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Abstract: In this paper, we address the classical problem of testing for stationarity in the prices of 
energy-related commodities. A panel of fourteen time series of monthly prices is analyzed for the 
1980–2020 period. Nine of the series are classical nonrenewable, GHG-emissions-intensive resources 
(coal, crude oil, natural gas), whereas the remaining, low-emission group includes both uranium 
and four commodities employed in biofuels (rapeseed, palm, and soybean oils, and ethanol). A non-
parametric, bootstrap-based stationarity testing framework is employed. The main advantage of 
this procedure is its asymptotically model-free nature, being less sensitive than parametric tests to 
the risks of misspecification and detection of spurious unit roots, although it has the potential limi-
tation of typically requiring larger samples than mainstream tools. Results suggest that most of the 
series analyzed may be trend stationary. The only exception would be crude oil, where different 
conclusions are obtained depending on whether a seasonal correction is applied or not. 
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1. Introduction 
Stationarity/unit-root analysis is a relevant topic in a great many fields, including 

climate change studies and commodities modeling. As well known, the goal is to distin-
guish time series that may be properly modeled as stochastic processes having stationary 
oscillations around their (usually time-varying) means from those with characteristics 
more closely resembling those of integrated random processes. 

That distinction has practical relevance in many areas including assessment of the 
validity of theories, policy design and analysis (as integrated processes typically require 
more proactive policies to correct for the effect of shocks, these being less necessary in 
trend-stationary processes, where their natural inertia leads them to mean-revert), and 
econometric estimation and subsequent application of models to forecasting (where the 
optimal predictors clearly differ in stationary and integrated cases) and decision making. 
For instance, in the specific area of energy, Pindyck [1], among others, stressed the rele-
vance (for both long-run forecasting and firms making investment decisions) of knowing 
the stochastic properties of energy prices, whereas Felder [2] focuses on the importance 
of long-term fuel price forecasts to both determine correct choices of fuel mix and evaluate 
fuel diversification strategies. 

From the standpoint of the application of stationarity for the assessment of theories 
validity, a widely discussed framework is Hotelling’s model, which predicts that in a 
world of certainty, non-renewable resource prices would be trend stationary. The classical 
monograph by Slade [3] was one of the first attempts to evaluate Hotelling’s model 
through the analysis of the time series properties of natural resource prices. Subsequent 
papers (e.g., Presno et al. [4], among many others) extended the analysis.  

In the field of energy, many research papers have employed stationarity testing with 
a view to investigating the efficient market hypothesis. For instance, Lee and Lee [5] found 
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stationarity around a broken trend, thus concluding that energy prices do not show effi-
ciency in their markets. Other papers in the field (e.g., Maslyuk and Smyth [6]) have fo-
cused on various non-renewables energy series, with their analyses relying on a wide va-
riety of techniques. Unit-root/stationarity testing is also being employed to detect poten-
tial bubbles in asset prices (e.g., Perifanis [7] and Floros and Galyfianakis [8] have studied 
the case of crude oil prices). 

Unit root and stationarity tests have also been applied in relation to assessing the 
Prebisch–Singer hypothesis, which originally poses that the relative prices of primary 
commodities (in terms of manufactures) are stationary around a downward trend. Subse-
quent papers (e.g., Sapsford [9], among others) have analyzed this hypothesis.  

The distinction between stationary and integrated processes also has relevance from 
the perspective of stabilization policies. Regarding this, Reinhart and Wickham [10] high-
lighted the greater effectivity of hedging and stabilization strategies when commodity 
prices are stationary, whereas structural policies would be required when they are af-
fected by temporary but widespread, highly persistent shocks.  

In the case of commodities, large price variations (as caused by demand and supply 
dynamics) are frequently observed in the markets. Although stockholding certainly brings 
about some price smoothing, prices often jump sharply. Those moves are particularly rel-
evant in the crude oil markets, since they are affected by natural disasters, geopolitical or 
unforeseen events, and strategic actions that may lead to unexpected, large changes in 
prices. The relevance of these discontinuities for modeling oil prices has been studied, 
among others, by Askari and Krichene [11].  

Knowledge of the statistical properties of energy commodity prices also has evident 
interest from the standpoint of trading (e.g., Knittel and Pindyck, [12]) and investing, both 
in commodities and in the stocks of commodity-related companies, as well as in price 
volatility modeling (e.g., Narayan and Narayan, [13]), and also from the perspective of 
constructing suitable price indexes, specifically oriented to environmental, energy or fi-
nancial goals (e.g., Tang and Xiong, [14]). 

In this paper, we revisit the problem of stationarity testing in energy-related com-
modities. A panel of fourteen time series of monthly prices is analyzed for the 1980–2020 
period. Nine of the series correspond to nonrenewable, emissions-intensive resources 
(coal, crude oil, natural gas). The rest of the series (‘low-emission’ group) includes ura-
nium and four commodities employed in biofuels. 

Nuclear energy, beyond its potential risks, is increasingly considered among the sus-
tainable, yet not renewable, sources. As for biofuels, they are renewable and considered 
as low-emission, although many of them are not exchanged in official markets. We have 
focused on four of the most economically relevant cases, namely ethanol, and soybean, 
rapeseed, and palm oils. These are not ‘pure’ energy commodities, as they are regularly 
employed in many other areas (including the chemical and food industries), so their price 
patterns may be somewhat different from other energy-related commodities. 

The first novelty of the paper is the analysis, in an integrated fashion, of a group of 
energy-related commodities that includes both classical ones (more exhaustively studied 
in the literature on non-renewable resources) and low-emission resources including ura-
nium and biofuels that are less frequently analyzed.  

A second contribution stems from the methodology employed, namely a nonpara-
metric panel stationarity test recently proposed by Presno et al. [15] with a view to ad-
dressing the problems of low power and sensitivity to misspecification that affect main-
stream, parametric stationarity/unit-root tests. The nonparametric approach to station-
arity testing is asymptotically model-free, so the risk of misspecification of the determin-
istic mean function of each series (that typically induces detection of spurious unit roots) 
should be greatly reduced, with more robust testing results being expected in those cases 
where there exist reasonable doubts on the correctness of the parametric model specifica-
tions employed. This situation may well be prevalent in the case of the time series of com-
modity prices, that usually exhibit very complex time patterns. A potential limitation of 
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this approach stems from the fact that nonparametric estimation and testing devices typ-
ically require larger samples than their conventional parametric counterparts, which may 
reduce their power (and advice against their use) in those applications where only small 
samples are available.  

The analysis is first carried out for the raw, nominal price series, and then sequen-
tially for the same series deflated by the US Consumer Price Index, and for the de-season-
alized and deflated series. This way, we can assess the potential effects of the various 
transforms on the testing process and its conclusions. The panel study is complemented 
with a study of stationarity for the individual series. 

The remainder of this paper is organized as follows. Section 2 includes a review of 
the literature in the field. Section 3 briefly outlines the methodology employed and pre-
sents the time series to be analyzed. Section 4 summarizes the main results of the analysis. 
Section 5 includes a discussion and some comments on their implications for environmen-
tal and energy policies. Section 6 concludes with some final remarks and potential re-
search avenues. 

2. Literature Review 
There now exists abundant literature analyzing price stationarity for nonrenewable, 

emissions-intensive resources like coal, oil, and natural gas, with mixed results depending 
on the various markets, observation frequencies, and time periods considered (e.g., Alva-
rez-Ramirez et al. [16]). Certainly, coal, oil, and natural gas still account for more than 80% 
of global energy consumption (85% according to Kahouli [17]), being responsible for a 
significant share of greenhouse gas (GHG) emissions. With climate change as a backdrop, 
attention has focused on renewable energies, which are progressively reaching greater 
shares in the energy mix of countries. Moreover, since renewable energy sources are still 
unable to supply relevant volumes of baseload power, the debate has also revived on nu-
clear energy as an alternative to carbon-emitting sources and its role in energy security.  

As pointed out by Baffes [18], energy prices and the food markets are also connected, 
with high-energy prices increasing the cost of producing food commodities and encour-
aging policies to produce biofuels from food crops (Kapusuzoglu and Karacaer Ulusoy 
[19]). A few studies have focused on analyzing stationarity in the prices of some commod-
ities currently employed as biofuels. Most papers have focused on crude palm oil. This is 
the leading (most heavily consumed and traded) commodity in the edible oil market, with 
a production that nearly quintupled between years 1990 and 2013. Palm oil was one of the 
eighteen primary commodity price series included in the classical study by Grilli and 
Yang [20] and has been subsequently studied in many papers. More recently, Lean and 
Smyth [21], who analyzed palm oil spot and futures markets by employing a GARCH unit 
root test with structural breaks, concluded that a large percentage of the palm oil series 
they analyzed are stationary, with only a weak evidence of efficiency being found in that 
market. Efficiency in the palm oil market has also been addressed by Liu [22], and more 
recently by Snaith et al. [23], whose results suggested an efficiency skew in the market, 
and Lee et al. [24], who concluded that the crude palm oil market is more efficient than 
that of the West Texas Intermediate crude oil. Chen et al. [25], employing unit root Aug-
mented Dickey-Fuller (ADF) testing with no changes allowed for, found significant evi-
dence of unit roots in both palm and soybean oils. These two oils were also analyzed by 
Cashin et al. [26] in their extensive study on persistence of the shocks in commodity prices.  

As for ethanol, it has been studied by Chang et al. [27], who analyzed the volatility 
spillovers in both spot and futures returns of that commodity (and of two related—namely 
corn and sugarcane—products), concluding stationarity. A few papers have also tested 
the unit root hypothesis in the case of uranium. Kahouli [28], using ADF and Phillips–
Perron tests in no-change models (integrated in a more complex vector autoregressive 
scheme), detected unit roots in the price of that commodity. The same conclusion was 
reached by Chen et al. [25], whose analysis relied on panel unit root testing. 
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From the standpoint of methodology, as commented above, we rely on the nonpara-
metric, panel stationarity testing framework. This approach aims at simultaneously ad-
dressing two of the problems (namely low power and lack of robustness to misspecifica-
tion of the deterministic component of the process) that plague mainstream unit-root and 
stationarity testing. The low power problem has previously been tackled in literature by 
producing panel tests that extend unit-root and stationarity testing to the case of vector 
processes. Some classical contributions in the field include Carrion et al. [29] and Pesaran 
[30], among many others. The problem of sensitivity to misspecification, that in the case 
of stationarity testing typically results in detection of spurious unit roots in the series, was 
analyzed by Landajo and Presno [31], who proposed a nonparametric, limiting standard 
normal extension of the classical stationarity test of Kwiatkowski et al. [32] (hereafter 
KPSS), that asymptotically avoids the effects of misspecification and delivers a correct-
sized, consistent test. More recently, Presno et al. [15] combined both approaches in a so-
called nonparametric panel stationarity test, which was implemented through bootstrap-
ping. 

3. Materials and Methods 
3.1. Methodology 

The prices of commodities are assumed to come from a panel of N time series 𝒚𝒕 =(𝑦 , , . . . , 𝑦 , ) generated by the following process:  𝑦 , = 𝜇 , + 𝜃∗ 𝑡 𝑇 +  𝜀 , ,   (1)𝜇 , = 𝜇 , + 𝑢 ,  ;  𝑡 =  1, … , 𝑇;  𝑖 =  1, 2, … , 𝑁 

where θi∗:[0,1] → ℝ is the the deterministic trend (or more generally, the mean) function 
of the i-th component of the panel and 𝜺𝒕  =  (𝜀 , , . . . , 𝜀 , ) is a zero-mean random vector 
process (with both serial dependence and cross-correlation being allowed). It is also as-
sumed that, for any i = 1, ..., N, the processes {εi,t, t = 1, 2, ...} and {ui,t, t = 1, 2, ...} are inde-
pendent of each other, with zero means and respective (finite) variances 𝐸(𝜀 , )  =  𝜎 , > 0 and 𝐸(𝑢 , )  =  𝜎 ,  ≥  0; {μi,t} starts with μi,0, which is assumed to be zero. 

Stationarity testing can be carried out both separately for each series and jointly for 
the whole panel. The panel testing problem is as follows: 𝐻 : 𝑞 ≡ ,, = 0 for 𝑖  =  1, . . . , 𝑁, versus 𝐻 : ∑ 𝑞 > 0 (2)

In the above setting, the variance of 𝑢 ,  is zero under the null hypothesis, so 𝜇 , =0 (with probability 1, for each 𝑡 = 1,2, … , 𝑖 = 1, . . . , 𝑁) in that case and the model for each 
series in the panel reduces to  𝑦 , = 𝜃∗ 𝑡 𝑇 +  𝜀 ,  (i.e., all the series exhibit stationary 
oscillations around their deterministic means). Under the alternative, the variance of 𝑢 ,  
is positive for at least one 𝑖 = 1, … , 𝑁, so we have 𝜇 , = 𝑢 , +. . . +𝑢 , , which is an inte-
grated process (e.g., a random walk) that is nested in  𝑦 , = 𝜇 , + 𝜃∗ 𝑡 𝑇 +  𝜀 , , and 
therefore at least one (though not necessarily all) of the components of the panel has a unit 
root. Separate stationarity testing for any individual series may be carried out along the 
same lines.  

In the nonparametric extension of classical KPSS stationarity testing proposed by 
Landajo and Presno [31], the trend function −𝜃∗ 𝑡 𝑇 − of series 𝑦 ,  is first estimated 
nonparametrically, through an OLS regression of 𝑦 ,  on the elements of a cosine basis, 
so the following estimator is obtained: 

𝜃 𝑡 𝑇 = 𝛽 , + 𝛽 , cos (𝑗𝜋𝑡/𝑇) (3)
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Nonparametric estimation of the trend function avoids the problems associated with 
the need of a priori specifying a correct functional form for the deterministic component 
of the model, so the misspecification risk—that tends to result in spurious unit roots being 
detected—is (asymptotically) circumvented. To obtain a consistent test, model complexity 
(𝑚 ) in Equation (3) above must increase along with sample size (T) at a suitably re-
stricted rate. Here, we shall use the same deterministic rule as Landajo and Presno [31], 
namely, 𝑚 = 4𝑇 / , with ⋅  being the integer part function. 

Then the raw stationarity test statistic for time series 𝑦 , , namely 𝑆 , , is readily com-
puted from the residuals of the above cosine regression, namely: 

𝑆 , = ∑ ∑ 𝜀̂ ,𝜎 𝑇  (4)

with 𝜀̂ , = 𝑦 , − 𝜃 𝑘 𝑇 , 𝑘 = 1, … , 𝑇, and 𝜎  being a suitable estimator for the long run 
variance of 𝑦 , . The standardized stationarity test statistic for series 𝑦 ,  is calculated as: 𝑍 , = 𝑆 , − 𝜇𝑠  (5)

with 𝜇  and 𝑠  being suitable standardization factors (namely, 𝜇 = ∑ (𝑗𝜋) , 𝑠 = 2 ∑ (𝑗𝜋) , and 𝑠 = + 𝑠 ). The limiting null distribution 
of 𝑍 ,  is standard normal, whereas it diverges in probability to ∞ under the unit root 
alternative, so a consistent test is obtained.  

In the panel setting, Presno et al. [15] relied on the usual procedure of averaging the 
individual test statistics, so the null of joint stationarity in Equation (2) is tested by em-
ploying the following nonparametric panel stationarity (NPS) test statistic: �̅� = ∑ 𝑍 ,𝑁  (6)

The limiting null distribution of �̅�  is unknown, so they proposed a feasible, boot-
strap-based implementation. We shall also rely on the bootstrap to carry out both the in-
dividual and panel stationarity tests (the algorithms and further technical details may be 
found in Presno et al. [15]).  

3.2. The Dataset 
As commented above, the time series to be analyzed are monthly prices of fourteen 

energy-related commodities. Details are provided in Table 1 below. 

Table 1. The commodity prices analyzed. 

Commodity Group Series 

Coal 

US Producer Price Index by Commodity: Fuels and Related Products and Power: Coal. * 

Coal, Australian thermal coal, 12,000-btu/pound, less than 1% sulfur, 14% ash, FOB Newcas-
tle/Port Kembla, US$ per metric ton. ** 

Coal, South African export price, US$ per metric ton. ** 

Oil 
Crude Oil (petroleum), West Texas Intermediate 40 API, Midland Texas, US$ per barrel. ** 

Crude Oil (petroleum), Dated Brent, light blend 38 API, fob U.K., US$ per barrel. ** 
Crude Oil (petroleum), Dubai Fateh 32 API, US$ per barrel. ** 

Natural gas 

Natural Gas spot price at the Henry Hub terminal in Louisiana, US$ per Million Metric British 
Thermal Unit. ** 

Netherlands TTF Natural Gas Forward Day Ahead, US$ per Million Metric British Thermal 
Unit. ** 

Indonesian Liquefied Natural Gas in Japan, US$ per Million Metric British Thermal Unit. ** 
Uranium Uranium, NUEXCO, Restricted Price, Nuexco exchange spot, US$ per pound. ** 
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Biofuels 

Producer Price Index by Commodity: Chemicals and Allied Products: Ethanol. (Some parts of 
the ethanol series had to be reconstructed by linear interpolation in those periods—namely 

1:1989–7:1991; 6:1995–7:2001; 12:2003–1:2005—when calculation of the series was discontinued.) 
Soybean Oil, Chicago Soybean Oil Futures (first contract forward) exchange approved grades, 

US$ per metric ton. ** 
Rapeseed oil, crude, fob Rotterdam, US$ per metric ton. ** 

Palm oil, Malaysia Palm Oil Futures (first contract forward) 4–5 percent FFA, US$ per metric 
ton. ** 

Sources: *: U.S. Bureau of Labor Statistics, retrieved from FRED, Federal Reserve Bank of St. Louis. **: International Mon-
etary Fund. 

As for uranium, a recent report by the International Energy Agency [33] underlines 
the role of nuclear power as the second-largest source of low-carbon electricity today, with 
452 operating reactors providing 10% of global electricity supply in 2018. The same report 
states that “achieving the clean energy transition with less nuclear power is possible but 
would require an extraordinary effort”. Although the use of nuclear energy is polemical, 
especially in areas like North America and the European Union where its share in the 
energy mix may be progressively decreasing in years to come (with many reactors sched-
uled to be retired around 2030 and beyond), new nuclear capacity is currently being added 
in other regions, mainly in emerging economies like China, India, and Russia, but also in 
South Korea and the United Arab Emirates, among others. 

Cole [34] stressed the potential for distortionary effects on uranium markets as a con-
sequence of factors such as a strong regulatory framework, competition from unconven-
tional secondary supply, and the idiosyncratic nature of that commodity. He detects both 
similarities with other commodities (sharing their cyclical behavior) and simultaneous ev-
idence of “a strange behavior”, with sharp booms much shorter than the average of com-
modities and deep slumps that are the longest of all commodities. Uranium price had 
spectacular rises in the early 1970s and at the beginning of this century. Testing for biva-
riate cointegration between uranium and its energy substitutes, Cole [34] detected a weak 
cointegration with crude oil, but not with coal and natural gas, whereas Kahouli [17] 
found that coal is the only fuel positively correlated with uranium price. A recent study 
by Pedregal [35], employing a wide range of predictive tools, also underlined the difficulty 
of forecasting uranium prices, with sophisticated linear/nonlinear approaches typically 
beaten off by naïve predictors.  

Biofuels are high priority in regions like the European Union, Brazil, and the United 
States, because of both their focus in reducing GHG emissions and concerns on excessive 
dependence on oil imports. In the case of Europe, Directive (EU) 2018/2001 (known as 
RED II and entered into force on 1 January 2021) sets (among many other goals) binding 
targets for the use of advanced, non-food-based biofuels to 3.5% by 2030, and a blending 
cap of 1.7% for advanced biofuels produced with waste fats and oils. Indeed, advanced 
biofuels will be double counted in relation to both the above 3.5% target and the 14% 
target for renewable energy use in transport by 2030. RED II also introduced sustainability 
criteria for biomass and expanded sustainability criteria in the case of liquid biofuels. The 
four biofuels included in our analysis may all be regarded as first generation, rather than 
advanced biofuels, but organized markets and time series of historical prices were only 
available for the former.  

Ethanol is a renewable fuel made from biomass (mainly corn, cane sugar, and sugar 
beet). It now amounts to about 80% of the global production of liquid biofuels. The United 
States is the world leader in production (54% of world output in 2019), consumption, and 
export of ethanol, followed by Brazil (with a 30% share in world production in the same 
year). Nowadays more than 98% of U.S. gasoline contains ethanol (typically 10% ethanol, 
90% gasoline) to oxygenate the fuel, which reduces air pollution. It is also available as 
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“flex fuel” that can be used in flexible fuel vehicles which can operate on any blend of 
gasoline and ethanol up to 83%.  

Raw vegetable oils like soybean, corn, rapeseed/canola, and palm are employed to 
produce biodiesel that may be used either unblended (for engines operating on pure bio-
fuels) or combined with refined petroleum (in regular diesel engines). Biodiesel produc-
tion is less concentrated than ethanol. The EU has remained the center of global biodiesel 
production. Soybean oil is the main feedstock (followed at a considerable distance by re-
cycled feeds and corn and canola oils) for biodiesel production in the United States. Bio-
diesel production represents an increasing share (currently accounting for about 30%) of 
domestic soybean oil disposition in that country. In the European Union—where biofuel 
production has doubled since 2008, with Germany being the leading producer—around 
14 million metric tons of oil equivalent biodiesel are consumed each year. European coun-
tries currently use rapeseed, palm, and sunflower oils as their main feedstock for biodiesel 
production. According to the 2019 Renewable Energy Progress report (COM/2019/225 fi-
nal), around 70% of EU’s rapeseed oil is employed in biodiesel production, with roughly 
a 45% share in EU biodiesel in year 2016. Palm oil (not including related products) 
amounted to 20% in that year, after steadily increasing in the last decade, pushed up by 
development of hydrotreated vegetable oil (HVO) capacities, although the weight of palm 
oil may be decreasing in years to come as a consequence of Directive RED II 
(2018/2001/EC) compromise for stabilization of biodiesel and the plans to eliminate palm 
oil by year 2030 (Dusser, [36]). Palm oil is also employed as feedstock for biodiesel pro-
duction in South-East Asia (mainly Malaysia and Indonesia, which also supply about 85% 
of global palm oil, mostly for food and cosmetic uses).  

The study period we consider is relatively recent, with much larger data sets being 
available for some of the series analyzed (e.g., US coal). Our choice of a shorter period 
reduces the heterogeneity problems associated with very long time series (e.g., price series 
are available since the 1960s in the case of ethanol, whereas its extensive use as a fuel is 
relatively recent, which potentially creates noncomparability/heterogeneity problems 
when analyzing the complete time series as a fuel price).  

For some commodities (coal, natural gas, oil), we analyze several prices correspond-
ing to different geographic origins. In principle, the law of one price implies that in the 
absence of friction, given the possibility of arbitrage, prices would be roughly the same in 
the various markets corresponding to each commodity, so qualitatively similar results 
should be expected when analyzing stationarity in the various markets corresponding to 
the same commodity. It is also reasonable to expect parallel results for the various biofu-
els, given that in most cases they are close substitutes for each other. 

The commodity series were first de-seasonalized by employing the X-12-ARIMA 
monthly seasonal adjustment method by the U.S. Census Bureau. Then, they were de-
flated by using the US Consumer Price Index (US CPI). Although all deflators have limi-
tations, this is a common choice (e.g., Jacks and Stuermer [37]). Other possibilities would 
include using producer price indexes (PPI) (e.g., Enders and Holt [38]) or the Manufactur-
ing Unit Value (MUV) index (e.g., Erten and Ocampo [39]). The results for the raw (nom-
inal) prices are also included for the sake of comparison. 

4. Results 
Tables 2 and 3 below show the results of stationarity testing. All the series are ana-

lyzed in logarithmic scale. Table 2 includes the results at the panel level, with the panels 
being coal (USA, Australian, South African), natural gas (Henry Hubb, Netherlands, In-
donesia), oil (West Texas, Brent, Dubai), and biofuels (ethanol; soybean, rapeseed, and 
palm oils). Uranium is treated as a single-element panel (results in Table 3). With a view 
to controlling for potentially adverse effects of the various kinds of filtering applied to the 
data, we report the results in three different settings, namely for (i) the nominal price se-
ries, (ii) the series deflated with the US CPI, and (iii) the series previously de-seasonalized 
(by employing Census X-12-ARIMA procedure) and then deflated with the US CPI. This 
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allows us to separate the potential effects of the various treatments. Ideally, the deflated 
series should be closer to a series of ‘real’ prices, with the effect of inflation (i.e., dollar 
depreciation) factored out (admittedly, in an imperfect fashion). De-seasonalizing the se-
ries aims at filtering out seasonal effects. For commodities, the presence of seasonality in 
returns would clearly be in a conflict with the notion of market efficiency, although many 
papers (e.g., Fama and French [40]) point out that those effects may actually exist. 

Table 2. Panel nonparametric stationarity testing results (B = 10,000 bootstrap resamples). 

Product\Treatment 

RAW US-CPI-Deflated Deseasonalized, Deflated 

Obs. NPS Test Statistic 
(p-Value) 

Obs. NPS Test Statistic 
(p-Value) 

Obs. NPS Test 
Statistic 

(p-Value) 
Coal 

(period: 1990:01–2020:11) 
− 1.171 

(p = 0.990) 
− 1.128 

(p = 0.987) 
− 0.853 

(p = 0.999) 
Crude oil  

(period: 1980:01–2020:11) 
2.761 

(p = 0.068) 
2.725 

(p = 0.061) 
1.347 

(p = 0.205) 
Natural gas  

(period: 992:01–2020-11) 
1.593 

(p = 0.612) 
1.623  

(p = 0.585) 
− 1.768  

(p = 0.992) 
Biofuels 

(period: 980:01–2020-11) 
− 1.263  

(p = 0.989) 
− 1.328 

(p = 0.992) 
− 2.168  

(p = 0.999) 

Table 3. Individual nonparametric stationarity testing results (B = 10,000 bootstrap resamples). 

Product\Treatment 

RAW US-CPI-Deflated 
Deseasonalized,  

Deflated 
Obs. NPS Test Statis-

tic 
(p-Value) 

Obs. NPS Test Statis-
tic 

(p-Value) 

Obs. NPS Test  
Statistic 

(p-Value) 
Australian coal 

(period 1980:01–2020-11) 
− 1.293 

(p = 0.988) 
− 1.365  

(p = 0.993) 
− 0.992  

(p = 0.984) 
South African coal 

(period 1990:01–2020-11) 
− 0.643  

(p = 0.963) 
− 0.696  

(p = 0.966) 
0.207  

(p = 0.941) 
U.S. coal 

(period: 1980:01–2020:11) 
− 1.213  

(p = 0.962) 
− 1.067  

(p = 0.948) 
− 1.544  

(p = 0.985) 
Brent crude oil 

(period: 1980:01–2020:11) 
1.341  

(p = 0.090) 
1.321  

(p = 0.095) 
0.562  

(p = 0.264) 
Dubai crude oil 

(period: 1980:01–2020:11) 
1.961  

(p = 0.040) 
1.937  

(p = 0.044) 
0.886  

(p = 0.191) 
West Texas crude oil  

(period: 1980:01–2020:11) 
1.481  

(p = 0.082) 
1.462  

(p = 0.077) 
0.885  

(p = 0.175) 
Indonesian natural gas 

(period: 1992:01–2020:11) 
2.688  

(p = 0.131) 
2.690  

(p = 0.128) 
− 1.723  

(p = 0.985) 
Netherlands natural gas 
(period: 1985:01–2020:11) 

− 0.763  
(p = 0.897) 

− 0.744  
(p = 0.899) 

− 2.207  
(p = 0.999) 

Henry Hubb natural gas  
(period: 1991:01–2020:11) 

− 0.256  
(p = 0.644) 

− 0.231  
(p = 0.612) 

− 1.299  
(p = 0.914) 

Uranium 
(period: 1980:01–2020:11) 

−1.689  
(p = 0.974) 

−0.994  
(p = 0.850) 

−1.659  
(p = 0.967) 

Ethanol  
(period: 1980:01–2020:11) 

0.562  
(p = 0.125) 

0.633  
(p = 0.127) 

0.610  
(p = 0.118) 

Soybean oil 
(period: 1980:01–2020:11) 

− 0.170  
(p = 0.666) 

− 0.098  
(p = 0.617) 

− 0.532  
(p = 0.809) 

Rapeseed oil − 1.014  − 0.881  − 1.765  
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(period: 1980:01–2020:11) (p = 0.751) (p = 0.682) (p = 0.998) 
Palm oil  

(period: 1980:01–2020:11) 
− 1.813  
(p = 1) 

− 1.795  
(p = 1) 

− 2.127  
(p = 1) 

Results of the nonparametric panel stationarity tests in Table 2 indicate that, with the 
only exception of crude oil, stationarity fails to be rejected (with very high p-values) in all 
cases, regardless of the commodity group analyzed, the nature (renewable, non-renewa-
ble), and the treatment applied to the series. The evidence is more ambiguous in the oil 
panel, as stationarity is weakly rejected (with p-values of 6%–7%) in the cases of the raw 
and deflated price series, whereas the opposite conclusion is reached when deseasonali-
zation is previously applied to the series. This might reflect the complexities of oil mar-
kets, the strong seasonal effects affecting that commodity, and how conclusions may 
change depending on the specific treatment of seasonal effects implemented. 

Table 4 reports the results of several seasonality tests, which (possibly excepting Aus-
tralian coal) strongly suggest the presence of seasonal patterns in all the series analyzed. 

Table 4. Seasonality tests. 

Product\Treatment Kruskal–Wallis 
Seasonality Assuming  

Stability 
Moving Seasonality Test 

Australian coal 
(period 1980:01–2020:11) 

14.692 
(p = 0.197) 

1.457  
(p = 0.144) 

6.647  
(p = 0.000) 

South African coal 
(period 1990:01–2020:11) 

39.291  
(p = 0.000) 

2.785 
(p = 0.002) 

6.552  
(p = 0.000) 

U.S. coal 
(period: 1980:01–2020:11) 

50.200 
(p = 0.000) 

5.693 
(p = 0.000) 

5.718  
(p = 0.000) 

Brent crude oil 
(period: 1980:01–2020:11) 

58.986  
(p = 0.000) 

4.476 
(p =0.000) 

4.035  
(p = 0.000)  

Dubai crude oil 
(period: 1980:01–2020:11) 

61.380  
(p = 0.000)  

4.991  
(p = 0.000)  

4.831  
(p = 0.000)  

West Texas crude oil  
(period: 1980:01–2020:11) 

73.085  
(p = 0.000)  

5.403  
(p = 0.000)  

4.351 
(p = 0.000)  

Indonesian natural gas 
(period: 1992:01–2020:11) 

43.382  
(p = 0.000) 

4.420 
(p = 0.000)  

11.472  
(p = 0.000)  

Netherlands natural gas 
(period: 1985:01–2020:11) 

47.062  
(p = 0.000)  

4.095  
(p = 0.000)  

7.108 
(p = 0.000)  

Henry Hubb natural gas  
(period: 1991:01–2020:11) 

30.286  
(p = 0.001) 

3.591 
(p = 0.000) 

2.153 
(p = 0.001) 

Uranium 
(period: 1980:01–2020:11) 

34.668  
(p = 0.003) 

1.948  
(p = 0.032) 

4.873  
(p=0.000) 

Ethanol  
(period: 1980:01–2020:11) 

92.796  
(p = 0.000) 

5.006  
(p = 0.000) 

6.235 
(p = 0.000) 

Soybean oil 
(period: 1980:01–2020:11) 

77.117  
(p = 0.000) 

6.907  
(p = 0.000) 

3.151 
(p = 0.000) 

Rapeseed oil 
(period: 1980:01–2020:11) 

40.445  
(p = 0.000) 

2.732 
(p = 0.002) 

2.412 
(p = 0.000) 

Palm oil  
(period: 1980:01–2020:11) 

130.118  
(p = 0.000) 

10.926 
(p = 0.000) 

2.839  
(p = 0.000) 
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Table 3 above includes the results of stationarity testing, individually for each time 
series (again, for the raw, deflated, and de-seasonalized and deflated logarithmic price 
series). In all cases, excepting oil, trend-stationarity is not rejected for the series, regardless 
of the commodity, its geographic origin (as expected from the law of one price), and the 
treatments applied to the series. Again, the result is less clear-cut for crude oil. The con-
clusions for the raw and deflated series would agree, with unit roots detected in all cases, 
at 5% significance for the Dubai crude and at 10% in the cases of West Texas and Brent 
oils. However, when the series are previously de-seasonalized, stationarity fails to be re-
jected for the three crudes. This agrees with the diverging results obtained by the panel 
tests for oil. 

Another interesting issue is that the p-values, which are very high in most of the se-
ries where stationarity fails to be rejected, are relatively small in the cases of ethanol 
(closely related to gasoline in the US markets, as commented above) and Indonesian nat-
ural gas (with p-values only slightly above 10% in the raw and deflated series, but not in 
the de-seasonalized, deflated series). In the latter case, some authors have remarked the 
close relationship between the oil and gas markets (this would agree with the relatively 
low p-values in both cases), although the p-values are very high for the Henry Hubb and 
Netherlands natural gas series, which seemingly contradicts that connection (with oppo-
site conclusions obtained for the oil and natural gas series in the raw and deflated cases, 
but not in the de-seasonalized and deflated case).  

Figures 1 and 2 below includes the plots of the series and their fitted nonparametric 
models (stationary cases) and the differenced series and their models (fitted on the differ-
enced series) in those cases classified as nonstationary. For the sake of brevity, only the 
raw (Figure 1) and de-seasonalized, deflated (Figure 2) series are displayed. 
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Figure 1. Nominal logarithmic prices. Observed series (continuous lines) vs. fitted nonparametric models (dashed lines). 

  

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
1.5

2

2.5

3

3.5

4

4.5

5
Uranium

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6
Ethanol

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4
Soybean oil

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
5.5

6

6.5

7

7.5
Rapeseed oil

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
5

5.5

6

6.5

7

7.5
Palm oil

Time series
Fitted model

Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Brent crude oil (differences)

Time series
Fitted model

Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Dubai crude oil (differences)

Time series
Fitted model

Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
West Texas crude oil (differences)

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Australian coal

Time series
Fitted model

Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
South African coal

Time series
Fitted model



Energies 2021, 14, 3324 12 of 16 
 

 

  

  

  

  

  

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
U.S. coal

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-3

-2.5

-2

-1.5

-1

-0.5
Brent crude oil

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-3

-2.5

-2

-1.5

-1

-0.5
Dubai crude oil

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-3

-2.5

-2

-1.5

-1

-0.5
West Texas crude oil

Time series
Fitted model

Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-5

-4.5

-4

-3.5

-3

-2.5

-2
Indonesian natural gas

Time series
Fitted model

Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-5.5

-5

-4.5

-4

-3.5

-3

-2.5
Netherlands natural gas

Time series
Fitted model

Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-5.5

-5

-4.5

-4

-3.5

-3

-2.5
Henry Hubb natural gas

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Uranium

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Ethanol

Time series
Fitted model

Jan. 1980 Jan. 1985 Jan. 1990 Jan. 1995 Jan. 2000 Jan. 2005 Jan. 2010 Jan. 2015 Jan. 2020
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Soybean oil

Time series
Fitted model



Energies 2021, 14, 3324 13 of 16 
 

 

  

  

Figure 2. De-seasonalized, CPI-deflated logarithmic prices. Observed series (continuous lines) vs. fitted nonparametric 
models (dashed lines). 

5. Discussion 
The conclusions of the various studies carried out by previous authors often differ 

(depending on the specific period analyzed, the frequency of data observed, and the meth-
odology employed). In some of them, the possibility of non-linearities is explicitly consid-
ered and in others it is not, which can affect conclusions. In this regard, Chen and Lin [41] 
confirmed that the prices of coal, oil, and gas exhibit certain nonlinear features. Our non-
parametric methodology automatically incorporates the possibility of non-linearities, so 
it would be naturally adapted to the analysis of these kinds of series. 

As for coal, Lee et al. [42] and Presno et al. [4], employing PPI-deflated annual data, 
concluded that prices are stationary. The same conclusion is reached by Zaklan et al. [43], 
for annual data deflated by the U.S. CPI. However, Chen and Lin [41], employing a Mar-
kov switching unit root test, find non-stationarity in the monthly series of bituminous coal 
prices. 

In the case of oil, Chen and Lin [41] concluded non-stationarity for the US West Texas 
Intermediate and UK Brent price series. This agrees with results by Maslyuk and Smyth 
[6], Tabak and Cajueiro [44], Alvarez-Ramirez et al. [45] (who also include the Dubai price 
in the analysis), and Lean at al. [46] (for the daily prices of WTI crude oil). Zaklan et al. 
[43] (for CPI-deflated annual data) concluded that the nature of oil prices shifted from 
stationary to integrated along the decade between late 1960s and late 1970s (regarding this 
possibility, it is interesting to note that our study period would be fully included in their 
non-stationary phase). 

For natural gas, Chen and Lin [41] reported partial non-stationarity, with prices 
changing between local stationarity and local non-stationarity regimes. Zaklan et al. [43], 
employing CPI-deflated annual data, concluded stationarity. 

Palm oil has been extensively analyzed in the literature on commodity prices. For 
instance, Ghoshray et al. [47], for annual data deflated by the MUV index, found station-
arity. Harvey et al. [48] also concluded stationarity (around a quadratic trend) for that 
series. Our conclusions also agree with Lean and Smyth [21], who studied monthly spot 
and futures prices, finding little evidence to support the efficient market hypothesis. How-
ever, our findings would diverge from results by Lee et al. [24], who (for daily data) re-
ported more efficiency in palm oil than in the West Texas Intermediate crude oil market, 
possibly explained by the smaller proportion of speculative transactions in the former as 
a consequence of relatively strict trading policies.  

Results by Snaith et al. [23], who studied efficiency in the crude palm oil market (both 
in the open outcry and in electronic trading) by employing a threshold autoregressive 
relative efficiency measure, suggested an efficiency skew in that specific market. More 
precisely, they concluded long-run efficiency (in both trading platforms) for a vast major-
ity of the maturities they tested, although some evidence of short-run inefficiency was also 
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detected (with lower levels of short-run inefficiency in shorter maturities under open out-
cry and for longer maturities in electronic trading). 

Our results for soybean oil differ from Chen et al. [25], although this might be a con-
sequence of them employing ADF testing with no changes allowed for, as the power of 
that test is known to be potentially affected by the presence of breaks in the series. The 
same difference is observed in the case of uranium, where the models employed by Ka-
houli [28] and Chen et al. [25] did not allow for the possibility of breaks in the mean of the 
series. Finally, like Chang et al. [27], our results indicate that the prices of biofuels are 
stationarity.  

6. Conclusions 
In this paper, we analyzed non-stationarity in a group of fourteen, both renewable 

and non-renewable, energy commodity prices, for the 1980–2020 period. For many of 
these series, the presence of non-linear characteristics and breaks is well documented in 
the literature, with those factors adversely affecting the size and power of both stationarity 
and unit root tests. Our approach relies on a nonparametric, bootstrap-based stationarity 
testing framework that avoids the need of prior model specification for the deterministic 
components of the series analyzed. 

Our analysis finds no statistically significant evidence to reject the trend-stationary 
nature of the price series analyzed, regardless of their renewable/non-renewable nature 
and the various data transformations considered. The only exception seems to be crude 
oil, for which unit roots are detected when the nominal and deflated prices are analyzed, 
although stationarity fails to be rejected when seasonal effects are taken into considera-
tion. This highlights the importance of proper modeling of seasonal effects when analyz-
ing commodity price series. 

The above findings have several implications. First, our results would confirm --with 
the possible exception of oil prices—the assertions of economic theory on the dynamic 
behavior of commodity prices, in relation to the fact that market equilibria would suggest 
some form of stationary behavior in the time patterns of commodity prices. Based on our 
analysis, we cannot reject the hypothesis that, excepting oil, the prices of energy may fol-
low a deterministic, Hotelling-type rule in the long run. The weak version of the efficient 
market hypothesis seemingly does not hold for those markets, with the mentioned excep-
tion of oil. This implies that the prices in those markets would tend to revert to their (gen-
erally time-varying) deterministic means, thus being predictable and manageable, with 
traders and investors in those commodities (and in the companies involved in their pro-
duction) potentially being able to exploit technical analysis to make supra-normal profits.  

Finally, although in this paper we have applied a mainstream de-seasonalizing treat-
ment, a deeper theoretical analysis of seasonal filtering methods seems to be required in 
the case of nonparametric stationarity/unit-root testing. 
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