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Abstract: Energy transactions in liberalized markets are subject to price and quantity uncertainty.
This paper considers the spot price and energy generation to follow a bivariate semi-nonparametric
distribution defined in terms of the Gram–Charlier expansion. This distribution allows us to jointly
model not only mean, variance, and correlation but also skewness, kurtosis, and higher-order
moments. Based on this model, we propose a static hedging strategy for electricity generators that
participate in a competitive market where hedging is carried out through forward contracts that
include a risk premium in their valuation. For this purpose, we use Monte Carlo simulation and
consider information from the Colombian electricity market as the case study. The results show that
the volume of energy to be sold under long-term contracts depends on each electricity generator and
the risk assessment made by the market in the forward risk premium. The conditions of skewness,
kurtosis, and correlation, as well as the type of the employed risk indicator, affect the hedging strategy
that each electricity generator should implement. A positive correlation between the spot price and
energy production tends to increase the hedge ratio; meanwhile, negative correlation tends to reduce
it. The increase of forward risk premium, on the other hand, reduces the hedge ratio.

Keywords: semi-nonparametric approach; multivariate distribution; electricity markets; forward con-
tracts

1. Introduction

Electricity is usually traded in a short-term market (spot market) and a long-term
market via contracts for future delivery (forward contracts). The electricity market is char-
acterized by being highly volatile when compared to other commodity markets. This high
volatility in terms of price and quantity is due to market circumstances (e.g., expectations or
strategies of each company and economic dynamics) and physical conditions (e.g., climate,
water availability, fuel production, or damage to the power transmission network [1]).

Electricity trading implies the consideration of three main characteristics: (i) the limita-
tion of storage for large amounts of electricity and long periods, (ii) the technical difficulties
or environmental and social restrictions for long-distance transmission, and (iii) the inten-
sive use of capital required for expanding systems at a large scale, which presents long
and uncertain payback periods. Under those conditions, multiple uncertainties exist in
both the electric power system and market operation. As far as the electric power sys-
tem is concerned, the need for preserving the stability of the system involves different
issues—e.g., economic dispatch, unit commitment, optimal power flow and power system
expansion planning—that are subject to various uncertainties, including demand varia-
tions, transmission interruptions, generator failure, fuel availability, weather conditions,
as explained by [2,3], and regulatory modifications, among other causes. Those real-time
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conditions affect the electricity pricing and imply uncertainties over the financial results
for the market agents (sellers and buyers) that can drive to significant financial losses or
even bankruptcy [4]. These uncertainty levels are rising due to the increase of renewable
energy sources in electric power systems [5]. All of these factors explain how reliable
and economically viable operations of electric power systems depend on a collection of
optimization problems to coordinate electric power systems.

To achieve the best results for electricity generators, reduce their risk levels, and reach
their business objectives, they must define the quantity of electricity to be sold through
forward contracts and to be traded at a spot price. It should be noted that electricity genera-
tors face price and quantity uncertainty, unlike in other types of financial products; Ref. [6]
explains the spot price volatility, because electricity cannot be economically stored and
must be produced instantaneously to satisfy the demand. In these circumstances, ref. [7]
considers the implications of load uncertainty that cannot be perfectly hedged applying
financial derivatives. Ref. [8] describes how demand unpredictability is a regular matter
for any commodity. Holding inventory is an answer to mitigate quantity risk for those
commodities that can be economically stored; this is mentioned by [9] as a limitation to
execute intertemporal arbitrage in electricity markets.

Quantity risk (or volumetric risk) is driven by different conditions, such as the eco-
nomic cycle, fuel availability, hydrologic inflows, or climate. These conditions also affect
price; hence, generated quantity and price tend to be correlated. Due to the limitations
regarding electricity storage for extended periods (i.e., months or years), the cost-of-carry
valuation is not applicable to value the theoretical forward price. Therefore, market agents
set the forward price based on their expectations and the risks they assume, which gives
rise to the forward risk premium (FRP).

This FRP has been studied by [10,11] for the Pennsylvania–New Jersey–Maryland
(PJM) electricity market; Ref. [12] for the Nord Pool; Ref. [13] for the Colombian electricity
market; Ref. [14] for the European Electricity Exchange (EEX); and [15] for the British elec-
tricity market [16]. The incorporation of an FRP immediately leads to a difference between
the forward price and the spot price expectations. Regarding the behavior of uncertainty
sources, the literature studies typically address the hedging problem in electricity markets
by assuming normality either on the variables or on their logarithm. Although this is
a common assumption—used by [7,8,17], among other authors—to properly select the
number of forward contracts to hedge the risk associated with transactions in electric-
ity markets, it presents limitations to deal with problems that involve cases of skewness
and kurtosis.

Nevertheless, ref. [18] indicates that some variables in electricity markets exhibit
conditions of skewness and kurtosis and higher-order moments that are not adequately
represented only using normal distributions. These authors show that semi-nonparametric
(SNP) distributions allow a better fit for hydrologic inflows, spot price, and even demand
for electricity data. Ref. [19] shows that SNP distributions serve to treat historical vari-
ables featuring skewness and heavy tails. Ref. [20] uses SNP modeling to describe the
co-movements of price and volume in the stock market of the United States (US), and [21]
also employs the SNP distribution to model returns in the US and United Kingdom (UK)
stock markets. Other works that adopt SNP approaches to expand series beyond the tradi-
tional normal or lognormal distributions are those by [22], who measures the productivity
of researchers worldwide, and [23], who estimates the size distribution of US firms.

In this study, we go a step further by considering the uncertain components of each
electricity generator’s price and energy generation understudy to follow a joint SNP
distribution. Ref. [24] described this type of distribution and explained how it is estimated,
and more recently, refs. [25,26] applied related densities to forecast financial variables.
However, to the best of our knowledge, this is the first attempt to model electricity markets
in a multivariate SNP framework. Furthermore, the joint modeling of price and quantity
through a SNP distribution allows us to capture not only the correlation between both
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variables but also the dependence between all moment structures. All of these features pay
a fundamental role on the risk positions of electricity generators and their strategies.

As a direct application of the model, we propose a static hedging strategy for electricity
generators that participate in a competitive market where hedging is carried out through
forward contracts that include a risk premium in their valuation. We consider the spot
price and energy generation variables to follow a bivariate SNP distribution in terms of
the Gram–Charlier expansion. This distribution allows us to not only model the mean,
the variance, and their correlation but also the skewness, the kurtosis, and higher-order
moments. We employ Monte Carlo simulation to analyze the effect of three risk indicators
(standard deviation, value-at-risk (VaR), and conditional VaR (CVaR) on energy sales. We
consider the Colombian electricity market as the case study, where the energy sources are
predominant renewables.

The main contribution of the paper to the analysis of electricity markets is the struc-
turing of an energy portfolio that does not impose the assumption of normality in both
price and energy generation. The results show that the optimal quantity of energy to be
sold through forward contracts is dependent not only on the conditions of spot price and
quantity uncertainty but also on the way market agents weigh the assumed risk levels.
Particularly, this methodology is used for hydropower generators affected by flow regi-
men aspects. Furthermore, the number of forward sales is determined by the correlation
between price and energy generation and the FRP.

The rest of the paper is structured as follows. Section 2 introduces the mathematical
model and the methodology implemented to jointly model prices and quantity uncertainty.
Section 3 describes the data used in the case study. Section 4 discusses the results, ana-
lyzing the sensitivity of the risk of forward energy contracts not only to the SNP density
characteristics but also to the rest of the elements of the forward contracts. Finally, Section 5
draws the main conclusions.

2. Model and Methodology

Electricity generators tend to hedge their sales of energy, which they may supply
through self-generation or spot purchases. Ref. [7] proposes the hedging strategy of elec-
tricity generator i as an optimization problem with a mean–variance utility function over
its net energy sales

(
Ii). This problem is represented by Equation (1) and depends on the

level of risk aversion λi. The mean–variance utility function exhibits limitations when the
forward price does not match the expected spot price, i.e., when there is an FRP. Ref. [17]
states that when there is a risk premium in electricity markets, the optimization of the
mean–variance utility function is subject to the decision makers’ level of risk aversion, as
illustrated in Equation (1), where E

[
Ii] represents the expected utility of generator i on the

decision variable Ii.
max E

[
Ii]− λi · E[

(
Ii − E

[
Ii])2

] (1)

We consider an electricity generator i that faces uncertainty over its net sales at time T;
therefore, it decides to sell long-term electricity contracts beforehand starting from time
(t = t0). If such a generator participated in an electricity market whose spot price and
energy generation derived from a multivariate SNP distribution, our research question is:
how many contracts should it trade to hedge its risk?

2.1. Spot Price and Energy Generation

We propose modeling these two variables through multivariate SNP functions. Below,
we describe the portfolio multivariate SNP distribution, which generalizes the multivari-
ate normal in terms of Gram–Charlier (Type A) series for every portfolio variable. Let
us assume that Zt is a vector that contains J variables distributed with zero mean and
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multivariate SNP distribution. Its joint probability density function (pdf) FZ is written, as
proposed by [24], as follows:

FZ(Zt) = GZ(Zt) +

[
J

∏
j=1

1
σj

gzj

(
zjt

σj

)][
J

∑
j=1

kzj

(
zjt

σj

)]
;−∞ < zjt < ∞ (2)

where GZ(Zt) is a multivariate normal pdf with zero mean, covariance matrix Σ—with
general element

{
σij
}

and marginal pdfs represented by 1
σj

gzj

( zjt
σj

)
—i.e., zjt ∼ N(0, σ2

j )

and vjt = zjt/σj ∼ N(0, 1), σ2
j = σjj; and kzj

(
vjt
)

is a linear combination of the first Mj
terms of the Gram–Charlier series Hermite polynomial, as shown in Equation (3). The
terms of these expansions, Hm

(
vjt
)
, is the so-called Hermite polynomials (HP) or order

m—see Equation (5), which is weighted by parameter djm capturing the raw moment of
order m for the marginal variable j.

kzj

(
zjt
)
=

Mj

∑
m=2

djm Hm

(
zjt

σj

)
(3)

Hence, the marginal pdf of zjt is:

fzj

(
zjt
)
=

1
σj
√

2π
exp

−1
2

(
zjt

σj

)2

1 +

Mj

∑
m=2

djm Hm

(
zjt

σj

) (4)

Note that the univariate Gram–Charlier density in Equation (4) is an expansion of a
normal pdf in terms of orthogonal polynomials—as described in Equation (7) below—and
truncated at an arbitrary order Mj that depends on the degree of accuracy and flexibility
required for the SNP approximation. It can be easily proven that the even (odd) moment of
order r of variable zjt depends linearly on djm for all j ≤ r and j even (odd). Particularly,

mean and variance are E
[
zjt
]
= 0 and E

[
z2

jt

]
=
(
1 + 2dj2

)
σ2

j , respectively, and the covari-
ance between the variables zjt and zit is defined by the corresponding entry in matrix Σ,
i.e., E

[
zjtzit

]
= σji. Furthermore, if dj3 > 0 (dj3 < 0), then the j-th marginal pdf features

positive (negative) skewness, when dj4 > 0 the marginal pdf of zjt exhibits leptokurtosis,
and the higher-order even parameters account for extreme values. A further discussion on
the interpretation of such parameters can be found in the studies by [18,21,23] for the case
of electricity markets.

The main advantage of the SNP modeling lies in its ability to capture the full density
(skewness, kurtosis, higher order moments, and their dependencies) with a flexible for-
mulation. As a matter of fact, the asymptotic Gram–Charlier expansion captures the true
underlying distribution. However, the truncated expansions might present positivity prob-
lems that are traditionally tackled through positive transformations—see, e.g., refs. [20,27],
analyzing positivity surfaces [28] or implementing controlled optimization [21]. In this
paper we opt for the latter method since constrained/transformed SNP densities may
also present convergence problems due to complex nonlinearities among the moment
structure—see, e.g., ref. [29].

The HP of order m, Hm
(
vjt
)

is defined in terms of the m-th derivative of the standard

normal pdf, g
(
vjt
)
= 1

2π e−
vjt

2

2 , and thus, can be calculated by solving Equation (5).

Hm
(
vjt
)
=

(−1)m

g
(
vjt
) · dmg

(
vjt
)

dvjt
m (5)
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Hence, the first five HPs used to represent the standardized random variable v are:

H0
(
vjt
)
= 1

H1
(
vjt
)
= vjt

H2
(
vjt
)
= vjt

2 − 1

H3
(
vjt
)
= vjt

3 − 3vjt

H4
(
vjt
)
= vjt

4 − 6vjt
2 + 3

H5
(
vjt
)
= vjt

5 − 10vjt
3 + 15vjt

(6)

It is noteworthy that the HPs form an orthonormal basis, since:∫
Hs
(
vjt
)

Hm
(
vjt
)

g
(
vjt
)
dvjt = 0 s 6= m. (7)

Next, we define the joint SNP pdf for spot price and energy generation. Let pT be the
natural logarithm of the spot price PT and qi

T , that of the energy generation by generator
i. We assume that pT and qi

T are governed by a bivariate SNP process on the stochastic

standardized (i.e., zero mean and unit variance) variables ε
p
t and ε

qi

t with correlation
coefficient ρpqi , whose joint pdf is given by:

Fε

(
ε

p
t , ε

qi

t

)
= Gε

(
ε

p
t , ε

qi

t

)
+ g
(

ε
p
t

)
· g
(

ε
qi

t

)
·
{

kp

(
ε

p
t

)
+ kqi

(
ε

qi

t

)}
(8)

Gε

(
ε

p
t , ε

qi

t

)
being a standardized bivariate normal pdf with correlation ρpqi and g

(
ε

p
t

)
and g

(
ε

qi

t

)
N (0, 1) pdf.

Thus, marginal distributions can be written as follows (see proof in Appendix A):

fP

(
ε

p
t

)
= g

(
ε

p
t

)
+ g
(

ε
p
t

)
·
{

kp

(
ε

p
t

)}
fqi

(
qi

T

)
= g

(
ε

qi

t

)
+ g
(

ε
qi

t

)
·
{

kqi

(
ε

qi

t

)} (9)

where kp

(
ε

p
t

)
=

Mp

∑
m=2

dpm Hm

(
ε

p
t

)
and kqi

(
qi

T
)
=

Mqi

∑
m=2

di
qim Hm

(
qi

T
)

.

2.2. Forward Price

If an agent purchased a forward contract at time to to receive an amount of electricity
at maturity time T at price Fto

T , it would receive such agreed amount at maturity at the
agreed price Fto

T . Since such electricity received at time T is valued at the spot price PT ,
its net income will be given by the difference between the spot price and the agreed price
stated in the contract, as in Equation (10).

Long Forward Payout = PT − Fto
T (10)

The seller will be paid at the agreed price in exchange for delivering the agreed amount
of electricity, which will be valued at the spot price at maturity, as the short forward payout
in Equation (11). This relation is used to measure the sensitivity of the risk indicators.

Short Forward Payout = Fto
T − PT (11)

Some authors [30] argued that traditional cost-based valuation models are not appli-
cable in electricity markets. The assessment of assumed risk levels is reflected in the traded
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contracts’ price, as demonstrated for those who studied the FRP in electricity markets.
Thus, the price of an electricity forward contract agreed at time t0 and a maturity T will
be different from the expected spot price. This difference is known as the forward risk
premium (FRP), represented by Equation (12).

FRPt0
T = Et0(PT)− Fto

T (12)

The FRP sign indicates who is the agent hedging the risk and paying for it: when the
sign of the FRP is positive, the seller is the one paying for the hedging, while when it is
negative, the buyer is the one paying for it. According to [13], a positive FRP value denotes
a normal backwardation condition. This FRP may describe the expected spot price or the
forward price based on the following relationships:

Et0(PT) = Fto
T + FRPt0

T

Fto
T = Et0(PT)− FRPt0

T

(13)

Due to the nature of forward contracts, convergence must occur at maturity, i.e., a
forward price agreed on that matures at T should be equal to the spot price, as stated
by [31]. Therefore as maturity approaches, the FRP becomes null in electricity markets [17],
as follows:

lim
t0→T

FRPt0
T = 0

⇒ FT
T = PT

(14)

2.3. Pay-Off Function

Assuming that an electricity generator that has produced an amount of electricity Qi
T

at time T sells all this electricity at the market spot price PT , then its net sales Ii
T are given

by the product of the spot price and its energy generation:

Ii
T = PT ·Qi

T (15)

At time t = t0, the spot price and the energy generation values are unknown, which
means that the generator is taking a risk due to variations in price and quantity. To hedge
the assumed risk, the generator decides to implement certain strategy j at time t0, whose
pay-off function is φ

ij
T(Q

i
T , PT

∣∣∣θij
t0
) ; its net energy sales will be given by:

Ii
T = PT ·Qi

T + φ
ij
T(Q

i
T , PT |θ

ij
t0
) (16)

where θ
ij
t0

is the vector of the parameters necessary to specify strategy j implemented by
electricity generator i at the initial time t0. According to [9], when the hedging strategy
corresponds to the sale of fixed-price (forward) contracts, its pay-off function φ

ij
T will be

equal to Ct0
T ·
(

Fto
T − PT

)
. This function depends on the amount of electricity sold under

the forward contract, Ct0
T , and the difference between the fixed price of the contract, Fto

T ,
and the spot price, PT . Hence, the sales of a generator that hedges its risk through forward
sales is given by:

Ii
T = PT ·Qi

T + Ct0
T ·
(

Fto
T − PT

)
(17)

If we also assume that, at time to, the conditional expected value of the energy gen-
eration is denoted by Et0(QT), the previous expression can be written relatively to the
expected generation unit, as follows:

Ii
T

Et0 (QT)
= PT ·

Qi
T

Et0 (QT)
+

Ct0
T

Et0 (QT)
·
(

Fto
T − PT

)
⇒ πi

T = PT ·Q∗ i
T + ηt0

T ·
(

Fto
T − PT

) (18)
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where Q∗ i
T =

Qi
T

Et0 (QT)
will be the energy generation with respect to the expected value and,

analogously, πi
T =

Qi
T

Et0 (QT)
and ηt0

T =
C

t0
T

Et0 (QT)
. The previous equation can also be rewritten

by grouping the random variables in the first term
(

Q∗ i
T − ηt0

T

)
· PT and the deterministic

ones in the second term ηt0
T · F

t0
T , as shown below:

πi
T = (qi

T − ηt0
T ) · PT + ηt0

T · F
t0
T (19)

For this purpose, the production cost is ignored. However, this mainly applies to
hydropower renewables. Thermal plants have fuel costs typically correlating with power
prices.

2.4. Risk Indicators

The standard deviation (Std) measures the dispersion of the variable Ii
T from its mean.

Std
[

Ii
T

]
=

√
E
[
Ii
T

2
]
−
(
E
[
Ii
T
])2 (20)

The VaR captures the lowest income that would be expected at the desired confidence
level (e.g., 5%), which can be written as:

5% =
∫ VaR5%

−∞
f
(

Ii
T

)
· dIi

T (21)

where f
(

Ii
T
)

is the probability density function; the CVaR also estimates the lowest profit
expected but given that the VaR level has been exceeded. CVaR averages all the net income
levels below the VaR; it is computed as in Equation (22).

CVaR5% =
∫ VaR5%

−∞
Ii
T · f

(
Ii
T

)
· dIi

T (22)

The optimal hedge portfolio for risk should include searching for conditions that
maximize the VaR and the CVaR or minimize the standard deviation for the portfolio sales.

2.5. Methodology

We propose a stepwise procedure in three stages: (i) estimation of the deterministic
component parameters, (ii) estimation of the random (bivariate) component parameters,
and (iii) sensitivity analysis and simulation of electricity generator’s portfolios under Monte
Carlo simulation.

(i) Parameter estimation of spot price and energy generation

Regarding the spot price Pt, we considered an exponential model represented by a
stochastic process with a deterministic long-term mean and mean reversion, as described
by Equation (23). This structure was developed based on the models proposed by [32,33],
which have been applied to the case of Colombia by [17,34].

pt = ln(Pt)

pt = µp(t) + xp
t

xp
t = φp · xp

t−1 + ep
t

(23)
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Similarly, as for the energy generation of agent i, we have:

qi
t = ln(qt)

qi
t = µqi (t) + xqi

t

xqi

t = φqi · xqi

t−1 + eqi

t

(24)

where µp(t) = β0p + β1p · t and µqi (t) = β0q + β1q · t are deterministic trend specifications.

There, xp
t and xqi

t are stochastic autoregressive of order 1 AR(1) components, which are

assumed to be stationary, i.e.,
∣∣φp
∣∣ < 1 and

∣∣∣φqi

∣∣∣ < 1 and ep
t and eqi

t being white noises with

zero mean, variances σ2
p and σ2

qi , respectively, and correlation coefficient ρpqi . The set of
equations used to estimate the uncertain components of the spot price can also be written
in matrix form, with zi

t =
(

pT , qi
T
)

, as follows:

zi
t = µi(t) + xi

t

xi
t = φixi

t−1 + ei
t

(25)

where

µi(t) =
(

µp(t)
µqi (t)

)
, xi

t =

(
xp

t

xqi

t

)
, ei

t =

(
ep

t

eqi

t

)
and φi =

(
φp 0
0 φqi

)
.

(ii) Bivariate distribution estimation for price and energy generation

The vector εi
t is assumed to follow the bivariate SNP distribution defined by the

Equation (8). Ref. [35] proved that the model can be consistently estimated in two steps:
First, (quasi) maximum likelihood (QML) estimation of every mean–variance process
independently—Equations (23) and (24)—and under normality; Secondly, joint maximum

likelihood (ML) of the rest of the parameters of the bivariate pdf,
{

di
jm

}Mj

m=2
for j = p, qi,

which we denote by the vector θi =
(

θp θqi

)′
, as well as the correlation between both

variables, denoted by ρpqi . This second step considers the standardized series εi
t = Λei

t,

where Λ = diag
(

1
σp

, 1
σqi

)
and, thus, the loglikelihood for generator i, given a sample of

size T, corresponds to Equation (26),

l
(

θi
)
=

T

∑
t=1

log
[

Fε(ε
i
t

∣∣∣θi)
]

(26)

where Fε(εi
t
∣∣θi) is the SNP distribution in Equation (8), conditioned on the parameter

set θi.

(iii) Monte Carlo simulation of bivariate SNP distribution

Once the model was estimated, we analyzed the sensitivity of the results to the
parametric uncertainty and its effects on the electricity market hedging under the SNP
distributional assumption for the random component. We performed Monte Carlo simula-
tions, which required the extraction of (correlated) random numbers from the bivariate SNP
distribution of spot price and energy generation (εi

t). According to [36], no truly random
number can be generated by a computer code as long as it can only perform sequences
of deterministic operations. From uniform pseudo-random samples, numbers from any
other kind of density distributions applying a specific transformation can be obtained. This
transformation can be performed by taking the inverse cumulative distribution function to
a sample of uniformed pseudo-random numbers.
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A straightforward method to simulate the SNP distribution series can be obtained by
implementing the methodology proposed by [37], valid for any joint distribution. Intu-
itively, this methodology involves filtering out the joint distribution through its marginal
density functions to obtain uniformly distributed functions with a dependence structure.

Based on Meucci’s methodology, each component of vector εt can be standardized,

using the cumulative functions Fp

(
ε

p
t

)
and Fqi

(
ε

qi

t

)
, towards a space where each variable

contains a uniform probability distribution, as follows:

U ≡
(

Up
Ui

g

)
≡

 Fp

(
ε

p
t

)
Fqi

(
ε

qi

t

)  (27)

Therefore, to generate a random number from a joint SNP distribution whose cumu-
lative marginal functions are Fp and Fqi , it will suffice, for the purposes of this study, to
evaluate the quantile function Q(.) of the random numbers that maintain the distribution
of U ∼ U(0, 1) and its correlations. Figure 1 illustrates the set of proposed transformations.
In this work, we need to simulate not only one sample but two correlated samples to
recreate the bivariate SNP.

Figure 1. Monte Carlo simulation of bivariate distribution. This figure illustrates the method used to
simulate random numbers based on [33].

To create a sample for the SNP correlated random variables ε
p
t and ε

qi

t , we executed
a two steps algorithm: (i) generate two pseudo-random uniform-distributed correlated
numbers: Uq and Up, considering a cumulative distribution U ∼ uni f orm(0, 1), and
then (ii) filter each number with its inverse-cumulative distribution, using F−1

q
(
Uq
)

for

ε
qi

t and F−1
p (Up) for ε

p
t . These distributions correspond to the fitted marginals for the

joint SNP distribution. Once the parameters of the random components were calibrated,
we implemented this simulation methodology to perform the sensitivity analyses for the
portfolio hedging problem.
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3. Data Description

We used the information for the electricity spot price from the Colombian electricity
market and the main electricity generators from January 2000 to December 2018. The spot
price series corresponds to the average price of the monthly energy locally traded in the
Colombian energy market, measured in COP (Colombian peso) per kWh (kilowatt-hour)
(COP/kWh). Meanwhile, the generation corresponds to the total energy produced monthly
for a generator, and it is measured in GWh (106 kWh).

Table 1 shows the descriptive statistics of the series employed in this study. The
generators considered were EPM (EPMG), ISAGEN (ISGG), AES Chivor (CHVG), and
Enel (ENDG)—which predominantly managed hydraulic resources. The spot price series
exhibited the highest value of skewness, while all the energy generation series, except
EPMG, showed a positive skewness. Regarding kurtosis, spot price again exhibited the
highest value; the kurtosis of CHVG and ENDG was above that of a normal distribution,
while that of EPMG and ISGG was below 3. For the sake of comparisons, the series in
logarithms and relative to the mean are also displayed.

Table 1. Descriptive statistics of spot price and energy generation of each generator.

Type Generator Unit Mean SD Skewness Kurtosis
Percentile

5th 25th 50th 75th 95th

Series without transformations
Spot Spot COP/kWh 124.1 125.8 4.38 27.3 40.9 64.6 85.5 145.8 249.2

Energy
Generation

EPMG GWh 1038 209 −0.25 2.26 686.2 866 1068 1198 1359
ISGG GWh 798 258 0.34 2.92 391.7 620 794 949 1267

CHVG GWh 337 130 0.80 3.22 160.3 246 319 409 616
ENDG (1) GWh 1110 169 0.38 3.57 882.4 1002 1093 1190 1468

Natural logarithm of the series (2)
Spot Spot log 4.58 0.62 1.01 4.51 3.71 4.17 4.45 4.98 5.52

Energy
Generation

EPMG log 6.92 0.22 −0.68 2.91 6.53 6.76 6.97 7.09 7.21
ISGG log 6.63 0.35 −0.55 3.06 5.97 6.43 6.68 6.86 7.14

CHVG log 5.75 0.38 −0.09 2.60 5.08 5.51 5.76 6.01 6.42
ENDG log 7.00 0.15 −0.22 3.86 6.78 6.91 7.00 7.08 7.29

Relative to the mean. Series with transformation: x/E(x) (3)
Spot Spot pu (4) 1.00 1.01 4.38 27.25 0.33 0.52 0.69 1.17 2.01

Energy
Generation

EPMG pu 1.00 0.20 −0.25 2.26 0.66 0.83 1.03 1.15 1.31
ISGG pu 1.00 0.32 0.34 2.92 0.49 0.78 0.99 1.19 1.59

CHVG pu 1.00 0.38 0.80 3.22 0.48 0.73 0.94 1.21 1.83
ENDG pu 1.00 0.15 0.38 3.57 0.79 0.90 0.98 1.07 1.32

(1) This series contains information from September 2007 to December 2018. (2) The natural logarithm of each measure in the series is
calculated. (3) Each measure in the series is divided by the series mean. (4) pu stands for per unit; the values are relative to the mean of
each series.

Figure 2 illustrates the spot price series, as well as its autocorrelogram, Q-Qplot, and
natural logarithm. There, spot price exhibits a trend and jumps; its highest jump occurs
after 2015 due to the occurrence of the El Niño, together with the shortage of natural gas
for power generation. The autocorrelograms of spot price and its natural logarithm show
the memory condition of this time series. According to the Q-Qplots, which assess the
percentiles of the samples, the data do not fit adequately a normal distribution.
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Figure 2. Spot price time series of energy in Colombia. The Q-Q plots of the spot price and of its natural logarithm are
compared to the normal distribution at a 95% confidence interval.

ISGG, followed by EPMG and spot price, exhibits the highest level of the first-order
autocorrelation, which means that short-term distortions remain for a longer time in these
series than in the other ones. Another aspect to highlight is that the skewness changed
for the natural logarithm of the series. Regarding dispersion of the series, estimating
the percentiles relative to the mean allowed us to observe, for instance, that spot price is
between 0.33 times and 2.01 times its mean at a 90% confidence level. After spot price,
CHVG is the series with a more extended 90% confidence interval, followed by ISGG,
EMPG, and ENDG. Table 2 shows the autocorrelation levels of the time series.
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Table 2. Autocorrelation of the series.

Lag 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Series
Spot 1.0 0.83 0.68 0.6 0.56 0.53 0.37 0.29 0.26 0.25 0.25 0.23 0.23 0.21 0.18
EPMG 1.0 0.86 0.78 0.73 0.71 0.70 0.68 0.65 0.61 0.59 0.60 0.62 0.62 0.59 0.58
ISGG 1.0 0.88 0.77 0.71 0.69 0.69 0.66 0.62 0.57 0.54 0.55 0.57 0.58 0.52 0.47
CHVG 1.0 0.65 0.29 0.00 −0.16 −0.24 −0.26 −0.26 −0.20 −0.03 0.22 0.39 0.44 0.31 0.12
ENDG 1.0 0.61 0.37 0.23 0.12 0.04 −0.08 0.01 0.15 0.21 0.28 0.35 0.40 0.33 0.19

First differences (Delta of x)
Spot 1.0 −0.03 −0.24 −0.12 0.00 0.35 −0.20 −0.17 −0.06 −0.04 0.05 −0.03 0.05 0.04 −0.09
EPMG 1.0 −0.25 −0.11 −0.14 0.00 0.02 0.05 0.02 −0.05 −0.11 −0.01 0.03 0.13 −0.07 0.08
ISGG 1.0 −0.14 −0.17 −0.16 −0.04 0.12 0.03 −0.01 −0.05 −0.17 −0.05 0.05 0.27 −0.05 −0.11
CHVG 1.0 0.04 −0.09 −0.20 −0.11 −0.07 −0.04 −0.09 −0.18 −0.12 0.11 0.18 0.24 0.10 0.02
ENDG 1.0 −0.19 −0.13 −0.02 −0.06 0.06 −0.27 −0.07 0.11 −0.01 −0.01 0.04 0.15 0.08 −0.07

This tables presents autocorrelation of the series in levels and first differences up to the 14th order.

EPMG and ISGG in Figure 3 show a trend explained by the expansion processes of
these electricity generators, which have constructed new power plants in recent years.
Furthermore, Q-Qplots show how data do not support the normal assumption, particularly
at the extremes of the distribution, which calls for the SNP modeling of the series.

Figure 3. Cont.
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Figure 3. Energy generation time series of different electricity generators in Colombia. The Q-Qplots of the energy generation are
compared to the normal distribution at a 95% confidence interval.

4. Results and Discussion
4.1. Parameter Estimation of the Spot Price and Energy Generation Series

Table 3 presents the parameter estimates of the model in Equations (23) and (24) for
the spot price and energy generation series. The model explains the natural logarithm of
the series considering a deterministic trend and with AR(1) component; both of them are
highly significant. Descriptive statistics for the residuals are also displayed to identify the
initial parameters to be considered when estimating the bivariate SNP functions of the
series. The Jarque–Bera test is also displayed, revealing the rejection of the normality of the
series, except for ENDG.

Table 4 reports the fitted parameters of the bivariate SNP distributions of the vector

εi
t =

(
ε

p
t , ε

qi

t

)′
, where the series were filtered from the estimates of the model in the

previous stage. As can be inferred from the descriptive statistics, the spot price requires a
fourth-order SNP expansion, and parameter d4 is positive and significant, reflecting the
excess kurtosis of this series. However, skewness parameter (d3) seems not to be relevant
and is excluded from the model. On the other hand, the energy generation series exhibit
negative and significant skewness, and thus, a third-order SNP is enough to account for
non-normality. ENDG series seems to be an exception since, in this case, the coefficient
d3 is not statistically significant, and thus, a normal distribution fits data accurately, as
indicated by the Jarque–Bera statistic. The marginal distributions are depicted in Figure A1
of the Appendix B. These plots illustrate how the SNP distributions adequately capture
the non-normality of the data. It is also noteworthy that the estimates for marginals are
used as initial seeds for the maximum likelihood estimation of the bivariate SNP for every
pairwise series.
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Table 3. Estimates for the deterministic trend and AR(1) component of the (log)series.

Parameter Spot Price
Energy Generation

EPMG ISGG CHVG ENDG (1)

Beta 0
Coeff 3.84 6.61 6.14 5.68 6.75

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Beta 1 (2)
Coeff 0.0065 0.0027 0.0043 0.0006 0.0016

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Phi 1 (3)
Coeff 0.829 0.652 0.673 0.608 0.544

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Residuals (4)

Statistics

Mean 0.00 0.00 0.00 0.00 0.00
SD 0.25 0.09 0.15 0.30 0.12

Skewness 0.51 −0.60 −0.65 −0.43 0.04
Kurtosis 5.64 4.27 3.76 3.64 3.35

JB test (5)
Statistic 72.1 28.2 21.2 10.6 0.5
p-value <0.0001 <0.0001 <0.0001 0.00495 0.77195

Ho rejected rejected rejected rejected Accepted
(1) This series contains information from January 2007. (2) Coefficient of the deterministic trend. (3) Coefficient
for the stochastic AR(1) component. (4) Residuals are calculated after a two-stage process in which the trend is
fitted first and then the autoregressive component. (5) Jarque–Bera statistic for normality.

Table 4. Bivariate SNP fitted distributions of spot price and energy generation.

Epsilon Descriptive Statistics
Multivariate SNP Estimation (2)

Standardized Series

Bivariate Mean SD Skewness Kurtosis d3 d4 Correlation

Spot Price 0.00 0.25 0.51 5.64
Coeff. 0.166

p-value 0.001 Coeff. 0.278

EPMG 0.00 0.09 −0.60 4.27
Coeff. −0.224 p-value 0.106

p-value 0.002

Spot Price 0.00 0.25 0.51 5.64
Coeff. 0.178

p-value <0.0001 Coeff −0.676

ISGG 0.00 0.15 −0.65 3.76
Coeff. −0.410 p-value <0.0001

p-value <0.0001

Spot Price 0.00 0.25 0.51 5.64
Coeff. 0.160

p-value 0.001 Coeff −0.427

CHVG 0.00 0.30 −0.43 3.64
Coeff. −0.251 p-value 0.002

p-value 0.003

Spot Price 0.00 0.25 0.51 5.64
Coeff. 0.146

p-value 0.023 Coeff −0.420

ENDG (1) 0.00 0.12 0.04 3.35
Coeff. −0.041 p-value 0.029

p-value 0.700

(1) This series was fitted with information from January 2007. (2) SNP expansions include the relevant terms to account for non-normality.

As far as correlation is concerned, only the distribution of spot price and EPMG has
a positive value, although insignificant at a 95% confidence level. The other couples are
negative and significant. Note that the level of correlation between ISSG and spot price
is higher than that of CHVG-spot price and ENDG-spot price (which are quite similar).
These similar correlation levels may be explained by the close geographical location of two
dams with similar generation capacity between these two electricity generators.

The scatterplots in Figure 4 compare the residuals of spot price, ε
p
t , with those of

each energy generation, ε
qi
t , to illustrate the co-movements among these variables. Fitted

lines capture the linear correlation among the variables. Furthermore, the figures for
both bivariate pdf and cumulative distribution function (cdf) of the spot price and energy
generation series can be found in Figure A2 in Appendix B.
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Figure 4. Scatterplots of the residuals of spot price versus those of each energy generation. Linear correlations among the
variables is depicted with the fitted lines.

4.2. Sensitivity of the Risk Indicators

This subsection shows an example of the performance of the SNP model for risk
management in forward contracts in Colombian energy markets. For this purpose, we
discuss the behavior of the risk indicators at different values of the forward contracting
level (Eta), the FRP and the correlation (Rho). The sensitivity analyses performed in this
study correspond to simulations based on a hypothetical generator’s portfolio. Consis-
tently with the values calibrated for the series, this portfolio is characterized by having a
mean and standard deviation of ε

qi
t of 1 and 0.09133, respectively. In addition, it follows

a third-order SNP distribution, with coefficient d3 equal to −0.07415 and a correlation
between the transformed components of spot price and energy generation of −17%. For
the spot price, we consider the parameters estimated for the Colombian electricity market
(see Tables 3 and 4), which are the conditions that a hypothetical generator would be facing.
A thousand simulations were conducted for the Monte Carlo method.

Eta (η) captures the portion of the expected energy generation that is sold through
forward contracts. For instance, if an electricity generator is expected to produce an average
of 100 GWh of electricity in a specific time and its Eta is 0.9, it will be selling 90 GWh
through a long-term contract. If this generator produced 110 GWh at maturity, it would
have sold 90 GWh through the forward contract at a known price; and 20 GWh at the spot
price. In the event that it had sold 90 GWh in the contract but only generated 80 GWh at
maturity, it would have to procure the remaining 10 GWh from the spot market to meet
its obligations.

Figure 5 illustrates the behavior of the mean and the standard deviation of the hypo-
thetical generator’s portfolio at different Eta and FRP values. From this figure, we observe
that when the FRP value is zero (forward price is equal to the expected spot price), the
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mean of the net income from energy sales will remain constant and does not depend on
the Eta. The standard deviation depends on the Eta; the curve of the standard deviation
is convex. Unlike the mean of the portfolio, the curve of its standard deviation does not
change at different FRP values.

Figure 5. Sensitivity of the mean and the standard for Eta and FRP. Simulation of the behavior of the
mean and standard deviation at different contracting levels (Eta) and forward risk premium (FRP).

Increasing Eta when the FRP value is negative will result in higher expected sales,
as shown in Figure 6 when the FRP value is −5, −10, and −20. Based on this, it is, thus,
clear that the more negative the FRP value, the higher the expected value for the electricity
generator when it increases its forward contracting level. Conversely, the more positive the
FRP value, the lower the expected income.

Figure 6 shows the behavior of the VaR and CVaR curves at different Eta values, which
differ from those of the standard deviation. We observe that the CVaR is consistently
lower than the VaR and maintains a smoother behavior than the distortions that the latter
seems to have. Additionally, the CVaR curve increases faster than that of the VaR once
the Eta value exceeds its maximum value. This situation occurs due to the thickening of
the income’s left tail when the generator must procure the forward contract quantity by
buying at spot market.

When the Eta values are positive, a negative FRP involves a better risk condition for
the electricity generator. To improve the mean and the left-tail risk indicators, the generator
will always prefer to sell at a higher forward price. Furthermore, variations in the FRP also
seem to move the maximum point of the indicators, as shown in Figure 7. For instance, if
an electricity generator considers that it is optimal to sell a number of contracts equal to
75% of its expected energy generation under a FRP value of zero, the optimal Eta value
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will change if the FRP value drops to −10. Therefore, the optimal forward contracting level
depends not only on the uncertainty conditions of the spot price and the energy generation
but also on market conditions and the way the market values the assumed risk levels.

Figure 6. Sensitivity of the VaR and the CVaR to the contracting level (Eta). Simulation of the behavior
of the value-at-risk (VaR) and conditional VaR (CVaR) at different contracting levels (Eta).

Figure 7. Sensitivity of the VaR and the CVaR to the Eta and FRP. Sensitivity of the value-at-risk
(VaR) and conditional VaR (CVaR) to different contracting levels (Eta) and forward risk premium
(FRP) values.
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Moreover, the correlation between spot price and energy generation affects the optimal
decision. Figure 8—constructed assuming an FRP equal to zero—presents the behavior
of the risk indicators under analysis at different correlation values. A positive correlation
tends to increase the optimal contracting level. In contrast, a negative one tends to reduce
it, which is consistent with the belief that a negative correlation represents a natural hedge.
Another perceived effect is that the VaR and CVaR levels rise as the correlation values
increase: a positive correlation shows a higher CVaR value than a negative one.

Figure 8. Sensitivity of the standard deviation, the VaR, and the CVaR to the Eta and Rho. Sensitivity
of the standard deviation, the value-at-risk (VaR), and the conditional VaR (CVaR) of the net income
from the sale of energy to different contracting levels (Eta) and correlation values (Rho).

4.3. Effect of SNP Parameters

In this section, we present the sensitivity of the CVaR and the contracting level (Eta)
at different d3 and d4 values for the hypothetical generator’s energy generation. The first
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graph of Figure 9 plots the behavior of the CVaR when the marginal distribution of the
energy generation only contains the third-order HP, and parameter d3 takes values of 0.5,
0.14, 0.07, 0,−0.07, and−0.14. The second graph shows a similar sensitivity analysis, but for
the fourth-order HP. It is worth noting that d3 = 0, and d4 = 0 indicates a normal distribution.

Figure 9. Sensitivity of the CVaR to different SNP parameters. Sensitivity of the conditional value-at-risk (CVaR) to skewness
(d3) and kurtosis (d4) parameters. The y axis in both graphs is measured in million Colombian pesos (MCOP).

The d3 and d4 coefficients affect the CVaR. If we take the case of a normal distribution
as a reference, negative coefficients tend to decrease the CVaR levels, while positive ones
tend to increase them and move the maximum point to the right. Normal conditions do not
allow us to properly represent the sensitivity of risk indicators to different hedging levels.

4.4. Optimal Forward Contracting Level

Table 5 reports the optimal hedge levels suggested for each electricity generator under
study at different FRP values and different optimization criteria. Parameter estimation
for each agent was performed for all available monthly data from 2000 to 2018. For the
mean, the VaR, and the CVaR criteria, we considered the contracting level that maximizes
each of them, and for the standard deviation, the contracting level that minimizes it. The
contracting level that minimizes the standard deviation of the portfolio depends on the
particular conditions of each electricity generator and not on the market conditions (FRP). In
general, the suggested contracting levels are below one, except for EPMG, which is required
to increase its forward sales, possibly because this generator has positive correlation levels
higher than those of the other three generators under analysis.

Moreover, for all generators, we observede that the negative FRP values tendd to
increase the optimal Eta for the VaR and the CVaR indicators. In particular, based on the
sensitivity analyses performed, the optimal Eta can reach variations up to 15%. According
to Table 5, the contracting level obtained for EPMG using the VaR is on average 10% higher
than that obtained with the CVaR. In the case of ISGG, we observed that the suggested
contracting levels were clearly lower than those of the other electricity generators. This
situation may be explained by the fact that the unexplained component of the ISGG
series exhibits a negative correlation higher than that of the other generators. A positive
correlation tends to increase the contracting levels, while a negative one tends to reduce
them.

We found that the hedge ratio depended on several conditions, some of them linked
to the market situation, as the estimated FRP or the frequency function governing the
uncertainty sources; others concerned to the agent, as the production or the decision-
making criteria. For the same agent at the same FRP conditions, the optimal hedge ratio
depends on the risk measure to be considered. Therefore, in order to create a static hedge
strategy, policy makers should be aware of the need for implementing all the estimation
and simulation methods suggested in this research.
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Table 5. Optimal contracting level (Eta) suggested for each generator.

FRP
EPMG ISGG

Mean (1) SD VaR CVaR Mean SD VaR CVaR

−20 2 1.13 1.20 0.96 2 0.61 0.62 0.49
−15 2 1.13 1.16 0.95 2 0.61 0.62 0.48
−10 2 1.13 1.16 0.95 2 0.61 0.61 0.48
−5 2 1.13 1.16 0.95 2 0.61 0.56 0.46
−2 2 1.13 1.16 0.95 2 0.61 0.56 0.45
0 0 1.13 1.06 0.93 0 0.61 0.56 0.43
2 0 1.13 1.04 0.90 0 0.61 0.44 0.43
5 0 1.13 1.04 0.85 0 0.61 0.44 0.41
10 0 1.13 1.00 0.83 0 0.61 0.26 0.40
15 0 1.13 0.95 0.76 0 0.61 0.26 0.40
20 0 1.13 0.95 0.76 0 0.61 0.24 0.40

FRP
CHVG ENDG

Mean SD VaR CVaR Mean SD VaR CVaR

−20 2 0.88 0.81 0.67 2 0.87 0.84 0.74
−15 2 0.88 0.81 0.66 2 0.87 0.84 0.73
−10 2 0.88 0.81 0.66 2 0.87 0.84 0.72
−5 2 0.88 0.79 0.65 2 0.87 0.77 0.72
−2 2 0.88 0.69 0.64 2 0.87 0.76 0.71
0 0 0.88 0.69 0.64 0 0.87 0.76 0.71
2 0 0.88 0.69 0.64 0 0.87 0.76 0.71
5 0 0.88 0.69 0.63 0 0.87 0.76 0.7
10 0 0.88 0.69 0.63 0 0.87 0.76 0.69
15 0 0.88 0.69 0.62 0 0.87 0.76 0.67
20 0 0.88 0.68 0.61 0 0.87 0.68 0.66

(1) The simulation was performed using Eta values between 0 and 2. In the case of the mean, the Eta optima occur
at a corner solution.

5. Conclusions

This paper proposes a static hedging strategy for electricity generators that participate
in a competitive market where hedging is carried out through forward contracts that
include a risk premium in their valuation. We considered the spot price and energy
generation variables to follow a bivariate SNP distribution defined in terms of the Gram–
Charlier (Type A) expansion. This distribution allowed us to not only model the mean,
the variance, and their correlation but also the skewness, the kurtosis, and higher-order
moments. Moreover, we used Monte Carlo simulation to analyze the effect of three risk
indicators (standard deviation, VaR, and CVaR) on the net profit from energy sales, using
information from the Colombian electricity market as the case study. We found that positive
correlation between the spot price and energy production tends to increase the hedge ratio;
meanwhile, negative correlation tends to reduce it.

This work’s main contribution is the modeling and analysis of the risk faced by elec-
tricity generators through flexible SNP multivariate distributions, as well as the structuring
of a hedging portfolio that does not impose the assumption of normality on price and
energy generation, which is a novelty in this academic field, where, as far as we know,
multivariate semi-nonparametric technics have been used before. The performance of the
model for implementing forward contracts hedging strategies is assessed though the Monte
Carlo simulation of bivariate SNP pdfs and by studying the sensibility of risk measures to
the different parameters affecting forward electricity markets.

In general, a negative FRP increases an electricity generator’s net profit from its
energy sales in the contract market, thus, favoring electricity forward sales. Moreover, the
FRP affects the behavior of the mean, VaR, and CVaR indicators regarding the amount of
electricity to be sold under forward contracts. This situation does not occur for the standard
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deviation, whose behavior, instead, is affected by the contracting level, regardless of the
FRP value in the market.

The results show that the optimal quantity of energy to be sold through forward
contracts is dependent not only on the conditions of spot price and quantity uncertainty
but also on the way market agents weigh the assumed risk levels. Therefore, to reduce
the risk levels faced by generators, such optimal quantity will depend on the conditions
of price and energy generation uncertainty explained by variance, skewness, kurtosis,
and higher-order moments. Furthermore, the number of forward sales is determined by
the correlation between price and energy generation and the FRP, or an increment on
correlation or FRP, tends to reduce the hedge ratio.

The decision-making criteria also modify the optimal hedge ratio. The VaR-maximization
criterion implies a larger hedge ratio than the CVaR-maximization criterion; this criteria
selection could have more impact on the optimal decision than the FRP modifications.
It suggests that electricity market practitioners must pay significant attention to market
conditions and the adequate risk measures that accomplish each business strategy. It is
necessary to find coherence among strategy, risk aversion, and risk retention capacity.

All in all, we recommend experts in electricity markets to structure company-specific
portfolios based on the market conditions on which the analysis is performed. They should
also consider flexible modeling that captures a more significant number of moments than
those allowed by a normal distribution for the variables involved and the correlation
between the spot price and energy generation. The multivariate SNP distribution can be
an appropriate tool for this purpose. As a final remark, although this work is done for a
hydropower-dominated market, the convenience of this methodology for other electricity
markets should be studied for further works.
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Abbreviations

Energy generators:
EPMG Generator Agent, Empresas Públicas de Medellín
ISGG Generator Agent, Isagen
CHVG Generator Agent, Chivor
ENDG Generator Agent, Endesa
Risk Measures:
Rho Correlation
Sd Standard deviation
VaR Value-at-risk
CVaR Conditional value-at-risk
Eta Hedge ratio -η.
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Market:
T Maturity time
PT Spot price at T
pt Log spot price at t
Fto

T Forward contract price negociated at to and maturity time T
FRP Forward risk premium
Qi

T Energy production of agent i at moment T
qi

t Natural logarithm for Qi
T

Ii Income due energy sales of the agent i
GWh Energy production unit (Gigawatt hours) equivalent to 106 kWh
MCOP One million Colombian Pesos (one million COP)
SNP modeling:
SNP Semi-nonparametric

Zt
Vector that contains J variables distributed with zero mean and multivariate
SNP distribution

GZ(Zt) Multivariate normal pdf with zero mean and covariance matrix Σ

fp

(
ε

p
t

)
Marginal distribution function

Hm
(
vjt
)

m-order Hermite polynomial (HP) for the variable vj at time t
djm j-order weighted parameters for HP
E[ · ] Expected value operator
g(·) Standard normal pdf
FZ Joint probability density function
f (·) Pdf
xt AR(1) process with parameter φp
et White noise with zero mean

Appendix A. Proof for the Marginal SNP Pdfs

The joint standardized SNP density function for ε
p
t and ε
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t can be denoted by:
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The marginal density function of ε
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t can be estimated as follows:
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Given the orthogonality property in Equation (7):
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Analogously, the marginal density function of qi

T can be calculated as follows:
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Appendix B. Illustrations for Univariate and Bivariate SNP Data Fitting

Figure A1. Marginal density functions of residuals εt. Marginal distributions of the spot price and energy generation
for spot price and energy generation series. Density functions (shaded area), normal distribution (solid line), and SNP
distribution (dashed line).
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Figure A2. Bivariate PDF and CFF for spot price and energy generation residuals εt. Joint probability density (PDF)
(left column) and cumulative distribution (CDF) (right column) functions for the stochastic component.
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