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Abstract: State-mandated renewable portfolio standards affect substantial portions of the total U.S.
electricity supply. Renewable portfolio standards are environmentally motivated policies, yet they
have the potential to greatly impact economy. There is not an agreement in the literature on the
impact of renewable portfolio standards policies on regional economies, especially on job creation.
By integrating various methodologies including econometrics, geographic information system, and
input—-output analysis into a unique system dynamics model, this paper estimates the economic
and environmental impacts of various renewable portfolio standards scenarios in the state of New
Mexico, located in Southwestern U.S. The state is endowed with traditional fossil fuel resources
and substantial renewable energy potential. In this work we estimated and compared the economic
and environmental tradeoffs at the county level under three renewable portfolio standards: New
Mexico’s original standard of 20% renewables, the recently adopted 100% renewables standard, and a
reduced renewable standard of 10%. The final one would be a return to a more traditional generation
profile. We found that while the 20% standard has the highest market-based economic impact on the
state as a whole, it is not significantly different from other scenarios. However, when environmental
impacts are included, the 100% standard yields the highest value. In addition, while the state level
economic impacts across the three scenarios are not significantly different, the county-level impacts
are substantial. This is especially important for a state like New Mexico, which has a high reliance on
energy for economic development. A higher renewable portfolio standard appears to be an economic
tool to stimulate targeted areas’ economic growth. These results have policy implications.

Keywords: renewable portfolio standards; employment; economic output; water use; greenhouse
gases; emissions; social benefits

1. Introduction

Electric utilities in the United States (U.S.) are integrating more renewable energy
(RE) sources in their energy mix. In May 2020, 24.3% of electricity generation in the
U.S. came from renewable sources (Energy Information Administration, Form EIA-860M).
This is partly a result of policies and regulations aimed at mitigating greenhouse-gas
(GHG) emissions through programs such as the Regional Greenhouse Gas Initiative in the
northeastern part of the U.S., and through the renewable portfolio standard (RPS) at the
state level. While the primary objective of these regulations is to address global warming,
there can be potential impacts on the economy at a microlevel (i.e., state and county levels).
For rural western states, this has become increasingly important, as they strive to diversify
their economies.

Debates are ongoing in the literature as to whether RPS policies have a positive (i.e.,
job creation, GHG and air pollution reduction), negative, or no impact on an economy and
the environment (e.g., [1-5]). The main reason for the divergent findings is the inclusion or
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exclusion of market failure due to environmental amenities in the analyses. For example,
NYSERDA [1] assessed New York’s RPS impact and found a gain of 24,000 job-years from
2002 to 2037. Divounguy et al. [2] investigated Ohio’s 12.5% by 2025 RPS and found that it
would result in a loss of more than 134,000 jobs. Upton and Snyder [3] evaluated states
with an RPS versus those without, and they found that an RPS standard has no significant
impact on increasing RE or reducing GHGs. Zhou and Solomon [4] found that more
stringent RPSs result in lowering RE capacity additions, while Carley et al. [5] found the
opposite. Further, most of the existing literature focused on either an aggregate scope (e.g.,
nation-wide) or state-specific assessments and has not considered impacts at lower-level
jurisdictions (e.g., county level). Lastly, much of the literature overlooked the fundamental
dynamics within the energy sector. The objective of this paper is to contribute to this line
of research and assess the economic and environmental impact of renewable energy and
the tradeoffs on a regional economy.

In particular, we are interested in answering the question of what are the economic and
environmental impacts of varying RPSs on regional economies. This is a rather complex
question, and answering it is aided by the use of system simulation [6-11]. Thus, in
this work we develop, validate, and utilize a system dynamics (SD) based simulation
model that integrates results from various methodologies such as input—output analysis,
econometrics, and Geographic Information System (GIS). Combining these methodologies
in an innovative approach to analyze the SD model is one key contribution of this paper.
We execute our analysis in our case study of New Mexico, a southwestern state in the
U.S. with an RPS and high potential for both fossil fuel (traditional) and RE sources. We
hypothesize that RPS levels have substantial environmental and economic impacts on
regional economies. This paper is an attempt to quantify those impacts.

Our findings suggest a net increase of jobs in rural counties that are most suitable
for future RE installations. Depending on the scenario, our model estimated increasing
137-156 thousand cumulative, full-time equivalent jobs, 19 to 24 billion USD (2017$) cu-
mulative gross economic output, and 12,987 to 13,219 and 974 to 1122 billion liters of
cumulative water withdrawal and consumption respectively from 2017 to 2050. These
scenarios also resulted in increasing millions of avian mortalities, as well as millions of
tonnes of GHG emissions and thousands of tonnes of air pollutants, each of which leads
to billions of dollars in climatic and air-quality costs (social costs). Lastly, we found that
higher RPS standards lead to greater benefits to the state when externalities and social
benefits/costs are taken into account.

2. Background

The burning of fossil fuel (i.e., coal, natural gas, and oil) is the main source of GHG
emissions in the U.S., and this contributes to climate change. Combusting fossil fuels for
electricity generation not only emits air pollution but also requires an immense amount of
water. There is extensive literature that demonstrates the correlation between air pollution
and premature mortality /morbidity [12-18]. Maupin et al. [19] showed that roughly 40%
of all of the U.S. freshwater withdrawal was used for thermoelectric power plants in 2010.
Policymakers, as a result, are seeking to promote policies that lead to integrating more
environmentally friendly generation sources with less externalities.

Electricity generation is moving towards integrating a higher level of RE and a lower
level of fossil fuels in the U.S. due to regulatory mandated laws such as the RPS as well
as cost competitiveness. Thirty states and the District of Columbia currently have an RPS
in place. RPSs mandate that electric utilities source a portion of their generation from
RE within a certain timeframe. Although the main goal of an RPS is environmentally
oriented—that is, to mitigate GHG emissions and/or save water—these policies have the
potential to impact economies. Previous research on the impact of RPSs shows that the
policies are capable of yielding positive economic impacts if positive externalities (zero
or close to zero water usage, zero emission, etc.) are taken into account [20,21]. Barbose
et al. [20] demonstrated that meeting requirements mandated by RPSs led to supporting
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200 thousand jobs and a reduction of 59 million tonnes of CO, in the U.S. in 2013. Wiser
et al. [21] quantified positive externalities of RE and estimated that existing RPS policies
lead to improving air quality and reducing climatic damages (258 billion USD), which
not only compensates the increase in electric system costs (23 to 194 billion USD) but also
exceeds those costs over the period of 2015-2050.

There are a handful of peer-reviewed papers and national laboratory reports that
look at the feasibility of providing global energy through RE (e.g., [22-25]). For example,
Jacobson and colleagues [22] estimated a portfolio mix that enables the United States to
sustain its entire energy needs—including electricity, transportation, heating/cooling, and
industry—using renewable energy by 2050. Similarly, Cole et al. [25] assessed different
scenarios of achieving various levels of RE in only the power sector by 2050. Further,
previous economic impact studies of constructing and operating RE projects suggested
that the economic impacts to states are considerable [17,26,27]. Similarly, studies on
environmental impact of RE showed significant climate and air quality benefits [28-31]. For
instance, Millstein et al. [29] found that solar and wind development resulted in benefits of
30-113 billion USD (2015) and 5-107 billion USD from air quality and climate, respectively,
while avoiding 3000-12,700 premature mortalities in 2007-2015. Most of these studies
produced state-level or nation-wide job/environmental impact estimates, which in turn
meant less understanding of lower-level dynamics such as job/environmental impacts
across counties. These studies also did not consider the underlying dynamics within the
energy sector.

To address the aforementioned gaps in the literature, we combine various methodolo-
gies to develop an SD model. SDs are a derivative of the work developed by Forrester [32],
in which he introduced a novel approach to integrate multiloop feedback systems. So
long as relationships among variables are known, this approach makes modeling complex
systems possible [33]. The SD model of this paper integrates results from input-output
analysis, econometrics, and GIS to form a unique framework that provides both the public
and policymakers improved information with which to make decisions. The model is
developed at a monthly time-step from January 2004 through January 2050. Multiple
programs are used to analyze the complex electricity problems common to most utilities.
Specifically, Jobs and Economic Development Impact (JEDI) coupled with Impact Analysis
for Planning (IMPLAN) are used to calculate job multipliers by energy type and by county;
Stata is used to estimate electricity demand; ArcGIS is utilized to estimate the potential of
renewable and natural gas electricity generation by county, as well as the optimal location
for siting additional power plants; lastly, results from previous models are all embodied in
Powersim Studio, which is used to analyze various energy mix scenarios.

The objective of the SD model is to estimate electricity generation and consumption
by different fuel sources and various sectors respectively. We provide a roadmap to assess
the explicit and implicit impacts of various energy mix scenarios at the state and county
level and at different points in time. Explicit impacts may include potential jobs and
economic gross output associated with current and potential future electricity generation,
and implicit impacts may include positive health effects and social benefits of reducing
ambient emissions. We apply this roadmap to our case study of New Mexico.

2.1. Study Area: New Mexico

New Mexico has considerable potential for both fossil fuel and RE resources. It holds
about 3%, 4%, and 5% of the United States’ total estimated recoverable coal reserves, proved
crude oil, and natural gas respectively and it possesses the second-largest uranium reserves
in the nation. Most of the state’s natural gas and crude oil are located in the San Juan and
Permian Basins in the northwestern and southeastern part of the state, respectively, while
coal reserves are mainly located in the San Juan and Raton Basins in the northern part of
the state. The vast areas of New Mexico with available geophysiological landmass that
receives high wind and sunlight levels are optimal for increasing RE usage. New Mexico
ranks third in both solar and wind potential in the U.S. [34].



Energies 2021, 14, 3319

40f23

New Mexico’s economy is ranked 46th in the nation. The energy industry, especially
oil and natural gas extraction, is a main contributor to New Mexico’s economy. The state
receives approximately 2 billion and 300 million USD per year in direct (e.g., severance,
property taxes, royalty, and rental income) and indirect (sales and income taxes) revenues,
respectively, from oil and gas production. Depending on the state of the economy, based
on recent state finance facts, revenues from oil and gas can contribute about 40% to New
Mexico’s general fund tax revenue. Thus, fluctuating oil and gas prices affect New Mexico’s
economy immensely.

On one hand, the energy industry is responsible for emitting GHG and ambient
pollution as well as increased water usage in New Mexico. GHG contributes to climate
change, while air pollution causes premature mortality and morbidity, and freshwater has
historically been insufficient in New Mexico. On the other hand, RE is becoming more and
more cost-competitive compared to fossil fuel technologies. Thus, it makes logical and
economic sense for policymakers to promote policies such as an RPS in order to integrate
more RE into New Mexico’s energy mix.

At the time of analysis, New Mexico’s RPS required all large electric utilities to
generate 20% of their in-state electricity sales from RE resources by 2020. Although it did
not pass, a bill (Senate Bill 312) was introduced to increase New Mexico’s RPS previous
level to 25% by 2020, 35% by 2025, 50% by 2030, 65% by 2035, and 80% by 2040 in the 53rd
legislative session in 2017. A modified version of this bill was reintroduced in January
2019 (House Bill 15) and was passed in the 54th legislative session in March 2019 (Senate
Bill 489). In addition to the requirements set by Senate Bill 312, Senate Bill 489 sets a 100%
RPS by 2045 that is sourced from zero carbon resources. This makes New Mexico the third
state in the U.S. after California and Hawaii and before Washington, New York, Maine,
and Virginia to mandate a 100% RPS. Thus, New Mexico’s current RPS policy requires 20%
in-state electricity sales from RE resources by 2020, 40% by 2025, 50% by 2030, 80% by 2040,
and 100% by 2045.

Currently, there are three large electric utilities in New Mexico: the Public Service
Company of New Mexico, El Paso Electric, and Xcel Energy, with the first serving the
largest customer pool in the state. Further, as New Mexico has considerable potential
in both wind and solar energy, the Public Regulation Commission set diversity targets
(carve-outs) for different types of RE to create a diversified portfolio. Based on this portfolio,
the utilities are required to source at least 30%, 20%, and 3% of their in-state electricity
sales from wind, utility-scale photovoltaic solar (PV), and residential photovoltaic solar
(RPV), respectively, by 2020 (see Table 1). RPS requires the New Mexico’s rural electric
distribution cooperatives to generate 10% of their in-state electricity sale from renewable
sources. We did not consider a rural cooperatives constraint in our analysis.

Table 1. Carve-outs regulated by renewable portfolio standard.

Source Minimum Amount
Wind 30%

Utility-scale solar (PV) 20%
Residential/distributed solar (RPV) 3%

2.2. Scenario Construction

Our analysis investigated the number of jobs and their locations by energy source, as
well as environmental impact based on thirty-four prices, three technological-costs, and
three RPS scenarios. Each of these scenarios are described briefly below.

We adopted 34 price scenarios—i.e., electricity price by sector, Henry Hub natural
gas price, and electric sector fuel cost (coal and natural gas)—developed by the Energy
Information Administration’s (EIA) Annual Energy Outlook 2018 (AEO2018), along with
three technology cost scenarios developed by the National Renewable Energy Laboratory
(NREL) [25]. A list of AEO2018 scenarios are summarized in the supplementary document
(Table S1). The cost scenarios includes low, mid, and high (constant) cost and performance
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estimates for wind, PV, RPV, natural gas (both baseload (combined-cycle; NGb) and peaker
(single-cycle; NGp)), and coal from 2016 to 2050. Low-cost wind and solar scenarios
utilize low-cost estimates for land-based wind, along with PV and RPV technologies, while
high-cost scenarios use constant costs at or near the 2018 cost estimates. The mid-case
scenario assumes prospective advances in the RE arena technology. The low- and high-
cost scenarios for fossil fuel beyond 2016 relies on two case estimates from AEO2018,
i.e., the high oil and gas resource and technology case and the low oil and gas resource
and technology case, respectively. The mid-case scenario serves as a reference case for
fossil fuel technology costs adopted from AEO (2018). Overall, the SD model is capable
of assessing 918 (34 x 3 x 3 x 3) different scenarios. For the purpose of brevity, we focus
on the three most plausible future scenarios: the new RPS, the previous RPS, and a future
where integrating RE in the electric grid is discouraged. Under the first scenario, i.e., 100%
RPS, we assume a future with scarce natural resources with costly fossil fuel and cheap RE
technologies that make 100% RPS by 2050 possible. The second scenario, i.e., 10% RPS, is
the opposite of the first scenario, in that we assume abundant natural resources with cheap
fossil fuel and expensive RE technologies, hence a decreased RPS (10% by 2050). Lastly, we
implement a status quo scenario, i.e., 20% RPS, that assumes reference case AEO prices
with mid-case technology cost of fossil fuel and constant RE technology cost, along with
business-as-usual RPS (RPS 20% by 2020 and on). Below we summarize each scenario.

I 100% RPS: AEO price = low oil and gas resource and technology; RE cost = low; fossil
fuel cost = high; RPS = Senate Bill RPS (100%)

II.  10% RPS: AEO price = high oil and gas resource and technology; RE cost = high; fossil
fuel cost = low; RPS = decrease RPS (10%)

I 20% RPS: AEO prices = reference case; RE cost = high; fossil fuel cost = mid; RPS = status
quo RPS (20%)

3. Materials and Methods

Our model consists of five submodels: (1) demand; (2) supply; (3) gap between supply
and demand (hereafter “gap”); (4) jobs; and (5) environmental impact, with more than 1200
variables. The first submodel consists of two modules that together estimate electricity
demand beyond 2016. The second submodel includes six modules that altogether project
megawatt-hour (MWh) generation. The gap and the jobs submodels each contain seven
modules. Finally, the environmental impact submodel contains only one module. A
detailed description of the model is provided in the Supplementary Materials (Section B)
and a related work [35]. Here, we briefly describe the overarching dynamics of the model.

Our model is based on a series of stocks and flows. Stocks can change from period to
period; the changes are governed by “flows”. The flows, based on either natural science-
based rules, human choice, or policies, or a combination thereof, are the set of rules that
dictate the change in the stocks. Figure 1 provides a schematic of the model. Arrows
provide the connections between stocks and flows. In all cases, the arrows represent the
direction of interaction. Associated with each stock, flow, and connecting arrow is a set
of quantifiable relationships and rules that allow us to model the system and assess the
impact and tradeoffs between sectors within a time period as well as over time.

The basic structure of the modeling components is the physical market for electricity,
which (in the figure) is at the intersection of supply and demand and is governed by an
exogenous price path. As mentioned in the scenario definitions section, we implemented
34 price scenarios developed by EIA’s 2018 AEO report. Thus, “exogenous” here does not
mean a fixed value over time but rather is a given independent variable that fluctuates
by month and over time. Supply depends on capacity and capacity utilization, which is
aggregated from individual generation sources of capacity, utilization, and net exports
into/out of state, while demand depends on in-state (domestic) consumption. In-state
demand is the aggregation of individual sectoral demands, which can be impacted by
market conditions (price) and population impacts.
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Figure 1. Modeling schematic.

The electricity market outcome at each time step maps into economic activity, esti-
mated in dollars, which is one part of our macroeconomic module. The level of economic
activity impacts the job outcome through changes in the demand for workers. It should be
noted that population can also be impacted by the job impact as it could result in net out-
or in-migration.

The linkage between the electricity market and the environment (potential external
impacts) is represented through a pollution component, where emissions during a time
step add to the concentration level of the pollutant. We depict direct impacts of pollution
through impacts on economic activity and through population (e.g., health impacts). It
should be noted that there are a number of potential indirect links through, for example,
consumer groups. In addition to pollution, our basic model includes water resources and
human and avian mortalities. Further, RPS policies are included. Depending on the policy,
the generation capacity, supply, demand, market prices, emissions, economic activity, or
jobs could be impacted. Finally, all of these modules and methodologies are gathered in a
unique SD model. Figure 2 summarizes the causal loop diagram utilized in developing the
SD model.

In order to read the causal loop diagram depicted in Figure 2, we begin by imagining
the variable at the base of the arrow increasing in value; the sign at the arrowhead indicates
the increase (+) or decrease (—) in the variable at the arrowhead, all other variables un-
changed. Lastly, parallel lines crossing an arrow indicate delay in impact from the variable
at the base of the arrow to the variable in the head of the arrow. The causal loop diagram
presents the logic behind our SD model. The following is an explanation of one path in
the diagram.
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The required generation to achieve a certain level of RPS increases as in-state electricity
demand increases, which increases the need for additional RE capacity to meet the corre-
sponding RPS level. The higher the need for additional RE capacity, the higher the new
capacity of RE. As the new capacity of RE rises, the total RE capacity rises, and the capacity
that is decommissioned in the future increases with a delay. A higher level of RE capacity
that is to be decommissioned decreases the total RE capacity, creating an enforcing loop
(see Figure 2). On one hand, the higher the RE capacity, the higher the RE generation, hence
the higher the need for peaker natural gas, storage, and transmission lines. On the other
hand, if we assume that a higher level of RE generation replaces fossil fuel generation, then
a higher level of RE generation results in lower GHG and air pollution, thereby lowering
population mortality and morbidity (social cost). A higher level of RE generation can
also decrease the gap caused by a discrepancy between supply and demand for electricity
and/or RPS requirement. The same logic holds true for the remaining components of the
causal loop diagram.

Data

Data were obtained from numerous sources including, the U.S. Energy Information
Administration (various survey forms, AEO2018, and Layer Information for Interactive
State Maps shapefiles), Emissions and Generation Resource Integrated Database (eGRID)
of the U.S. Environmental Protection Agency (EPA), the National Renewable Energy
Laboratories (JEDI, Annual Technology Baseline, wind data, and solar data), the New
Mexico Public Regulation Commission, the United States Geological Survey, the U.S.
Bureau of Economic Analysis, the United States Census Bureau, and the Western Electricity
Coordinating Council, as well as the energy literature. Except for RPV data, we obtained
generation data from EIA-923 and EIA-861 (annual and monthly data). The data includes
historical nameplate capacity of the existing power plants, generation, power plants’
locations (county and latitude/longitude), operating and planned retirement year times,
and capacity factors. The data for the existing RPV capacity were obtained from the New
Mexico Public Regulation Commission. Further, IMPLAN 2016 data were used to calculate
jobs and output multipliers for each energy source. Lastly, economic benefit/cost of air
pollution and GHG reduction multipliers came from the energy literature. Table S2 of the
Supplementary Materials summarizes the key data sources.

4. Results

In this section, we present our results. We first review electricity generation under
the three modeled scenarios. Next, we discuss state-level and county-level economic and
environmental impacts. Economic impact results are presented for full-time equivalent
employment and gross economic output. Environmental impacts, on the other hand,
are reported in terms of GHG emissions, air pollution, water usage, and human and
avian mortality associated with each of our three modeled scenarios. These impacts are
experienced once the plants are in the O&M phase. Thus, environmental impact results are
reported for the operations period solely and on a state- and county-level basis. Finally,
we compare results across scenarios to expose whether results are statistically significantly
different. If they are, we then identify state and county levels that experience job gains
(winners) and job losses (losers).

4.1. Generation

Figure 3 shows the total electricity generation under the three modeled scenarios, and
Figure 4 presents the generation mix through 2050. Based on the 20% RPS scenario, as with
the other two scenarios, RE and fossil fuel generations encompassed respectively 17% and
83% of total generation in 2017. In 2030, generation shares are 15% and 85% for RE and
fossil fuel, respectively. Compared to the 20% RPS scenario, RE generations are 9% higher
in the generation mix under the 100% RPS scenario (24%) and 5% lower under the 10%
RPS scenario (12%). All scenarios estimated a dip in electricity generation from 2036 until
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Figure 4. Annual electricity generation (in thousand GWh or TWh) by all six energy sources: (a) 10% RPS; (b) 100% RPS;

(c) 10% RPS scenarios.

As presented in Figure 4, for the scenarios we estimated the amount and type of energy
source to replace coal generation. By 2050, RE generation increases to 52%, while fossil fuel
generation drops to 48% under the 20% RPS scenario. The 100% RPS scenario and the 10%
RPS scenario result in a 11% higher and a 48% lower RE generation, respectively, when
compared with the 20% RPS scenario. As mentioned, RPS requires utility companies to
generate a portion of their in-state sales from RE. Thus, it is possible to have fossil fuel
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generation even under the 100% RPS scenario. The takeaway here is that different energy
scenarios lead to different energy mixes, which therefore means different environmental
and economic impacts.

4.2. Economic Impacts

Our model is capable of estimating employment and gross economic output by three
categories: direct (onsite), indirect, and induced. Total impact is the sum of direct, indirect,
and induced impacts. Since direct, indirect, and induced impacts are a fixed fraction of total
impact, we only discuss total impacts here. In what follows, we first discuss employment
impact at the state and county level. We then compare results across scenarios and identify
whether there are winners or losers. Next, we summarize total economic output results
in a similar approach. Further discussion of the results, especially more granular level
results (e.g., different types of energy sources during different phases), can be found in the
Supplementary Materials (Section C).

Figure 5 summarizes the cumulative total employment impact by the 20% RPS scenario
and the other two modeled scenarios. We estimated a total employment impact on New
Mexico in construction and O&M to be as follows: 151,857 (42,517 RE and 109,340 fossil
fuel), 151,284 (112,593 RE and 38,691 fossil fuel), and 155,520 (26,271 RE and 129,248 fossil
fuel) full-time equivalent jobs according to the 20% RPS, 100% RPS, and 10% RPS scenarios,
respectively, from January 2017 to January 2050. Thus, compared to the 20% RPS scenario,
the 100% RPS one (RE intensive scenarios) results in 573 fewer cumulative (construction and
O&M) full-time equivalent jobs, while the 10% RPS one (most fossil fuel intensive scenario)
yields 3663 more cumulative jobs. Note that these results are based on the assumption
that all labor is provided locally. This assumption, which is on a 0-100% scale, can also be
changed in the original SD model. What is important here is that this assumption does not
impact the dynamics within modules and only results in lower direct economic impact
(labor and economic output) across scenarios.
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Figure 5. Temporal cumulative jobs (construction and O&M) by modeled scenarios from January 2017 to January 2050.

As demonstrated in Figure 5, all scenarios estimate a boost in energy employment
after 2037. This is because existing coal-fired power plants are expected to retire in 2037,
meaning there should be no new installation. Depending on the scenario, coal generation
is expected to be replaced by either renewables or natural gas after 2037, and thus jobs
related to coal are also likely to be replaced by renewable or natural gas jobs. Although the
100% RPS scenario yields fewer cumulative total jobs than the 20% RPS case, its impact
fluctuates and is more diverse throughout the timespan of the study. Figure 3 depicts the
employment distribution by the three modeled scenarios from 2017 through January 2050.
Any spikes in the estimated employment numbers can be due to whether RPS and RE carve-
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out requirements are met. We performed nonparametric tests such as the Kolmogorov—-
Smirnov tests to compare the equality of distributions of total employment across scenarios.
The test results suggest that the null hypothesis of equality of distributions across the three
scenarios cannot be rejected. In other words, at the state level, the employment impact of
these three scenarios are not statistically significantly different. Thus, we found that the
state of New Mexico is not a winner or a loser in terms of job gains or losses at the state level
under all of the assessed scenarios. Temporal and cumulative employment impacts during
construction and O&M phases are provided in the Supplementary Materials (Section C).

Now, we turn our attention to county-level employment results. Table 2 summarizes
the annual average employment for all three scenarios by county. This table demonstrates
an important result of the current study: some counties will be winners, and others will be
losers. Figure 6 puts these results in perspective; it shows employment gain and loss per
10,000 labor force for the 100% RPS case versus the reference case of 20% RPS. Lastly, the
Kolmogorov-Smirnov test results at the county level support the statistically significantly
different employment distributions as well.

Table 2. Annual average employment by county and modeled scenarios *.

County 20% RPS 100% RPS 10% RPS
Bernalillo 301 83 320
Catron 22 93 3
Chaves 19 121 8
Cibola 23 118 4
Colfax 26 128 6
Curry 211 275 188
De Baca 23 94 3
Dona Ana 397 225 393
Eddy 285 121 289
Grant 284 119 291
Guadalupe 44 132 24
Harding 23 115 3
Hidalgo 294 120 300
Lea 536 443 498
Lincoln 7 45 3
Los Alamos 41 31 35
Luna 442 334 419
Mc Kinley 303 67 325
Mora 23 126 3
Otero 16 114 6
Quay 79 160 59
Rio Arriba 23 112 3
Roosevelt 137 210 117
Sandoval 39 58 34
San Juan 764 569 762
San Miguel 23 110 4
Santa Fe 12 35 7
Sierra 22 108 3
Socorro 22 108 3
Taos 23 97 3
Torrance 155 235 136
Union 81 163 61
Valencia 306 84 322

* Average values are from 2017 to 2050.

Economic output follows the employment results closely: when there is employment
impact, there is economic output impact as well. Construction and O&M employees,
depending on type of energy source, earn an average annual salary (with benefit) of 35,000
to 58,000 USD (2017%$) and 56,000 to 76,000 USD (2017$) per year, respectively [36]. Under
the 20% RPS scenario, these employments result in a cumulative (sum of construction and
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O&M) total economic output of 24 billion USD (2017%) (18% RE and 49% O&M) per year
from 2017 to 2050. The 100% RPS and 10% RPS scenarios respectively lead to roughly
4 (20 USD: 94% RE and 54% O&M) and 2 (22 USD: 4% RE and 45% O&M) billion USD
(20179) per year less than the 20% RPS case. In other words, the 20% RPS scenario yields a
cumulative economic output that is 20% and 9% higher than the 100% RPS and 10% RPS
scenarios, respectively. Figure 7 summarizes these results.

180 Miles

Job Gain/Loss Per 10k Labor Force - 100% RPS Vs. Ref. Case
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Figure 6. Employment gain and loss per 10,000 labor force under the 100% RPS case compared to the

20% RPS case. Note: Positive values indicate job gains; negative values are job losses.
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Figure 7. Total annual economic output by energy source and modeled scenarios from 2017 to 2050.
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Similar to the state-level employment, economic impact distributions under the three
assessed scenarios are not statistically significantly different. However, at the county level,
rural counties can benefit under the RE intensive scenario, and counties with fossil fuel
infrastructure in place can benefit from the fossil fuel intensive scenarios (namely the more
populous counties).

4.3. Environmental Impacts

Based on all of the three modeled scenarios, coal-fired power plants are assumed to
fully retire after 2037. This is mainly due to the fact that the existing coal-fired power plants
are aging (>40 years), and fuel contracts with coal mines are ending; more importantly, it is
highly likely that coal will no longer be cost-competitive. Given these situations, we expect
that there would be no new coal-fired power plants constructed in the future (see Figure 4).
Note that these power plants are the most water-intense and polluting technologies in
our set of energy sources (see Table S6). Eliminating coal from New Mexico’s energy mix
would result in fewer negative externalities (GHG, ambient pollutions, and water usage)
from fossil fuel overall. Different technology costs along with RPS requirements drive the
energy source that would eventually replace coal. The more RE replaces coal, the fewer
negative externalities and the higher the social benefit from the replacement.

In what follows, we first discuss cumulative water withdrawal and consumption
results at the state and county level. We then compare results across scenarios and identify
whether there is water saved at the state and county levels. We take a similar approach in
explaining emissions. Finally, we discuss the social benefit/cost of different scenarios.

4.3.1. Water Usage

Figure 8 depicts the temporal water withdrawal and consumption from 2017 to
2050. The 20% RPS scenario suggests a cumulative 13,178 and 1096 billion liters of water
withdrawal and consumption throughout the study timeline. Compared to the 20% RPS
scenario, the 100% RPS scenario uses less water for withdrawal and for consumption by
190 and 122 billion liters, respectively. The 10% RPS scenario, with the highest level of
fossil fuels in the energy mix, uses 41 and 26 billion liters of water more than the 20% RPS
scenario for water withdrawal and consumption, respectively.
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Figure 8. Water withdrawal and consumption over time by the electric sector under the three modeled scenarios. (a) Water
withdrawal; (b) Water consumption.

Considering an average price of 0.00689 USD/liter for water consumption by each
energy source [37], the 20% RPS scenario results in a total cost of 527 million USD ($2017)
in water consumption for electricity generation. Compared to the 20% RPS scenario, the
100% RPS scenario results in saving 58 million USD for water savings, while the 10% RPS
scenario increases costs by 13 million USD, as it is more water intense.
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To compare water consumption distributions across scenarios, we performed
Kolmogorov-Smirnov tests. Test results provided us with evidence to reject the null
hypothesis of equality of distributions between the 100% RPS and 20% RPS scenarios even
at the state level. On the whole, we did not find similar results when comparing the 10%
RPS scenario against the 20% RPS one.

Table 3 summarizes the annual average million liters of water consumption by county
and the three scenarios; Figure 9 translates this information to per capita (county) water
consumption saved or lost. While the majority of counties see no changes, the majority
of impacts are the savings. Our nonparametric test results further support the alternative
hypothesis of unique water consumption distributions across scenarios at the county level.

Table 3. Annual average water consumption by county and modeled scenarios *.

County 20% RPS 100% RPS 10% RPS
Bernalillo 46 16 53
Catron 0 0 0
Chaves 0.08 0.68 0.04
Cibola 0 0 0
Colfax 0.23 0.23 0.23
Curry 0 0 0
De Baca 0 0 0
Dona Ana 119 89 126
Eddy 31 1 38
Grant 34 4 41
Guadalupe 0 0 0
Harding 0 0 0
Hidalgo 39 8 45
Lea 217 187 223
Lincoln 0 0 0
Los Alamos 13 7 14
Luna 140 109 146
Mc Kinley 203 173 209
Mora 0 0 0
Otero 0.08 0.68 0.04
Quay 0 0 0
Rio Arriba 0 0 0
Roosevelt 0.08 0.68 0.04
Sandoval 0 0 0
San Juan 1873 1843 1879
San Miguel 0 0 0
Santa Fe 0.08 0.68 0
Sierra 0 0 0
Socorro 0 0 0
Taos 0 0 0
Torrance 0 0 0
Union 0 0 0
Valencia 50 20 56

* Average values are in million liters and from 2017 to 2050; “0” means no change.

4.3.2. Air Pollution and Greenhouse-Gas Emissions

Figures 10 and 11 depict the cumulative impact of air pollution and GHG emissions,
along with consecutive social benefit to the state from 2017 to 2050. Cumulatively, the RE
intensive scenario emits roughly 91 million tonnes GHG less than the 20% RPS scenario
throughout the study timeline, leading to more than 6.8 billion USD (2010$) in cumulative
climate benefit. The fossil fuel intensive scenario, on the other hand, emits 3% (19 million
tonnes) higher GHG than the 20% RPS one, which causes more than 1400 million USD
(2010%) social cost compared to the 20% RPS one. Each one million tonnes of GHG emissions
is equivalent to GHG emissions by approximately 2250 million miles driven by an average
passenger vehicle. Table 4 summarizes the county level results only for GHG. Based on
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the Kolmogorov—-Smirnov test results, we can reject the null hypotheses of equality of
GHG emission distributions when comparing both the 100% RPS and 10% RPS scenarios
against the 20% RPS scenario. In other words, the 100% RPS scenario results in statistically
significantly lower GHG than the 20% RPS scenario, while the opposite holds true for the
10% RPS scenario. We found similar results at both state and county levels.
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Figure 9. Per capita water consumption saved/lost under the 100% RPS scenario compared to the
20% RPS scenario. Note: Negative value indicates water saved; 1 gallon is ~3.79 liters.
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Figure 10. State-level cumulative tonnes of GHG and air emission under the three modeled scenarios from 2017 to 2050.
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Figure 11. Social impact of air pollution and GHG emission reduction for the 100% RPS and 10% RPS scenarios compared

to the 20% RPS scenario from 2017 to 2050.

Table 4. Annual average thousand tonnes of GHG emissions by county and modeled scenarios.

County 20% RPS 100% RPS 10% RPS
Bernalillo 38 18 43
Catron 0 0 0
Chaves 0.09 0.78 0.02
Cibola 0 0 0
Colfax 0.24 0.24 0.24
Curry 0 0 0
De Baca 0 0 0
Dona Ana 90 69 95
Eddy 23 1 27
Grant 26 4 31
Guadalupe 0 0 0
Harding 0 0 0
Hidalgo 32 10 36
Lea 160 139 165
Lincoln 0 0 0
Los Alamos 9 5 10
Luna 101 79 105
Mc Kinley 93 71 97
Mora 0 0 0
Otero 0.09 0.78 0.02
Quay 0 0 0
Rio Arriba 0 0 0
Roosevelt 0 0 0
Sandoval 0.09 0.78 0.02
San Juan 785 764 790
San Miguel 0 0 0
Santa Fe 0.09 0.78 0.02
Sierra 0 0 0
Socorro 0 0 0
Taos 0 0 0
Torrance 0 0 0
Union 0 0 0
Valencia 45 23 49

Note: Average values are in thousand tonnes and from 2017 to 2050; “0” means no change.

Since coal is the only energy source that emits mercury and since it stays unchanged
throughout our study period, mercury is therefore assumed to be the same amount in all
three scenarios, i.e., 3 tonnes. The 100% RPS scenario results in a roughly 500 tonne reduc-
tion in SO, emissions (approximately 3 million USD (2010$) in social benefit) compared
to the 20% RPS scenario, while the 10% RPS scenario results in an increase of more than
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100 tonnes of SO, (1 million USD (2010%) in social cost) cumulatively from 2017 to 2050.
NOy emissions in the RE intensive scenario are reduced by 6649 tonnes and a 7 million
USD (2010%) increase in social benefits compared to the 20% RPS scenario, while the fossil
fuel intensive scenario yields 1990 tonnes more NOx and 2 million USD (2010$) more in
social costs. Lastly, PM emission in the 100% RPS scenario is reduced by 5612 tonnes,
resulting in a 123 million USD (2010$) increase in social benefits compared to the reference
case scenario, while the 10% RPS scenario yields 1215 tonnes more and 27 million USD
(2010%) in social costs.

Table 5 summarizes the cumulative avoided air pollution, social benefit, and the
premature mortality and morbidity impact of air pollution under the 100% RPS and the
10% RPS scenarios from 2017 to 2050 compared to the 20% RPS scenario. The 20% RPS
scenario is estimated to have 408 to 924 adult fatalities caused by a combination of SO, NOx,
and PM pollutants. The 100% RPS scenario has the potential to avoid 23 to 52 premature
mortality incidences, while the 10% RPS scenario increases 5 to 11 fatalities due to exposure
to ambient pollution, when compared to the reference scenario. While the majority (>90%)
of social benefits for each scenario comes from avoiding premature mortality [12], we
also estimated a number of additional morbidity benefits, from avoiding nonfatal heart
attacks, hospital visits for asthma, or other cardiopulmonary conditions, to fewer lost work
or school days. For example, the 100% RPS scenario is estimated to result in avoiding
19 visits to the emergency department or hospital for cardiopulmonary conditions as well
as approximately 3000 fewer lost work or school days from 2017 to 2050.

Table 5. Accumulated emissions, social benefits, and mortality and morbidity incidence reductions compared to the
reference case scenario (20% RPS) using SO,, NOx, and PM reductions as a result of RE installation from 2017-2050.

100% RPS 10% RPS 20% RPS

Outcome

SO, NOy PM SO, NOx PM SO, NOy PM
Emission Reductions (Thousand Tonnes)

0.45 6.7 5.7 -0.1 -2 -1.2 254 1094 29
Social Benefits (2010 million USD)

3.4 6.6 122.8 -0.7 —20 —266 1928 1078 640
Premature Mortality Incidences
Krewski et al. [13] 2 0 1 22 0 0 -5 207 95 107
Lepeule et al. [14] 2 2 50 0 0 —11 464 219 241
Morbidity Incidences
Emergency department visits for asthma 0 0 7 0 0 -1 81 37 36
Acute bronchitis 1 2 36 0 0 -8 372 251 181
Lower respiratory symptoms 9 20 464 -2 —6 —100 4699 3178 2312
Upper respiratory symptoms 13 29 679 -3 -9 146 6735 4540 3334
Minor restricted-activity days 319 643 16,682 —69 —193 3586 169,722 99,043 82,791
Lost workdays 54 110 2782 —12 —-33 —600 28485 16,673 13,975
Asthma exacerbation 5 1892 630 -2 =522 156 5900 226,256 3938
Hospital admissions, respiratory 0 0 5 0 0 -1 48 20 24
Hospital admissions, cardiovascular 0 0 6 0 0 -1 61 26 30
Nonfatal Heart Attacks Incidences (Age > 18)
Peters et al. (2001) ® 0 1 22 0 0 -5 202 85 105
Pooled estimate of 4 studies 0 0 2 0 0 -1 22 9 11

Note: Positive value means reduction, whereas negative value indicates addition. »® Multipliers from these studies are used to calculate
the mortality and morbidity incidences.

Fossil fuel and RE power plants are contributors to avian mortality; fossil fuel plants
induce fatality through plant operation, acid rain, mercury, and climate change, while
bird fatality associated with wind and PV power plants is mainly due to bird colliding
with turbine blades and panels respectively [15,38,39]. Figure 12 summarizes avian mor-
tality caused by different energy sources (i.e., coal, NG, wind, and PV) under different
scenarios. The 20% RPS scenario leads to 5.131 million avian fatalities, of which fossil fuel
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is responsible for approximately 99% of the overall number of deaths. Compared to the
20% RPS scenario, the 100% RPS scenario has the potential to save 441 thousand deaths,
while the 10% RPS scenario leads to 106 thousand more avian fatalities. Lastly, the RE
intensive scenario leads to more than 4.69 million bird deaths, with fossil fuel sources being
responsible for 97% of the overall number.
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Figure 12. Avian mortality caused by coal, NG, wind, and PV power plants under the three modeled scenarios from 2017

to 2050.

Dissanayake and Ando [40] conducted a choice experiment survey in Illinois and
found that their respondents are willing to pay between 1.11 and 1.13 USD for each extra
bird per year, and between 7.72 and 10.22 USD for each endangered species annually. Since
we were unable to discern different types of birds (generic versus endangered species) in
our analysis, we utilized the mean value of the upper-level estimates as to how much each
bird death is worth. We estimated that the 100% RPS scenario is capable of saving 3 million
USD in bird mortality, while the 10% RPS scenario costs the state 1 million USD more in
avian mortality, when compared with the 20% RPS scenario. We performed Kolmogorov—
Smirnov tests and t-tests on human and avian mortality, and also on air pollutants (except
mercury), and we found similar results to those of GHG and water consumption.

4.4. Summary of Cumulative Results

Our analysis seeks to investigate the economic and environmental impacts of the status
quo scenario, along with two future scenarios. Without considering environmental impacts
such as water usage, air pollution, GHG, and avian mortality, our results suggest that the
reference case and the fossil fuel intensive scenarios lead to higher economic output and
total employment impacts than the RE intensive scenario, though not statistically significant.
Once the environmental impacts are included, these results no longer hold. Compared to
the 20% RPS scenario, cumulatively, the 100% RPS scenario results in 3095 million USD
(2017$) higher benefit and the 10% RPS scenario in 3325 million USD (2017$) more cost to
the state. This makes the 100% RPS the best scenario, 20% RPS the second best, and 10% RPS
the worst-case scenario, when both environmental and economic impacts are taken into
account. Thus, the higher the RPS level, the higher the overall benefit to the state. Table 6
summarizes the state cumulative results in relation to the 20% RPS scenario. At the county
level, compared to the 20% RPS case, we found that RE suitable counties are net gainers
(in terms of both economic and environmental impacts), while fossil fuel counties suffer
economically and benefit environmentally under the 100% RPS scenario. The opposite
holds true when comparing the 10% RPS scenario against the 20% RPS scenario.
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Table 6. Summary of cumulative results in relation to the 20% RPS scenario from 2017-2050.

Outcome 100% RPS, in Million USD 10% RPS, in Million USD

Economic Output —3962 (—120) —1881 (—57)

Water benefit 59 (2) —13(—0.4)

CO, 6865 (208) —1402 (—42)

SO, 3(0.1) —1(-0.03)

NOy 7 (0.2) —2(=0.1)

PM2.5 123 (4) —27 (-1)

Bird mortality +3(0.1) —1(—0.03)

Total monetary value 3095 (94) —3325 (—101)
Employment value ? —180 (—5) +328 (10)

Numbers in parentheses are annual values. ® Employment monetary values are based on salary of 46,500 USD for
construction and 66,000 USD for O&M jobs [36], calculated based on the employment count (see Section 4.2) of
—573 (=17 annual) jobs and 3663 (111 annual) jobs for the 100% RPS and 10% RPS scenarios, respectively.

5. Conclusions and Policy Implications

Legislators across the globe are supporting policies that move toward electricity
generation from renewable resources. To this end, some jurisdictions in the U.S. have
enacted regulations, such as the RPS. These provide a mechanism that can result in not
only GHG emission reduction but also water preservation. This is especially prudent
in geographic locations with limited water resources. Moreover, RPS can support jobs,
although the primary policy target of an RPS is not focused squarely on job creation.

This study provided a roadmap of how to quantify the economic and environmental
impacts of three scenarios, in which not only the RPS level varies but also the energy sector
dynamics, technological cost, and price of energy. Specifically, we modelled New Mexico’s
newly enacted RPS policy, where it increases from the status quo of 20% by 2020 to 100%
by 2050. We also studied a scenario where RPS decreases to 10% by 2050. In so doing, we
combined results from input—output (JEDI and IMPLAN) analyses, econometrics (Stata),
and GIS (ArcGIS), and we created a unique SD model that enabled us to assess regional
economic and environmental impacts of different scenarios. Our contribution to the current
body of literature is twofold: not only did we assess different RPS scenarios by considering
the underlying dynamics within the energy sector, but we also assessed these impacts at a
lower granular level (i.e., county level).

Under the status quo scenario, the estimates in our model accounted for 152 thousand
cumulative full-time equivalent jobs, 24 billion USD in economic output, 3648 million
USD in air quality cost, 36 billion USD in climatic cost, 527 million USD worth of water
use, 5 million avian mortality, and 409-924 premature mortality. Compared with this
status quo scenario, our analysis suggests that the RE intensive scenario (100% RPS) leads
to less cumulative employment and economic output, but much higher social benefits
compared to the 20% RPS scenario, i.e., 500-15,000 fewer cumulative jobs, 3—4 billion USD
less in cumulative economic output, 132 million USD less in air quality cost, 7 billion USD
less in climatic cost, 58 million USD less in value of water use, 441-485 thousands less
in avian mortality, and 23-53 less in premature mortality. The 10% RPS scenario leads to
approximately 4000 more jobs, 2 billion USD less in cumulative economic output, 29 million
USD more in air quality cost, 1 billion USD more in climatic cost, 13 million USD more in
value of water use, 100 thousand more in avian mortalities, and 5-11 more in premature
mortality than the 20% RPS scenario. Considering the environmental impacts, our analysis
finds that the Senate Bill RPS scenario (100% RPS) is the best scenario, followed by the
status quo scenario, and the 10% RPS scenario is the worst case.

Higher levels of RPS policy aligns with support from New Mexicans. In separate work
by the co-authors [41,42], we estimated that a sample of New Mexicans are willing to pay
5.4 USD per year on top of their annual electricity bill for each 1% increase in the current
level of RPS (20%). To achieve a 100% RPS by 2050, we extrapolate that, all else equal, New
Mexicans are willing to pay 58, 180, 373, 581, 803, and 1144 million USD (2017%) in 2020,
2025, 2030, 2035, 2040, and 2050, respectively. Note that the wide range of willingness to
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pay is due to the way the bill requirements of achieving 80% RPS by 2040 were designed.
Under this bill, electric utility companies were required to increase current RPS level to
25% by 2020, 35% by 2025, 50% by 2030, 65% by 2035, and 80% by 2040. The higher the
percentage, the higher residents are willing to pay.

Although scenarios with a lower level of RPS might result in supporting a higher
number in employment (in the fossil fuel sector), these scenarios lead to much higher
social cost of GHG and ambient pollution (i.e., premature mortality and morbidity) and
water usage. This suggests that coming up with an overarching policy that benefits both
the environment and economy is not an easy task. Policymakers seeking to promote
energy policies may need to consider not only the economic benefit associated with energy
development but also social welfare. In other words, RPS policies are more desirable when
internalizing external costs and hence correcting for market failure [21,43,44].

Further, the most decisive conclusion that can be drawn from job comparison across
different scenarios is that the higher the RE development level, the more disperse and rural
the employment impact. On the contrary, the higher the level of fossil fuel deployment,
the less diverse and rural the job impact. San Juan County among all is expected to
experience a net negative (loss) in O&M jobs, i.e., a loss of 780 jobs from coal-fired power
plant retirements after 2037 and depending on the scenario, a gain of an annual average
of 84 (100% RPS) to 601 (10% RPS) jobs. Concurrently, the state is estimated to experience
nearly 686 billion USD (100% RPS) in social benefits, particularly from the coal power
plants retirement. The disparity in job and economic output distribution across counties
and energy sources suggests that counties with varying energy potential and population
density may experience variation in impacts. In other words, some counties are likely to be
net gainers while others may suffer.

The results of this study are broadly consistent with that in the literature [20,26,29,45-49].
We do recognize that the majority of these studies had explicit research questions only on
wind energy. For example, some studies sought to measure the actual economic impact
of a particular wind installation at county level (e.g., [48]), while others estimated a wind
vision for the U.S. (e.g., [26,49]) or the environmental and economic impact of RPS policies
nationwide for solely one year (i.e., [20]). Similar to Barbose et al. [20], Millstein et al. [29],
and Wiser et al. [21], our model suggests that RPS policies have the potential to yield
billions of dollars in climatic and air-quality benefits as well as economic benefits. Similar
to preceding studies, we found that increasing RPS does not result in stimulating the
economy of a state [3,4], but it does impact the environment positively [29,45,50]. Our
contribution to the literature is that we demonstrated that increasing RPS does stimulate
the economy of the state at the more granular levels (especially rural counties).

The tools and theories integrated for the analysis in this research are broadly trans-
ferable across a wide range of topics and/or regions. For example, a similar approach
can be taken to evaluate RPS policies in each one of the other 28 states with such regu-
lations. Our model can be modified and used for states with existing 100% RPS policies
(Hawaii, California, Washington, Maine, New York, and Virginia), and those with promises
for 100% clean electricity (Colorado, Connecticut, Massachusetts, Illinois, Oregon, New
Jersey, Nevada, Wisconsin, and Puerto Rico). Additionally, our state-of-the-art modeling
and set of methods are applicable to other topics, such as the impact of decarbonization
through a battery of smart grid (e.g., smart meter), transportation (e.g., electric vehicle),
and energy-efficient buildings; 100% RE for all sectors (i.e., electricity, heating/cooling,
transportation, and industry); oil and natural gas extraction; and the agriculture sector on
regional economies. Another expansion of this analysis could include developing nations,
as well as other developed countries with similar regulatory mandates. One potential
limitation of this work is that our model does not calculate electricity rates for each scenario
and takes rates as independent. More expensive scenarios could potentially result in higher
electricity rates, which can impact economic activity. This is also important as it has the
potential to impact customers’ perspective and willingness to pay towards higher level
of RE diffusion. Another caveat is that we assume that employment impacts are fully
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provided (100%) by local residents, which is not typically the case in real-world settings;
although the model is capable of varying this assumption, we chose not to include this
here for the purpose of brevity. Future research should account for data uncertainty and
present results as confidence intervals rather than precise values. This can be done by
using Monte-Carlo simulations. This study’s results provided improved information for
state policymakers seeking to alter RPS policies and can also be extrapolated to states with
similar energy policies.
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EIA Energy Information Administration

EPA Environmental Protection Agency

GHG Greenhouse-gas

IMPLAN Impact Analysis for Planning

JEDI Jobs and Economic Development Impact
MWh Megawatt-hour

NGp Peaker Natural Gas

NGb Baseload Natural Gas

NREL National Renewable Energy Laboratory
Oo&M Operating and maintenance

pv Utility-scale photovoltaic solar

RE Renewable energy

RPS Renewable portfolio standards

RPV Residential photovoltaic solar

SD System dynamics
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