 0 −G1

R3
G1

R3
+ λm 0

2λm 0 0 −λm −λm

0 0 0
.

mnCp, f
H

.
mnCp, f

H

 (21)
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[C] =


0 0 0 0 0
0 C2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (22)

{Pn} =


p f

n

0
λmT0 + pb

′ n

0
p f

n

 (23)

The typical execution time of the numerical model is a fraction of a second.
Note that the model considers that all temperatures are constant along the pile and

neglects the axial heat transfer. However, since the yearly variations of temperatures affect
the ground up to a few meters, additional research is still required on how these changes,
which result in non-uniform initial ground temperature T0 measurements, could affect the
TRT result.

2.3. Analysis Approach

The initial temperature was determined from the early TRT phases, before heat was
injected to the ground. This circulation phase lasted 9 min for set B and 60 min for set C.
Averaging the measured temperature yields T0 = 24.97 ◦C for set B and 14.23 ◦C for set C.
For set B the value was confirmed to be appropriate with reference to three temperature
sensors in a nearby borehole. Less than 0.5 ◦C variation in ground temperature was
observed over 18 m depth.

In this paper, the RMSE (Equation (4)) was minimized with the Matlab® software.
{X} was determined with the fmincon function, using the SQP (sequential quadratic pro-
gramming) solver. The active-set solver was tested, but appeared to stop before converging
to a local minimum of ε({X}) in some cases, providing unreliable results. A second stage
has the benefit of using the fitnlm and coefCI functions to fit nonlinear regression models
and to determine the 95% confidence intervals (CI) on the fitted parameters. The fitnlm
function was run with the results of fmincon as an initial point.

The first step was to interpret the TRT with the classical method described in the
introduction. Setting the criterion tmin* = 5, the minimum duration tmin was 60 h for set B
and 214 h for set C whilst estimating, respectively, λm at 2.8 W·K·m−1 and 1.4 W·K·m−1.
Indeed, as tmin depends on λm which is sought by the interpretation (see Equation (2)), tmin
was determined by a manual trial and error process, increasing or decreasing tmin, then
minimizing ε({λm, Rb}), until the condition on tmin* was reached. The investigation was
also undertaken with tmin* = 3. Regarding set C, previous studies [12] reported λm between
1.35 and 1.45 W·K·m−1 depending on the values chosen for tmin* (from 5 to 7) and tmax
(from 250 h to 350 h) so this new analysis is consistent with previous work.

Having established tmin, the root mean square error between the field data and the
modeled data was minimized over all time steps from tmin until tmax, where tmax was the
last data time step used in the analysis and was increased in stages until the end of the test
period. In this way, the effect of the data window could be investigated and for an ideal
data set convergence of derived parameters (Rb, λm) would be seen with time.

Secondly, to capture the transient phase at the beginning of the TRT, the resistive-
capacitive model presented in Section 2.2 was used to back-calculate the ground thermal
conductivity λm and the borehole resistances Rb and x parameter by minimizing the misfit
Equation (4), i.e., {X} = {λm, Rb, x} with the fitnlm function. Note that the first optimization
with fmincon was run with {X} = {λm, R2, R3}. Without the limitations of the stationary
assumption for the PHE in the classical method, tmin was fixed to 1 h for both datasets, to
capture the transient heat transfer in the pile.
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3. Results
3.1. Classical Interpretation

As tmax is increased the root mean square error, thermal conductivity and thermal
resistance should converge as the model error is reduced as the PHE thermal capacity is
overcome with time. Set B (Figure 5a,c,e) presents a different behavior since the values
of λm and Rb do not converge when the duration of the test increases. There are two
factors, which may contribute to explaining this result. First, the cyclic daily perturbation
of the measured temperature between the pile and the near surface interfere with the
interpretation, resulting in a 24 h cyclic pattern in both λm and Rb. It has been observed
elsewhere that for TRTs performed on piles, effects like this can lead to increasing errors
since any perturbations in temperature due to the environment have a proportionally
greater impact later in the tests when the rate of absolute temperature change is lower [24].

Secondly, it has been reported [24] after t* = 10 the pile thermal response will be
affected by end effects leading to systematic overestimation of thermal conductivity. For
set B, t* was 9.9 at the end of test, so this effect could also impact the late time accuracy.

However, the variation of λm (between 2.7 and 3.2 W·K−1·m−1, that is 15%) remains
acceptable in as much as the uncertainty in the interpretation of a TRT is of the order of
10% [23]. The misfit soars for tmax = 105 h since it encompasses temperatures measured
after the power shutdown. The daily perturbation of temperature results in narrower
intervals of confidence.

For set C, λm and Rb converge if the duration of the TRT tmax is above approximately
220 h for tmin* = 3 (cf. b, d, f). λm and Rb stabilize, respectively, at 1.44 W·K−1·m−1 and
at 0.136 K·m·W−1. The interpretation is similar with tmin* = 5 as soon as tmax = 260 h:
using tmin* = 3 allows the reduction of the duration of the TRT by only 10%. Beyond this
threshold at ≈260 h, λm and Rb vary by less than 3% if tmax increases: the thermal transfer
at the borehole wall is stationary, which validates the resistive model. tmin was estimated
to ≈220 h for λm ≈ 1.4 W·K−1·m−1, which means that about 84% (≈(260 − 220)/260) of
the TRT duration only served to thermally charge the concrete—and only 40 h was actually
used for the interpretation.

The dependence of λm with tmax has been reported in [24] for a TRT exhibiting daily
perturbations performed on a 25 m deep BHE, as for set B. Set C does not exhibit such a
behavior. One explanation may be that set C PHE is 70% deeper than set B PHE, while
λm is half, resulting in a shallower affected thermal zone. A more realistic explanation is
that set C measurements do not need to be corrected since specific care has been taken
to insulate the pipes. For set B, the perturbation of the fluid temperature, estimated as
a deviation from the fitted Jacob approximation of the ILS (Equation (3)), can reach c.a.
0.4 ◦C, while it remains below 0.1 ◦C for set A.

The engineer sizing a ground-source heat pump is concerned with the ability of
the models representing every system component to forecast the evolution of the fluid
temperature at small, medium and large time scales. The capability of the purely resistive
model coupled to the ILS (Equation (1)) or the ICS (Equation (11)) has been assessed for
both experimental datasets (Figure 6). The TRNSYS Type 557, which is based on the duct
storage model (DST) for ground heat exchangers [25], has been included in the comparison
as well. The DST uses superposition of three elements: a heat balance on the fluid, a local
resistive process close to an individual pipe (so-called “duct”) rather than the borehole,
and a global process.
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Figure 6. Evolution of the experimental fluid temperatures, temperatures from the analytical approaches, TRNSYS DST
model and the RC model for (a) set B (from 1 h to 100 h), (b) set C (from 1 h to 350 h).

All the models use the same values of ground conductivity λm and borehole resistance
Rb, obtained by the “classical” interpretation with tmin* = 5 for both sets, tmax = 103 h
for set B and tmax = 350 h for set C. Equation (3) is also represented as it is used for the
interpretation, though it may lead to a significant underestimation of the temperature
at small time scales due to its logarithmic behavior. After 1 h of thermal load the ILS
model (Equation (1)) overestimates the temperature of the fluid Tfl by ≈5.0 ◦C for set B
and by ≈3.3 ◦C for set C. For both datasets, neglecting the thermal inertia of the concrete
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leads to an underestimation of the pile heat transfer capability, and therefore possibly a
cost-ineffective geothermal equipment of many more piles than required. Indeed, the heat
pump could exchange a larger amount of thermal energy with the underground than a
purely resistive model would forecast.

When parameterizing the duct storage model, the resistance Rb was taken to be
equivalent to the “fluid to ground resistance” and for simplicity no account was taken of
any additional pipe-to-pipe interactions. The DST is remarkably able to reproduce the
temperature evolution. This is, to some extent, surprising since DST is a purely resistive
model in terms of internal heat transfer and it does not allow defining the pipe locations in
the borehole or pile [25]. However, DST has been primarily designed for borehole thermal
energy storage. Consequently, the ground heat exchangers are assumed to be located
within a cylinder at the nodes of a hexagonal grid, which will not be realistic for most PHE
fields. Meanwhile, thanks to the superimposition principle [21], analytic solutions are far
more flexible to handle arbitrary borehole locations. A framework can even be built to
select which piles to equip in a field [8].

3.2. Interpretation with the New Resistive-Capacitive (RC) Model

Figure 7 shows the back-analyzed thermal conductivity for the two datasets using the
RC model coupled to the infinite cylindrical source. For set B, the conductivity oscillates
in the range 3.1–3.3 W·K−1·m−1 as long as t < 103.4 h, so before the power shutdown
(Figure 7c). λm exhibits smaller variations than the classical interpretation, suggesting that
the new approach is better capable of dealing with daily perturbations in the measured
temperature since it uses temporal superposition. However, though the RC model has
the ability to deal with time-varying temperature changes, it fails to properly estimate the
ground conductivity when encompassing data after the power shutdown, λm then soaring
to the range 3.7–3.9 W·K−1·m−1.

For set C, as soon as tmax > 250 h, the conductivity obtained by the inversion of
the RC model converges towards λm = 1.43 W·K−1·m−1, a value almost identical to that
obtained by the normal interpretation (Figure 7d). The convergence of Rb and x beyond
250 h can also be observed (Figure 7f). Hence, while the RC model appears to allow
successful interpretation of set B, which was not possible with the classical approach, the
RC interpretation does not allow the reduction of the duration of the TRT compared to the
resistive model in this case.

3.2.1. Error Analysis

An in-depth analysis of the error on the back-calculated parameters has been per-
formed by Witte for a conventional TRT on a BHE, given that analytical expressions of λm
and Rb are known [23]. For comparison, the estimated error δXi in the present study on the
three back-calculated parameters Xi is determined as follows:

δXi =

√√√√∑
j

(
∂Xi
∂yj

∆yj

)2

(24)

where yj account for the input parameters and ∆yj for the related error on this parameter.

The partial derivatives ∂Xi
∂yj

are computed numerically by changing the input value by
a small amount (±1%), then minimizing the RMSE to get the updated value of Xi, and
computing the relative change of Xi. The measurement error has been computed for a
heat injection duration of 100 h for set B and 350 h for set C. The values of ∆yj are given in
Table 2, with the following comments:

• According to SIA standards, the volume-specific heat capacities of wet clay and wet
sand are, respectively, in the range 2.0–2.8 MJ·K−1·m−3 and 2.2–2.8 MJ·K−1·m−3 [10].
We considered the error on the ground capacity as the half of these intervals, i.e.,
0.3 MJ·K−1·m−3 for set B and 0.4 MJ·K−1·m−3 for set C. Typical ranges for concrete
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heat capacity could not be found in the literature, but given the values reported in
previous studies [26,27], an error of 0.2 MJ·K−1·m−3 was chosen.

• The error for the pile diameter and height were determined according to the UK
specification for construction tolerances [28]. In this respect, it should be noted that
the dimensions of a constructed pile should not be less than the specified dimensions.
A tolerance on these dimensions of up to the lesser of 50 mm or 5% is permissible.

• For set B, the test was performed with reference to the ASHRAE standard [29]. This
states that the accuracy of temperature measurement must be less than 0.3 ◦C, for
power measurements less than 2% and for flow rate measurements less than 5%.
These are conservative values, since the test may have been performed with more
accurate instruments.

• For set C, the client specification had tighter accuracy requirements, which can be
reasonably applied. They would be error for temperature of 0.1 ◦C, flow measurement
of 0.01 m·s−1 and power to 5W.
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For both datasets, the most significant sources of error are related to the heat capacities
of the ground and the concrete (refer to Figure 8 which represent the distribution of ∂Xi

∂yj
∆yj

terms). As expected, temperatures and power play a more significant role for set B, where
the standards are less restrictive. Errors on the pile diameter affect the inner parameters Rb
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and x significantly. The error on the ground thermal conductivity is 0.06 W·K−1·m−1 for
set C (about 4%) and 0.20 W·K−1·m−1 for set B (about 6%) reflecting the more restrictive
standards for set C. These values are well within the expected bounds for thermal response
testing for boreholes, giving confidence to the new approach. For comparison, for a classical
TRT on a BHE, Witte reported a typical error of 5% on the ground thermal conductivity [23].

Table 2. Considered values for the error on the input parameters.

Input Parameter
Error Values

Set B Set C

Ground heat capacity [MJ·K−1·m−3] 0.4 0.3
Concrete heat capacity [MJ·K−1·m−3] 0.2 0.2

Pile diameter [m] 0.025 0.03
Height of the equipped pile [m] 0.05 0.05
Initial ground temperature [K] 0.3 0.1

Fluid heat capacity [J·K−1·kg−1] 1.0 9.5
Power [W] 43.7 5.0

Flow rate [m3·s−1] 3.44 × 10−5 3.29 × 10−6

Inlet temperature [K] 0.3 0.1
Outlet temperature [K] 0.3 0.1
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3.2.2. Pile Thermal Capacity

The interest of the RC model on the resistive model is in the transitory phase. Here
we arbitrarily define this phase as t* < 2.5, which results in 27 h for set B and 107 h for set C
(Equation (2)). Once their inner parameters have been fitted, the classical and RC methods
are compared in Figure 6. Given the similar results between the two methods in terms of
conductivity prediction, for comparative purposes, the same input parameters are used in
Figure 6. Note that both methods also use the normalized duration tmax* of experimental
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data, so tmax = 103 h for set B (tmax* ≈ 9.9) and tmax = 350 h for set C (tmax* ≈ 8.5). After
1 h of thermal load, the RC model overestimates the temperature of the fluid Tfl by only
≈1.0 ◦C for set B and ≈1.3 ◦C for set C. Beyond the transitory phase (t* > 2.5), the two
approaches accord well with the measured temperature and both correctly forecast the
measured temperature, especially when the t* > 5 criteria is reached. Further, the RC model
allows an understanding of the dynamics of heat transfer within the pile (Figure 9). The
pile is half-loaded at t* ≈ 0.4 for set B and t* ≈ 0.2 for set C.
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Figure 9. Evolution of linear powers computed by the RC model: for (a) set B, (b) set C. pf: power given by the fluid, C dTC
dt :

transient power in the pile, pb: power at the borehole wall.

4. Discussion and Recommendations

Whatever the interpretation method, the duration tmax for set C must be of the order of
250 h, i.e., about 10 days. This duration is not necessarily compatible with the management
of a construction site. Therefore it is clear that the ground thermal conductivity may be
obtained from a much shorter TRT carried out on a special purpose BHE as recommended
by [17]. Yet this proposed approach retains a drawback, namely that the pile itself has not
been characterized to allow appropriate forward simulation for the design process. No
information has been obtained about its thermal resistance. While a closed form analytical
expression has now been developed to obtain pile thermal resistance [30] this still requires
information about concrete thermal conductivity and assumes accuracy of pipe placements
compared with design.

Therefore we propose that by using the RC model the combination of a short BHE TRT
and an additional short TRT on one of the constructed piles may provide the best solution.
One TRT is performed on a BHE having a small radius (e.g., rb = 8 cm) to determine
λm within a few days, while simultaneously a TRT is performed on the PHE to obtain
the inner parameters for the RC model. This undertaking assumes that the ground is
relatively homogeneous and lateral variations of composition and ground properties can
be overlooked. This approach is illustrated with respect to datasets B and C. The best-fit
values of λm are assumed to have been obtained independently from a BHE TRT. In this
case values of 3.24 W/mK and 1.43 W/mK are used, respectively, for sets B and C, based
on the results in Section 3. The RC model is then optimized for the pile TRT data with only
two rather than three unknowns. The fitted values of x and Rb start to stabilize around tmax
≈ 30–40 h for set B at x ≈ 0.56–0.58 and Rb = 0.080 K·m·W−1 and tmax ≈ 100 h for set C at x
≈ 0.76–0.78 and Rb = 0.121–0.124 K·m·W−1 (Figure 10). For both datasets, the difference,
with the value of Rb determined in Section 3, does not exceed 4%.

It is desirable to determine the minimum test duration tmax beyond which the deter-
mined values of Rb and x are reliable. Here we use as a criteria the ability of the RC model
to forecast the evolution of the fluid temperature at the very end of the data record, from
tmin’ to from tmax’. A second RMSE indicator ε’ is build considering tmin’ = 80 h and tmax’ =
100 h for set B, and tmin’ = 300 h and tmax’ = 350 h for set C. For set C, ε’ reaches a minimum
around tmax* = 100 h (tmax* = 2.4), which suggests this duration is sufficient to estimate the
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temperature evolution from 300 to 350 h, as confirmed by the comparison to the recorded
temperature (Figure 11).
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5. Conclusions

A resistive-capacitive PHE model has been developed to capture the transient energy
transfers within a pile. This model has been shown to perform well and in particular:

• Numerical back-calculation of the model parameters on two thermal response tests yield
similar values of ground conductivity and thermal resistance as the well-established
infinite line source model.

• Inclusion of temporal superposition with the model allows reliable results to be
obtained even when tests are affected by ambient air interference.

• The RC model better represents the transient phase of pile warm-up in the early part
of the test (approximately up to a Fourier number t* = 1 to 2).

• The errors associated with the calculation of thermal conductivity are all less than 10%
and well within expected ranges for boreholes thermal response tests interpreted with
the classic infinite line source.

• Standard back-calculation using the RC model does not allow to significantly reduce
the TRT duration below t* = 5.

• However, if the thermal conductivity can be obtained by another means, the time
for the RC model to converge is much reduced meaning that pile resistance can be
obtained from a pile TRT in a duration corresponding to a Fourier number t* ≈ 2
to 2.5.

Given these characteristics of the RC model the following novel approach for pile
characterization is recommended:

• Use a borehole at the same site and of the same length as the piles to carry out a BHE
TRT to determine the effective soil thermal conductivity using the classical approach.

• Carry out a short duration pile TRT according to Fourier number t* ≈ 2 to 2.5, or
around 100 h for the cases demonstrated in this paper.

• Interpret the pile TRT using the RC model to determine both the pile thermal resis-
tance and the inner resistances of the RC model, which can then be used in forward
simulation for design purposes.

Author Contributions: Conceptualization, C.M.; methodology, C.M.; software, C.M.; validation,
C.M.; formal analysis, C.M.; resources, C.M. and F.L.; data curation, C.M. and F.L.; writing—original
draft preparation, C.M.; writing—review and editing, C.M. and F.L.; visualization, C.M.; supervision,
F.L.; project administration, C.M. and F.L. All authors have read and agreed to the published version
of the manuscript.

Funding: The Exploitation of the RC Model for TRT Analysis was funded by the European Network
for Shallow Geothermal Energy Applications in Buildings and Infrastructure COST-GABI, under
reference “ECOST-STSM-TU1405-280216-071379 STSM”. Additionally, support from the Royal
Academy of Engineering in the UK under their Research Fellow scheme is gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Some of the TRT data used in this paper were provided by Crossrail, based on
tests conducted by GI Energy. This project would not have been possible without their support.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 3375 17 of 18

Nomenclature

Latin Letters
a thermal diffusivity [m·s−2]
C capacity of a node [J·K−1·m−1]
.

m flow rate [kg·s−1]
r radius [m]
R thermal resistance [K·m·W−1]
p power per meter of pile [W·m−1]
T temperature [◦C]
t time [s]
t* normalized time (Fourier number)
Greek Letters
ε misfit (root mean square error)
λ thermal conductivity [W·K−1·m−1]
[Λ] conductance matrix [W·K−1·m−1]
ρCp volume-specific heat capacity [J·K−1·m−3]
Subscripts
0 undisturbed conditions
b borehole wall
c concrete
fl heat-carrier fluid
in inlet
m ground
out outlet
Superscripts
n time step
* normalized value
Acronyms
BHE Borehole Heat Exchanger
CaRM Computational Capacity Resistance Model
DST Duct Storage Model
GHE Ground Heat Exchangers
GSHP Ground-Source Heat Pumps
ICS Infinite Cylinder Source
ILS Infinite Line Source
PHE Pile Heat Exchangers
RMSE Root Mean Square Error
SQP Sequential Quadratic Programming
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